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Abstract
Polystyrene Nanoparticles (PS-NPs) used for packaging foam, disposable cups, and food containers. Therefore, this study 
aimed to evaluate PS- NPs toxic effects on kidney of adult male albino rats. A total of 30 rats divided into three groups 
(n = 10): group I negative control group; group II orally administered 3% PS-NPs (3 mg/kg body weight/day) and group III 
orally administered 3% PS-NPs (10 mg/kg body weight/day) for 35 days. Blood and kidney samples collected and processed 
for biochemical, histopathological, and immunohistochemical examinations. Results showed that low and high doses PS-NPs 
had significantly increased serum blood urea nitrogen (BUN), creatinine, malondialdehyde, significantly further reduced 
glutathione, downregulation of nuclear factor erythroid 2–related factor 2 and glutathione peroxidase, upregulation of cas-
pase-3 and Cytochrome-c. Histopathological examination revealed several alterations. Low dose of PS-NPs exhibited dilated 
glomerular capillaries, hypotrophy of some renal corpuscles significantly decreases their diameter to 62 μm. Some proximal 
convoluted tubules and distal convoluted tubules showed loss of cellular architecture with pyknotic nuclei. Hyalinization 
and vacuolation in renal medulla. In high dose PS-NPs, alterations increased in severity. A significant increase in percent-
age area of cyclooxygenase-2 in low and high-doses. In conclusion, PS-NPs are a nephrotoxic causing renal dysfunction.
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Introduction

Plastic manufacturing has expanded over time (Li et al. 2016). 
Their products have become appropriate and cheap and are 
applied every day on all aspects of life (Geyer et al. 2017; 
Rhodes 2018). They are used as containers, plastic pressure 
pipe systems, plants pots, bottle caps, bags, netting, medical  

masks, industrial fibers, ropes, tanks and jugs, straws,  
appliances, centrifuge tubes, and car fenders(Ghosh et al. 2013;  
Li et al. 2016). Polymerization of several monomers with other 
substances forms artificial polymers of plastics (Thompson 
et al. 2009). The most widely used organic polymers in the 
plastic industry are polystyrene (PS), high-density polyethylene  
(HDPE), low-density polyethylene (LDPE), polyvinyl chloride  
(PVC), polyethylene terephthalate (PET), and polypropylene 
(PP) (Plastics – The Facts 2017). Plastics are very constantly  
used (Eriksen et al. 2014; Andrady 2017). About 79% of their 
wastes are accumulated in the natural environment, landfills,  
or dumps. Only 9% was recycled, and 12% was incinerated  
(Geyer et  al.  2017). Plastics undergo fragmentation via  
photodegradation, abrasion with sand, contact with animals,  
the water itself, and erosion by wave action (Eriksen 
et al. 2014; Andrady 2017). Fragments can be classified 
into several kinds according to sizes: macroplastics and 
mesoplastics (diameter, > 5 mm) (Alimba and Faggio 2019), 
microplastics (MPs; diameter, 0.1–5 mm) (Andrady 2017;  
Karbalaei et al. 2018 and Alimba and Faggio 2019), and 
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nanoplastics (NPs) (diameter, < 100 nm), which are produced 
through physical and biological degradation of microplastics 
by UV degradation (Yousif and Haddad 2013; Lambert and 
Wagner 2016).MPs/NPs are permanent in the environment (De 
Souza Machado et al. 2018; De Sá et al. 2018 and Alimba 
and Faggio 2019); thus, they pretend critical health and  
ecological attention (Akdogan and Guven, 2019). Moreover, 
they may play as vectors for chemical pollutants (Hartmann 
et al. 2017; Caruso 2019) and pathogens (Sgier et al. 2016; Wu 
et al. 2019). Polymerization of styrene monomers produces PS, 
a synthetic aromatic polymer. Styrene (vinylbenzene) is made 
from benzene and ethylene (Wünsch 2000) and has a chemical 
formula of (C8H8) n)(Ho et al. 2018). PS is broadly used in 
packaging foam, construction materials (insulation), disposable  
cups, food containers, cutleries, plates compact disks, and  
cassette boxes as it is relatively cheap and of good mechanical  
characteristics (Yang et al. 2015). Polystyrene nanoparticles  
(PS-NPs) have been extremely regarded as an example of 
nanoplastics to examine their toxicity and accumulation  
in organisms (Della Torre et  al.  2014; Chen et  al.  2017 
and Rist et al. 2017). It is widely used in self-assembling  
nanostructures, biosensors, and photonics (Loss et al. 2014), 
drug delivery, personal care products, and bioimaging (Han 
et  al.  2017; Wang et  al.  2017). Microorganisms, plants, 
and animals are more severely affected by NPs than MPs, 
since they have a lesser diameter, assisting their permeation 
and accumulation in different tissues and organs (Mattsson  
et al. 2015). NP concentrations predicted in the environment 
are ≤ 1 μg/L (Lenz et al. 2016). NPs perhaps find their way 
to living organisms through food and water, air, and the skin. 
Thus, they can accumulate in different organs resulting in 
systemic exposure (Hernandez et al. 2017; Revel et al. 2018 
and Yooeun et al. 2018). First, they will reach the intestinal  
epithelium that causes inflammation and viability failure 
(Wright and Kelly 2017). Then, translocation of PS-NPs 
from the gastrointestinal tract and consequently distributed 
throughout the body to the heart, kidney, etc. (Walczak 
et al. 2015b; Pitt et al. 2018a). NPs are suggested to enter the 
cell via pinocytosis, phagocytosis, or passive transport, and 
accordingly, they can enter the cellular membranes and several  
biological structures (Zhao et al. 2011; Shang et al. 2014).  
However, data on the mechanism of NP toxicity are still in  
its infancy. Proof for endocrine-disrupting effects of NP  
exposure is developed as they can interfere with the hormonal  
function and quantity (Halden 2010; Rochman et al. 2014 
and Sussarellu et al. 2016). The common modes of action 
of endocrine-disrupting compounds are thyroid disruptors,  
androgen and estrogen antagonists and agonists, and aromatase 
inhibitors (Quintaneiro et al. 2017). Additionally, NPs cause  
cytotoxicity that provokes oxidative stress through free radicals  
generating from reactive oxygen species (ROS) (Barboza 
et al. 2018; Pitt et al. 2018b and Liu et al. 2019). They also  
evoke immunological responses (Brandts et al. 2018a; Revel 

et al. 2018), induce neurotoxicity (Barboza et al. 2018),  
stimulate genotoxicity (Brandts et al. 2018b; Jiang et al. 2019), 
and change the gene expression (Brandts et al. 2018b; Liu 
et al. 2019)aside from their reproductive and metabolic health 
effects (Rochman et al. 2014; Sussarellu et al. 2016).

Thusly, NPs produce several perils to wellbeing and cli-
mate as opposed to other plastic garbage. As far as we could 
possibly know, data on in vivo toxicity of NPs and their 
histopathological and biochemical modifications in rat spe-
cies so far addresses the harmfulness on the base danger 
appraisal for people, while most examinations have zeroed 
in on the synthetic parts of NPs. To fill this hole, the current 
examination meant to assess the toxic impacts of ecologi-
cally important PS-NP focus as a NP model on the kidneys 
of adult male albino rats on histopathological, immunohis-
tochemical, and biochemical levels.

Materials and methods

Chemicals

Styrene monomer (99.9%) was obtained from Sigma-Aldrich 
(USA). Therefore, styrene was distilled under reduced pres-
sure before use. Tween 80 was purchased from Win Lab, 
India. Deionized water was used during preparation.

Preparation of polystyrene nanoemulsion

First, PS microspheres were prepared. Second, the prepared 
PS microspheres were converted to nanoemulsion as fol-
lows: 250 mg of PS microspheres was dissolved in 100 mL 
of organic solvent; dimethyl sulfoxide (DMSO) and the mix-
ture was stirred using a magnetic stirrer for 1 h. Then, an 
emulsifying agent (Tween 80 (200 mg)) was dissolved in 
50 mL of deionized water using an ultrasonic homogenizer. 
At the end of dissolution for PS microspheres and Tween 
80, the second solution (Tween 80) was added in drop-wise 
(at approximately 1 mL/s) to the first solution (PS micro-
spheres) while stirring for another 1 h. After mixing and 
stirring, the organic solvent DMSO was drained using an 
evaporator. For further characterization and use, the pre-
pared nanoemulsion was stored in the refrigerator.

Polystyrene characterization

The thermal stability of PS was determined using a Perkin 
Elmer thermal gravimetric analyzer (TGA) in an  N2 atmos-
phere at a heating rate of 10 °C/min. A Vector-22 Fourier 
transform infrared spectrometer (FTIR) was used to record 
the PS’s infrared absorption spectra (Bruker Company, 
Germany).
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Experimental animals and ethical considerations

The study was carried out on 30 adult male albino rats weigh-
ing 225 ± 20 g. Rats were obtained from the breeding unit of 
the Animal Health Research Institute, Dokki, Egypt. They were 
housed at the Pharmacology Department in the Faculty of Vet-
erinary Medicine in Cairo University. The rats were housed in 
plastic cages and handled for 2 weeks as an acclimatization 
period. They were fed standard food ad libitum and had access 
to water. Each rat was weighed once per week, and treatment 
doses were adjusted accordingly. Rats were kept at a constant 
temperature of 22 °C − 25 °C within a light-controlled room 
on an alternating 12:12-h light/dark cycle. The experimental 
protocol was approved by the Institutional Animal Care and 
Use Committee (IACUC) of the Faculty of Veterinary Medi-
cine, Cairo University (protocol no. Vet CU 24,112,020,257).

Experimental design

At the end of the acclimatization period, the rats were divided 
into three groups (n = 10 rats per group: 5 rats/cage). They 
were provided oral doses of the PS-NPs 3% via gavage needle 
for a 35-day experimental period as follows:

Group I (negative control group): received distilled water.
Group II: administered PS-NPs (3 mg/kg body weight/day) 

according to (Amereh et al. 2020).
Group III: administered PS-NPs (10 mg/kg body weight/

day) according to (Amereh et al. 2020).

Specimen and tissue preparation

All animals were anesthetized after 35 days, and blood sam-
ples were collected from the tail veins of all albino rats. These 
blood samples were collected in glass tubes and centrifuged 
at 3,000 rpm for 20 min; serum samples were stored at − 20 
Cº until used to analyze kidney functions. Then, they were 
sacrificed through cervical decapitation within 30 min as per 
the ethical protocol approved by the IACUC at the Faculty 
of Veterinary Medicine, Cairo University. The kidneys were 
quickly removed. Some specimens were stored at − 80 ℃ for 
the measurement of oxidative stress parameters and Rt-PCR 
analysis. Other samples were fixed in 10% neutral-buffered 
formalin solution for histopathological and immunohisto-
chemical examinations.

Biochemical assay

Determination of kidney function markers

Blood urea nitrogen (BUN) was measured by urease colori-
metric method and serum creatinine level was assayed using 
Buffered Kinetic jaffé reaction without deproteinization. 
The procedures were carried out according to reagent kits 

following the provided instructions (spectrum diagnostics. 
Egyptian Company for Biotechnology).

Renal oxidative stress biomarkers

Renal tissue was homogenized in an ice-cold 0.1-M phos-
phate-buffered saline (pH 7.4) using a Teflon tissue homog-
enizer. The crude tissue homogenate was centrifuged at 
15,000 rpm for 15 min at 4 °C and used to measure malon-
dialdehyde (MDA) according to Ohkawa et  al. (1979), 
reduce glutathione (GSH) according to Ellman (1959), and 
measure total protein concentration according to the method 
described by Bradford (1976).

qRT‑PCR analysis for Nrf‑2, GPX, Cytc, and CASP 3 genes

The relative renal Nrf-2, GPx, Cytc, and CASP3 mRNA abun-
dance was determined with qRT-PCR analysis using GAPDH 
as a housekeeping gene. Approximately, 100 mg renal tis-
sue was used for total RNA extraction using the total RNA 
Extraction Kit (Vivantis, Malaysia). RT-PCR was performed 
using M-MuLV Reverse Transcriptase (NEB#M0253) after 
confirming the RNA concentration and purity. Quantitative 
assessment of cDNA amplification for each gene was per-
formed using a fluorescence-based real-time detection method 
with a fluorescent SYBR Green dye (Thermo Scientific, Cat. 
No. K0221). The primer sequence used for qRT-PCR analysis 
is shown in Table (1) (Bashir et al. 2021; Hashim et al. 2021). 
Real-time PCR conditions were performed as follows: 95 °C 
for 5 min and then 40 cycles at 95 °C for 15 s, 60 °C for 30 s, 
and 72 °C for 30 s. In each experiment, negative controls free 
of the template were included, and each qRT-PCR was per-
formed with three biological replicates, and each biological 
replicate was assessed three times. The relative transcription 
level was calculated using the comparative  2−ΔΔCT method 
(Livak and Schmittgen 2001).

Histopathological examination

Light microscope

Fixed samples were dehydrated with a series of alcohol 
washes followed by xylene and embedded in paraffin. 
Sections (3–4 μm thick) were prepared using a rotatory 
microtome. Then, tissue sections were deparaffinized and 
stained with hematoxylin and eosin (H&E) for histopatho-
logical examination (Bancroft and Gamble 2013).

Immunohistochemical examination

Cyclooxygenase 2 protein (COX‑2) A dark brown-colored 
stained cytoplasm is considered a positive response. About 
5-µm-thick sections of the kidney were de-paraffinized and 
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rehydrated; to retrieve antigen, sections were incubated 
with 0.1% trypsin and 0.1% CaCl2 2H2O in Tris buffer 
(50  mmol/l) at pH 7.4 at 371  °C for 120  min. Sections 
were soaked in absolute methanol containing 0.3% hydro-
gen peroxide for 30 min at room temperature to eliminate 
endogenous peroxidase activity. Then, sections were incu-
bated with 1.5% non-immunized goat serum for 30  min 
at room temperature, incubated with diluted primary anti-
bodies (1:500) for COX-2 for 30 min at room temperature, 
and washed three times using phosphate-buffered saline for 
30 min. Thereafter, the sections were incubated with bioti-
nylated goat antimouse immunoglobulin serum for 60 min, 
washed with phosphate-buffered saline, and incubated with 
the avidin/biotin peroxidase complex (Vector, Burlingame, 
California, USA). Sites of peroxidase binding were detected 
using chromogenic 3,30-diaminobenzidine tetrahydrochlo-
ride substrate. Tissue sections were counterstained with 
hematoxylin. The method used as outlined according to 
Côté et al. (1993).

Image analysis to evaluate immunohistochemical 
observations (area percentage)

Sections stained with anti-COX-2 were analyzed using 
a digital Leica Quin 500Â image analysis system (Leica 
Microsystems, Switzerland) housed at the Faculty of Den-
tistry, Cairo University. The image analyzer was automati-
cally calibrated to convert pixels into units of area (μm2). 
COX-2 immunostaining was presented as a percentage of the 
total area in a standard measuring frame over ten independ-
ent fields from different slides in each group at 400 × magni-
fication. All areas with positive immunohistochemical stain-
ing were evaluated, regardless of the intensity. The mean 
values and standard error (SE) obtained for each specimen 
were statistically analyzed.

Statistical analysis

All quantitative results were analyzed using the SPSS ver-
sion 17.0 for Windows. Data were presented as mean ± SE. 
Comparisons among multiple group means were performed 
using a one-way analysis of variance, followed by an LSD 
test. Statistical significance was set at p ≤ 0.05.

Results

Evaluation of the prepared polystyrene

Thermal stability of the PS matrix was investigated using 
thermogravimetric analysis (TGA). PS microspheres and PS 
nanoemulsion TGA thermograms are shown in Fig. 1a and 

b. The thermal degradation structure of the PS microsphere 
was extracted from the TGA curve. Single-phase degrada-
tion was observed in PS microspheres due to decomposi-
tion of the PS matrix into volatile styrene monomers, which 
results in a mass loss of 98.4% at 411 °C. The evaporation of 
adsorbed water from the sulfonic acid groups resulted in the 
first weight loss from ambient temperature to 135 °C. The 
next zone was observed at approximately 411 °C, owing to 
the degradation of the sulfonic groups.

The thermal stability of PS nanoemulsion (Fig. 1b) is 
found to follow the order of degradation as shown with 
pure PS (Fig. 1a). However, the main two loss weight of 
PS nanoemulsion appeared at high temperatures when com-
pared with pure PS. As observed in Fig. 1b that approxi-
mately 10.8% weight of PS nanoemulsion was lost at 377 °C 
and 88% of the weight has been lost at 411 °C. By compar-
ing, the high thermal stability of PS nanoemulsion could be 
attributed to the high surface area, well stability, and small 
size of the produced nanoemulsion.

Fig. 1  (a) TGA of Pure Polystyrene and (b) Polystyrene nanoemul-
sion
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Figure 2 shows the infrared absorption spectra (FTIR) 
of PS nanoemulsions. Numerous absorption peaks were 
observed within the wavenumber range in question. Because 
of aromatic C-H stretching vibration absorption, absorption 
peaks were observed at 3,036 and 3,017  cm−1, as well as 
aliphatic stretching at 2,909 and 2,831  cm−1, leading to the 
presence of methylenes.

Besides that, aromatic C = C stretching vibration absorp-
tion produces three absorption peaks at wavenumbers of 
1,600, 1,430, and 1,334  cm−1. The existence of benzene 
rings is shown by these absorption peaks.

Furthermore, absorption peaks at 743 and 695  cm−1, 
which correlate to C-H out-of-plane bending vibration 
absorption, imply that the benzene ring contains only one 
substituent. Consequently, the stretching vibration absorp-
tion of O–H, which indicates the presence of hydroxyl, peaks 
at wavenumber 3,442  cm−1. Therefore, the difference in IR 
spectra of pure PS and polystyrene nanoemulsion is not dif-
ferent, implying that the nanoform reaction does not provide 
structure on the chemical structure of pure polystyrene.

Morphology of the prepared polystyrene

Scanning electron microscopy (SEM) of the prepared PS 
nanoemulsion at low and high magnifications is displayed in 
Fig. 3a and 3b, showing the distinct form of the as-prepared 
PS nanoemulsion. The PS colloidal nanoemulsion is mostly 
arranged in a spherical form as exhibited from SEM images.

The colloidal crystal porosity of PS nanoemulsions with 
a spherical configuration is significantly higher than those 
with a tetragonal structure, which can be easily modified into 
a hexagonal configuration, a more compact structure that 
may have implications in medical applications.

Biochemical investigations

Effect of PS‑NPs on kidney function

Renal damage was estimated using BUN and creatinine lev-
els. Figure 4 reveals that a low dose of PS-NPs induced a 

Fig. 2  FTIR of the prepared Polystyrene nanoemulsion

Fig. 3  SEM image of the prepared polystyrene nanoemulsion at (a) low and (b) high magnification
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significant increase in BUN levels from 6.98 to 15.69 mg/dL 
and serum creatinine level from 0.75 to 0.84 mg/dL when 
compared with the control group. Similarly, treatment with 
a high dose of PS-NPs also significantly elevated BUN and 
creatinine levels to 18.11 mg/dL and 0.97 mg/dL, respec-
tively, when compared with the control group.

Oxidative stress biomarkers

A. MDA content in  renal tissue According to the obtained 
data in Fig. 4, treatment with low-dose PS-NPs significantly 
elevated the MDA renal content from 1.08 to 3.40 μΜ mg-1 
protein when compared with the control group. Similarly, 

the high-dose treatment also elevated the MDA content to 
5.10 μΜ mg-1 protein.

B. Renal content of GSH Compared with the control group, 
renal GSH content was significantly reduced from 3.62 to 
2.41 and to 1.55 μΜ mg-1 protein in rats treated with low 
and high doses of PS-NPs, respectively, as shown in Fig. 4.

qRT‑PCR

A. qRT‑PCR for some antioxidant‑related genes (Nrf 2 and GPx)  
Contrasted to the control group, PS-NPs significantly dimin-
ished mRNA expression for Nrf-2 to 0.22-overlay and to 0.12-

Fig. 4  Effect of PS-NPs on (a) 
BUN (b) Serum creatinine (c) 
Renal MDA content and (d) 
Renal GSH content in male 
albino rat. Data are represented 
as mean ± SEM. * indicates 
significant difference from the 
corresponding control negative 
group at p ≤ 0.05
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fold in the two groups treated with low and high doses, individu-
ally, as demonstrated in Fig. 5a. Besides, treatment with low and 
high doses demonstrated a significant diminishing in mRNA 
expression for GPX to 0.10-and 0.02-fold in comparison with 
the control group as demonstrated in Fig. 5b.

B. qRT‑PCR of some apoptotic‑related genes (Cytc and CASP 
3) Our current data revealed that treatment with both low 
and high doses of PS-NPs significantly increased the mRNA 
expression of Cytc to 3.10-fold and to 3.70-fold, respectively, 
when compared with the control. Moreover, CASP 3 gene 

expression was significantly elevated to 4.00-fold and to 
8.00-fold in both low and high doses of PS-NPs, respectively, 
when compared with the control as shown in Fig. 5c and 5d.

Histopathological examination

Light microscopy observations

Assessment of H&E-stained kidney slides in the control 
group (Group I) of adult male albino rats showed ordinary 
histological structure where it was contained renal cortex 

Fig. 5  Effect of PS-NPs on 
renal mRNA relative expres-
sion for (a) NRF-2 gene (b) 
GPx gene (c) Cytc gene and 
(d) CASP 3 gene in male 
albino rat. Data are represented 
as mean ± SEM. * indicates 
significant difference from the 
corresponding control negative 
group at p ≤ 0.05

155Cell and Tissue Research (2022) 388:149–165



1 3

and renal medulla. Renal cortex showed renal corpuscles 
with ordinary diameter containing glomerular capillar-
ies and encompassed by Bowman's cases, proximal con-
voluted tubules (PCT) lined with pyramidal cells with 
restricted lumina, and distal convoluted tubules (DCT) lined 
with cuboidal cells with wide lumina (Fig. 6a). The renal 
medulla comprised of collecting tubules lined with cuboidal 
epithelia, loop of Henle's, and interstitial blood capillaries 
(Fig. 6b).

On the contrary, renal tissue sections of adult male albino 
rats from the experimental group II administered 3% PS-
NPs (3 mg/kg bwt/day) revealed several histopathologi-
cal alterations compared with the control group. The glo-
merular capillaries were dilated and engorged with blood 
with wide glomerular space and pyknosis in the nuclei of 
intraglomerular cells (Fig. 6c and d).Some renal corpuscles 
showed hypotrophy (Fig. 6c and e) and degeneration with 
content loss (Fig. 6c), with a significant decrease in their 
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diameter to 62 μm Table (2) compared with the control 
group. Moreover, the renal cortex showed interstitial hemor-
rhage. Some PCT and DCT showed loss of the cellular archi-
tecture with pyknosis of their nuclei (Fig. 6c and e).Some 
DCT showed cellular cytoplasm shedding as strands in the 
tubular lumen, and others demonstrated complete loss of 
cytoplasmic acidophilia of their lining cellswith pykno-
sis of their nuclei(Fig. 6f).Additionally, the renal medulla 
showed some hyalinized areas with vacuolation (Fig. 6g 
and h) as well as dilatation and congestion of the interstitial 
blood capillaries(Fig. 6g).Some of the collecting tubules 
degenerated with loss of cellular cytoplasmic contents into 
their lumina (Fig. 6h).Some tubular cells partially lost their 
cytoplasmic acidophilia, whereas others completely lost it. 
Besides, some nuclei of the collecting tubule cells appeared 
pyknotic and shrunken (Fig. 6i), whereas others were kary-
olitic (Fig. 6h and i).

Conversely, renal tissue sections of adult male albino rats 
from the experimental group III administered 3% PS-NPs 
(10 mg/kg bwt/day) revealed an increased alteration severity 
observed in group II. The renal cortex showed hemorrhage, 
dilatation with congestion of blood capillaries and glomeru-
lar capillaries (Fig. 7a and b), and accumulation of eosino-
philic material in the tubular lumina (Fig. 7b). Some renal 
corpuscles showed hypotrophy (Fig. 7a and c) and degenera-
tion with complete content loss (Fig. 7c), with a significant 

decrease in their diameter to 59 μm compared with the con-
trol group but non-significant decrease as compared with 
group II Table (2). Peritubular spaces were observed in the 
cortex (Fig. 7b) with mononuclear cell infiltration (Fig. 7c). 
Some DCT and PCT showed degeneration, and their lining 
cells demonstrated pyknosis of their nuclei and loss of the 
cytoplasmic acidophilia. Some tubules showed shedding of 
the cellular cytoplasm in the tubular lumina (Fig. 7d and e). 
Other degenerated PCT showed loss of cellular details with 
flattened pyknotic nuclei and shedding of the cytoplasm in 
the lumina (Fig. 7f).

Consequently, the renal medulla showed interstitial hem-
orrhage and hyalinized patches (Fig. 7g). Obvious fibrosis 
and peritubular spaces were also observed (Fig. 7h). Some 
of the collecting tubules degenerated with loss of the cellular 
architecture, whereas others showed loss of their lining cells' 
cytoplasmic acidophilia, shedding of cytoplasmic content, 
and some nuclei into their lumina and pyknosis of some 
nuclei (Fig. 7i).

Immunohistochemical observations

Immunohistochemical examination of both renal cortex and 
renal medulla of control rats (Group I) showed negligible 
cytoplasmic immunoexpression of COX-2 (Fig. 8a and b). 
Conversely, a positive immunoreactivity of COX-2 was 
observed in the cellular cytoplasm of PCT and DCT in the 
renal cortex and in the cytoplasm of collecting tubule cells in 
the renal medulla of rats administered 3% PS-NPs (3 mg/kg 
bwt) (GrouP II) as compared with the control group (Fig. 8c 
and d).Moreover, immunoexpression of COX-2 was strongly 
positive in the cellular cytoplasm of PCT and DCT in the 
renal cortex and in the cytoplasm of collecting tubules’ 
cells in the renal medulla of rats administered 3% PS-NPs 
(10 mg/kg bwt) (GrouP III) as compared with the control 
group (Fig. 8e and f).

Data analysis showed a significant increase in the area% 
covered by COX-2-positive immunoreactive cells within the 
renal tissue in albino rats administered 3% PS-NPs (3 mg/kg 
bwt) (Group II) as compared to control rats to 36.7. Moreo-
ver, a highly significant increase in the area% covered by 
COX-2-positive immunoreactive cells was observed within 
the renal tissue in albino rats administered a high concentra-
tion of 3% PS-NPs (10 mg/kg bwt) (Group III) as compared 
to the control group to 65 (Fig. 9).

Discussion

As of late, terms NPs have grabbed exceptional eye because 
of expanding openness levels of people. Among them, PS-
NPs are quite possibly the most addressed NPs in the climate 

Fig.6  Renal tissue sections from adult albino male rats (a: b) Con-
trol rats (group I) showing (a) Renal cortex revealing normal histo-
logical structure, renal corpuscle (rc) containing glomerular capillar-
ies (arrow), proximal convoluted tubule (pct), and distal convoluted 
tubule (dct). H&E X400. (b) Renal medulla containing collecting 
tubules (ct) lined by cuboidal cells (yellow arrow), loop of Henle's 
(green arrow), and blood capillaries (red arrow). H&E X400. (c: i) 
group II (c:f) Renal cortex showing (c) Dilated and engorged glo-
merular capillaries (yellow arrow), wide glomerular space (star), 
pyknotic nuclei of intraglomerular cells (red arrow), hypotrophied, 
degenerated renal corpuscle with loss of contents (blue arrow) and 
some (pct) and (dct) showed loss of the cellular architecture with 
pyknosis of their nuclei. H&E X400. (d) Dilated and engorged glo-
merular capillaries (yellow arrow), wide glomerular space (star), 
pyknotic nuclei of intraglomerular cells (red arrows) H&E X1000 (e) 
Hypotrophied renal corpuscle (yellow arrow), interstitial hemorrhage 
(red arrows), and some pct and dct lost their cellular architecture with 
pyknosis of some nuclei (inside cube X1000) H&E X400 (f) Some 
dct appeared with cytoplasmic strands in its lumen (yellow arrow) 
others demonstrated complete loss of the cytoplasmic acidophilia of 
their lining cells (red arrows)with pyknosis of some nuclei (green 
arrows).H&E X1000 (g:i) Renal medulla showing (g) Hyalinized 
areas (yellow arrows), vacuolation (circle), and dilatation and conges-
tion of the interstitial blood capillaries (red arrows).H&E X400 (h) 
Hyalinized area (yellow arrow), vacuolation (circle), some degener-
ated collecting tubules (ct) with loss of the cellular cytoplasmic con-
tents into their lumina (red arrows), and karyolitic nucleus of some 
tubular cells (blue arrow) H&E X1000 (i) Some collecting tubules 
(ct) cells partially lost their cytoplasmic acidophilia (red arrow) oth-
ers completely lost it (yellow arrow), some nuclei appeared pyknotic 
and shrunken (circle) while others were karyolitic (blue arrow). H&E 
X1000
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(Rubio et al. 2020). Curiously, fluorescent PS-NPs were 
demonstrated to be ingested by rodents and limited in the 
kidney tissue (Walczak et al. 2015a). This work intended 
to examine if and what PS-NPs mean for the kidney work 
and to investigate the fundamental likely instrument of its 
harmfulness in a rodent model. The rats were presented to 
various doses of PS-NPs for 35 days. Our outcomes showed 
that PS-NPs could dose conditionally incite nephrotoxic-
ity as shown by significant elevation of renal biomarkers, 

increase in ROS production, and apoptosis. Significant ele-
vation in serum creatinine and BUN shows renal dysfunc-
tion instigated by PS-NPs confirmed by a histopathological 
appraisal, and these discoveries are predictable with the 
investigation by Amereh et al. (2019). An increase in serum 
creatinine and BUN levels can reflect renal harm. BUN is 
viewed as the main intense renal marker that increments 
when any sort of injury happened in the kidney. Serum cre-
atinine is a notable clinical pointer of kidney work and a 
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more dependable marker of hindered glomerular filtration 
rate. The rise in kidney work biomarkers might be clari-
fied by histological changes in the renal tissue, for the most 
part in the glomeruli and renal tubules. The renal tissue 
is exceptionally helpless to the improvement of oxidative 
abuses because of its long polyunsaturated unsaturated fat 
substance (Yin et al. 2019). The mechanism of PS-NP toxic-
ity is a long way from being completely perceived, despite 
the fact that ROS has been proposed as the central partici-
pant in PS-NP harmfulness (Lehner et al. 2019). Specifi-
cally, exposure to NPs can initiate the ROS production (Liu 
et al. 2018). Besides, a few toxicological researches showed 
that oxidative pressure and ensuing DNA harm were related 
with toxicity incited by NPs (Prüst et al. 2020; Sarasamma 
et al. 2020). To analyze the oxidative stress reaction of PS-
NPs on the renal tissue, MDA, GSH, GPx expression lev-
els, and Nrf2 mRNA expression level were estimated in the 
current examination. A significant elevation of MDA was 
distinguished in the renal homogenate. Contrasted with the 
control, GSH and an expression for GPx and Nrf2 mRNA 
expression level are significantly lower in a dose-dependent 
way. This underscores the job of free radicals in oxidative 
cell damage because of PS-NPs harmfulness. Increased lipid 
peroxidation (LPO) is by and large considered as essential 
biomarkers for cell harms prompted by oxidative stress (Kim 
et al. 2013). MDA is utilized as a LPO index, and its height 
has been related with oxidative responses in various body 
tissues. A several examinations have recently connected 
increased MDA with renal injury in various models (Shi 
et al. 2017; Al Asmari et al. 2017). GSH is a significant 

endogenous nonenzymatic cell antioxidant molecule and is 
known to neutralize and scavenge a wide scope of ROS. 
GPx is a significant antioxidant enzyme for scavenging ROS 
and catalyzes the decrease of lipid peroxides. This capacity 
of GPx is fundamentally significant in antioxidant defense 
and support of the wellbeing of cells and creatures. In this 
investigation, expression of the gene encoding the GPx was 
clearly reduced by PS-NPs intoxication emphatically rec-
ommending that NPs could instigate oxidative harm. GSH 
and GPx consumption are related with the advancement of 
numerous cellular disturbances, including oxidative stress 
(Al-Olayan et al. 2016). Excessive ROS creation is known 
to assault film lipids and further upgrade their oxidation (Al-
Brakati et al. 2019). Rubio et al. (2020) and Li et al. (2020) 
announced that PS-NPs can incite intracellular ROS crea-
tion and primary DNA harm, mirroring the part of oxida-
tive stress in the mechanisms of PS-NPs toxicity (Hu and 
Palić. 2020). At the point when free radicals are overpro-
duced, the body safeguards itself by combining enzymatic 
endogenous cell antioxidants or nonenzymatic ones (like 
GSH), which address the first line of protection against 
free radical harm (Hu and Palić. 2020). The large surface 
area and reactive nature of NPs give them gigantic oxidiz-
ing capacity (Rana et al. 2018). The molecular mechanism 
underlying PS-NPs' part in instigating renal oxidative harm 
isn't completely clear. Along these lines, Nrf2 mRNA gene 
expression was examined in the renal tissue. Momentarily, 
Nrf2 is a transcription factor accumulated in the nucleus 
in oxidative and electrophilic stress conditions, where it is 
considered as an expert controller for the expression of mul-
tiple antioxidant genes, like GSH, glutathione s transferase, 
superoxide dismutase enzyme, and catalase enzyme promote 
cell survival and help the cell to recover against oxidative 
stress (Manna et al. 2016).As indicated by the current infor-
mation, PS-NP administration prompted a significant down-
regulation in the Nrf2 gene expression in a dose-dependent 
way in the renal tissue. As a significant component in cell 
number control, apoptosis is firmly connected with the most 
renal illness conditions (Sibarani et al. 2020). Renal apop-
tosis is related with the advancement of oxidative stress and 
inflammation, which in the long run prompted kidney injury 
(Yin et al. 2019). In the current examination, PS-NPs trig-
gered apoptotic motioning by upregulating casp 3 and Cytc 
gene expression in the renal tissue. This is in accordance 
with a past report in which the authors reasoned that apopto-
sis assumes a fundamental part in PS-NP harmfulness (Jung 
et al. 2020). One of the vital components in renal apoptosis 
is caspase-3 (Jeruc et al. 2006; Ahmed et al. 2021). At the 
point when the sign advancing cell development vanishes, 
Cytc overexpression causes apoptosis (Rashad et al. 2018). 
Both intrinsic and extrinsic pathways of the apoptotic 
cycle can trigger the initiation of caspase 3. Cytc gene that 
emerges from mitochondrial harm instigates enactment of 

Fig.7  Renal tissue sections of adult albino male rats from group III 
(a:f) Renal cortex showing (a) Hemorrhage (yellow arrows), dilata-
tion with congestion of the blood capillaries (red arrow) and glomer-
ular capillaries (green arrow), and hypotrophied renal corpuscle (blue 
arrow) H&E X400. (b) Hemorrhage (yellow arrows), dilatation with 
congestion of the blood capillaries (red arrow) and glomerular cap-
illaries (green arrow), accumulation of eosinophilic material (black 
arrow) in the tubular lumina, and peritubular space (blue arrow) 
H&E X400. (c) Hypotrophied, degenerated renal corpuscle with 
loss of contents (blue arrow) and mononuclear cell infiltration (yel-
low arrow) H&E X400 (d) Degenerated distal convoluted tubule (dct) 
with pyknosis of the nuclei (blue arrows), loss of the cytoplasmic 
acidophilia (red arrow) of their lining cells, and shedding of the cel-
lular cytoplasm (yellow arrow) in the tubular lumen H&E X1000 (e) 
Degenerated proximal convoluted tubule (pct) with pyknosis of the 
nuclei (blue arrow), loss of the cytoplasmic acidophilia (red arrow)
of their lining cells, and shedding of the cellular cytoplasm (yellow 
arrows) in the tubular lumina H&E X1000 (f) Degenerated (pct) with 
loss of cellular details, flattened pyknotic nuclei (red arrows), and 
shedding of cytoplasm in lumen (yellow arrow) H&E X1000. (g:i) 
Renal medulla showing (g) Interstitial hemorrhage (yellow arrows) 
and hyalinized patches (red arrows) H&E X400 (h) Fibrosis (red 
arrows) and peritubular spaces (yellow arrows) H&E X400 (i) Degen-
erated collecting tubules (ct) with loss of the cellular architecture, 
loss of cytoplasmic acidopilia (yellow arrow), shedding of cytoplas-
mic content and some nuclei into their lumina (red arrow), and pyk-
nosis of some nuclei (blue arrows) H&E X1000

◂
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caspase-9, which thusly actuates the protein casp 3. Casp 3 
will be enacted in each cycle of renal cell apoptosis (Sibarani 
et al. 2020). Qu et al. (2019) and Chiu et al. (2015) revealed 
that PS-NPs initiated apoptosis and DNA harm through oxi-
dative stress. The collection of PS-NPs in lysosomes could 
prompt the arrival of cathepsins into the cytosol, which 

eventually proliferated mitochondrial harm and therefore 
enacted cell apoptosis (Wang et al. 2013).

Nanoparticles (NPs) resulted in harmful cellular changes 
varying from acute cytotoxicity, neurotoxicity, and induc-
tion of inflammation to genotoxic effects (Nel et al. 2006). 
Nanoplastic particles interact with living organisms and 

Fig. 8  Immunohistochemically COX2 stained renal sections (X400) 
(a) Renal cortex (b) Renal medulla of control rats showing negligi-
ble cytoplasmic immunoexpression of COX-2 (arrow). (c-d) Group II 
3% PS-NPs (3 mg/kg bwt) administered rats (c) Renal cortex showing 
positive COX-2 immunoreaction in cytoplasm of proximal convoluted 
tubules (pct) and distal convoluted tubules (dct) (d) Renal medulla 

showing positive immunoreaction in cytoplasm of collecting tubules' 
cells (ct). (e–f) Group III 3% PS-NPs (10 mg/ kg bwt) administered 
rats (e) Renal cortex showing strong positive COX-2 immunoexpres-
sion in cytoplasm of proximal convoluted tubules (pct) and distal con-
voluted tubules (dct) (f) Strong positive immunoreaction in cytoplasm 
of collecting tubules' cells (ct) in renal m
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cross biological barriers, are accumulated in organs, and 
affect cell functions (da Costa et al. 2016; Watts et al. 2016). 
Nanoplastic particles’ pathological mechanisms include the 
generation of ROS and induction of inflammation (Stone 
et al. 2007; Lu et al. 2016; Deng et al. 2017 and Prokić 
et al. 2019). Moreover, Walczak et al. (2015a, b) reported 
the PS-NP bioavailability and biodistribution from the gas-
trointestinal tract to various organs within 6 h. The maxi-
mum amounts of PS-NPs were calculated in the stomach 
and intestinal walls. PS-NPs were also found in the lung, 
spleen, testis, kidney, and heart, indicating that they exist 
systematically. Moreover, Babaei et al. (2020) concluded 
that dietary administration of PS-NPs was correlated with 
elevated circulating ROS concentrations in male Wistar rats. 
Therefore, the authors investigated the toxic impact of PS-
NPs on the kidney of male adult albino rats as a target organ 
on histopathological and immunohistochemical levels.

In this study, renal tissue sections of adult male albino 
rats from experimental groups administered 3% PS-NPs in 
two different doses (3 mg and 10 mg/kg bwt/day) revealed 
several histopathological alterations as compared with the 

control group, such as dilation and engorgement of glomeru-
lar capillaries with blood, which agrees with the results of 
Abdelhalim and Jarrar (2011) in the renal cortex of Wistar 
rats intraperitoneally administered 10 nm to 20 nm of gold 
nanoparticles (GNPs) for 7 days. This dilatation might be 
due to the decreased vascular resistance of the renal tissue 
induced by PS-NPs. Furthermore, some renal corpuscles 
showed hypotrophy and degeneration with loss of their con-
tents in both two doses but became more obvious in a group-
administered higher dose of 3% PS-NPs (10 mg/kg bwt/day). 
This finding correlated to Ibrahim et al.’s (2018) study that 
reported diminished and distorted glomeruli of mice injected 
with 5 nm of GNPs. Histological alterations of renal cor-
puscles might suggest impaired renal function (Mohamed 
and Salah 2010). Interstitial hemorrhage was observed in 
the renal cortex and renal medulla, a finding consistent with 
that of Abdelhalim and Jarrar (2011).

Some PCT and DCT showed many alterations start-
ing from loss of the cellular architecture, accumulation 
of eosinophilic material in the tubular lumina to end with 
degeneration in a higher dose of 3% PS-NPs (10 mg/kg 
bwt). These observations were suggested by Abdelhalim 
and Jarrar (2011) and Ibrahim et al. (2018). Moreover, DCT 
showed shedding of the cellular cytoplasm as strands in the 
tubular lumen. The same result was recorded by Abdelhalim 
and Jarrar (2011) who suggested GNPs affect a renal cell 

Fig. 9  The effect of the two 
different doses (3 and 10 mg/
kg bwt) of 3% PS-NPs on the 
percent area covered by COX-
2-positive immunoreactive 
cells within the renal tissue of 
albino rats compared to control 
rats. Values are presented as 
mean ± SEM. *indicates a 
significant difference from the 
corresponding control negative 
group at p ≤ 0. 05. ** indicates 
a highly significant differ-
ence from the control group at 
p ≤ 0.05

Table 1  Primer sequence used for qRT-PCR

Gene symbol Gene description Accession number Primer Sequence

GAPDH Glyceraldehyde3-phosphate dehydrogenase NC_005103.4 F:- 5′-ACC ACA GTC CAT GCC ATC AC-3′
R:- 5′-TCC ACC ACC CTG TTG CTG TA-3′

Nrf 2 Nuclear factor, erythroid 2-like 2 NC_005102.4 F: -5′‐GGC CCT CAA TAG TGC TCA G‐3′
R:-5′‐TAG GCA CCT GTG GCA GAT TC‐3′

GPX Glutathione peroxidase M21210.1 F:-5′-CTC TCC GCG GTG GCA CAG T-3′ R:- 
5-CCA CCA CCG GGT CGG ACA TAC‐3′

Cytc Cytochrome c K00750.1 F:- 5′-TAC CC T CTC AAC GAC AGC AG-3′
R:- 5′-TCT TGA CAT TCT CCT CGG TG-3′

CASP 3 Caspase 3 NM_012922.2 F: -5ʹ-GGA GCT TGG AAC GCG AAG AA-3ʹ
R:-5ʹ-ACA CAA GCC CAT TTC AGG GT-3ʹ

Table 2  The effect of the two different doses (3 and 10 mg / kg bwt/
day)of 3% PS-NPs on the diameter of the glomerulus in the renal tis-
sues of albino rats compared to control albino rats

Values are presented as mean ± SEM. *indicates significant difference 
from the corresponding control negative group at p ≤ 0. 05

Groups Diameter of 
glomerulus 
(µm)

GrouP I (control) 78 ± 2
GrouP II (3 mg/kg bwt) 62 ± 0.6*
GrouP III (10 mg/kg bwt) 59 ± 1.4*
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adhesion and induces cell–cell junction disruption. Moreo-
ver, cell–cell dissociation resulted from oxidative stress as 
mentioned by Inumaru et al. (2009), and PS-NPs induce the 
generation of ROS (Prokić et al. 2019), resulting in cell dis-
sociation and shedding. Moreover, mononuclear cell infiltra-
tion observed in the renal cortex correlated with Abdelhalim 
and Jarrar (2011) and Ibrahim et al. (2018)’s findings. Johar 
et al. (2004) reported that GNPs could interact with proteins 
and enzymes of the renal interstitial tissue inhibiting the 
antioxidant defense mechanism and ROS generation, which 
may initiate an inflammatory response. In the current work, 
the renal medulla showed some hyalinized areas and degen-
erated collecting tubules. These degeneration steps result 
in necrosis that might be followed by organelle swelling, 
especially in the mitochondria, endoplasmic reticulum, and 
rupture of lysosomes before shrinking and dissolution of 
renal cell nuclei (Pandey et al. 2008). The severity of these 
lesions increased in the higher dose of 3% PS-NPs (10 mg/
kg bwt).

Cyclooxygenase (COX) is an enzyme responsible for 
the formation of important biological mediators known as 
prostanoids, including prostaglandins, prostacyclin, and 
thromboxane. COX2 is undetectable in most normal tis-
sues and is an inducible enzyme in most tissues exposed 
to inflammation (Warner and Mitchell, 2002). In our 
research, immunohistochemical examination revealed posi-
tive COX-2 immunoexpression in the cellular cytoplasm of 
PCT and DCT in the renal cortex and in the cytoplasm of 
collecting tubules’ cells in the renal medulla of rats admin-
istered the low dose of 3% PS-NPs (3 mg/kg bwt), which 
showed a significantly strong positive immunoreaction in 
a high dose of 3% PS-NPs (10 mg/kg bwt). These results 
suggest that PS-NPs induce apoptosis, a finding consistent 
with that of Qu et al. (2019) who reported that PS-NPs 
induced apoptosis and DNA damage through oxidative 
stress. The histological and the histochemical alterations 
in the renal tissues induced by PS -NPs could be docu-
mented the accumulation of PS-NPs in renal tissue. The 
induced histological alterations might be an indication of 
injured renal tubules due to PS-NPs toxicity that caused 
accumulated residues resulting from metabolic and struc-
tural disturbances in renal tissue.

Conclusion

The use of plastics has been extremely increased every day 
due to their low cost and appropriate characteristics. Thus, 
these plastics are degraded and fragmented into small par-
ticles (MPs/NPs), which are increasingly accumulated in 
the environment and causing health hazards. Our findings 
demonstrated the PS-NP toxicity on the kidneys of rats (as 
models for mammals), the adversely affected species. Renal 

function impairment and several histopathological altera-
tions were recorded as a consequence of the oxidative dam-
age and apoptosis-induced PS-NP toxicity. However, sev-
eral concentrations are one of the limitations of this study, 
and thus, sizes of these particles greatly varied in different 
studies. Additionally, exposure levels in humans remain 
unknown and will be different from the rat model. Therefore, 
we recommend performing further investigations to fill the 
gap in this aspect.
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