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G R A P H I C A L A B S T R A C T
� Two transforming growth factor-β (TGF-
β) subtypes were identified using
consensus clustering.

� The TGF-β high subtype was associated
with a poor prognosis and superior
immunotherapy response.

� A risk prediction signature was con-
structed using and validated using pub-
licly available databases.

� Uni- and multivariate Cox regression
analyses verified that the model could be
an independent prognostic factor.

� Patients in the high-risk subgroup expe-
rienced better immunotherapy efficacy.
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Background: Colon cancer is a malignant tumor with high malignancy and a low survival rate whose heterogeneity
limits systemic immunotherapy. Transforming growth factor-β (TGF-β) signaling pathway-related genes are
associated with multiple tumors, but their role in prognosis prediction and tumor microenvironment (TME)
regulation in colon cancer is poorly understood. Using bioinformatics, this study aimed to construct a risk pre-
diction signature for colon cancer, which may provide a means for developing new effective treatment strategies.
Methods: Using consensus clustering, patients in The Cancer Genome Atlas (TCGA) with colon adenocarcinoma
were classified into several subtypes based on the expression of TGF-β signaling pathway-related genes, and
differences in survival, molecular, and immunological TME characteristics and drug sensitivity were examined in
each subtype. Ten genes that make up a TGF-β-related predictive signature were found by least absolute shrinkage
and selector operation (LASSO) regression using colon cancer data from the TCGA database and confirmed using a
Gene Expression Omnibus (GEO) dataset. A nomogram incorporating risk scores and clinicopathologic factors was
developed to stratify the prognosis of patients with colon cancer for accurate clinical diagnosis and therapy.
Results: Two TGF-β subtypes were identified, with the TGF-β-high subtype being associated with a poorer prog-
nosis and superior sensitivity to immunotherapy. Mutation analyses showed a high incidence of gene mutations in
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the TGF-β-high subtype. After completing signature construction, patients with colon cancer were categorized into
high- and low-risk subgroups based on the median risk score of the TGF-β-related predictive signature. The risk
score exhibited superior predictive performance relative to age, gender, and stage, as evidenced by its AUC of
0.686. Patients in the high-risk subgroup had higher levels of immunosuppressive cell infiltration and immune
checkpoints in the TME, suggesting that these patients had better responses to immunotherapy.
Conclusions: Patients with colon cancer were divided into two subtypes with different survival and immune
characteristics using consensus clustering analysis based on TGF-β signaling pathway-related genes. The con-
structed risk prediction signature may show promise as a biomarker for evaluating the prognosis of colon cancer,
with potential utility for screening individuals for immunotherapy.
Introduction

Colon cancer is a prevalent and deadly disease that is of public health
interest, with an increasing global mortality rate.1–4 Over 10% of patients
have locally advanced illness, and the 5-year survival rate is low.5–7 Colon
adenocarcinoma (COAD) is themost commoncolon cancer typeand the third
most common adenocarcinoma globally.8 Developing effective treatment
strategies for colon cancer prevention and treatment is a matter of urgency.

Common formsof coloncancer treatmentvarydependingon thedisease's
stage and include surgery, radiotherapy, chemotherapy, targeted therapy,
and immunotherapy.6,9,10 Immunotherapy is crucial in treating colon cancer,
and immune checkpoint inhibitors (ICIs) have shown significant clinical
benefits.11 The current clinical application of programmed death ligand 1
(PD-L1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade
is primarily based on the gene mutation patterns of colon cancer. Patients
with colon cancer are classified into defective mismatch repair
(dMMR)/microsatellite instability-high (MSI-H) and proficient mismatch
repair (pMMR)/microsatellite-stability (MSS) groups.12 With the Food and
Drug Administration's (FDA's) acceptance of the ICI pembrolizumab as the
first-line therapy for patients with metastatic MSI-H/dMMR colon cancer in
2020, promising outcomes have been achieved. However, MSI-H/dMMR
still shows low prevalence and certain patients with colon cancer with
MSI-H/dMMR exhibit intrinsic or acquired resistance to immunotherapy.13

Thus, continually investigating reliable predictive biomarkers to enable the
immunotherapy stratification of patients with colon cancer is critical.

Transforming growth factor-β (TGF-β) is a member of the secretory
cytokine family.14,15 TGF-β comprises three isoforms—TGF-β1, TGF-β2,
and TGF-β3—that cooperate to coordinate various physiological and
pathological processes, notably concerning the progression of diseases such
as inflammation and cancer.16 TGF-β is a multifunctional cytokine with
paradoxical roles in cancer progression. In the early phases of cancer, TGF-β
may function as a tumor suppressor; however, as cancer progresses, it
transforms into a tumor promoter.17–19 Furthermore, TGF-β may consid-
erably stimulate epithelial–mesenchymal transition (EMT) in malignant
cells, enhancing the capacity of cancer cells to invade, migrate, and evade
apoptosis.20–23 Hypoxic environments activate TGF-β, which can stimulate
angiogenesis in various cancer types.24 Cancer-associated fibroblast (CAF)
production and extracellular matrix (ECM) deposition are both induced by
TGF-β overexpression, often resulting in cancer.25 Another essential role of
TGF-β in cancer is in immunosuppression and has therefore been long
recognized as an immunosuppressive factor in the tumor microenviron-
ment (TME).26,27 Currently, the study of antitumor drugs that specifically
target TGF-β has advanced considerably. These interventions have under-
gone human clinical trials for validation or have exhibited encouraging
outcomes in preclinical animal models.28

To date, TGF-β signaling pathway-related risk prediction models have
been constructed for various types of cancer, including renal clear cell
carcinoma, hepatocellular carcinoma, gastric cancer, and bladder can-
cer.29–32 The shared functions of TGF-β signaling pathway-related genes
for clustering and constructing prognostic signatures to further advise
precise colon cancer therapies are yet to be thoroughly investigated. In this
regard, we intended to conduct an investigation focused on colon cancer.
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Methods

Patients and data

For the training set, the raw transcriptome, clinicopathology, and
mutation data from a COAD patient cohort were retrieved from The
Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/).
The ribonucleic acid (RNA) expression of each sample, as well as its
survival time and status, age, gender, grade, and stage, were then ob-
tained through data compilation. The location and type of the mutant
chromosome, as well as the mutant base, were included in the mutation
data.

For the validation set, Gene Expression Omnibus (GEO) data for colon
cancer (GEO:GSE38832)were searchedon theGEOdatabase (https://www
.ncbi.nlm.nih.gov/geo/query/), and Identity (ID) probe matrix files and
platform annotation files for patients with colon cancer were downloaded.
From the GEO database, 122 clinical colon cancer samples were obtained.
Using platform annotation data, the probe matrix was changed into a gene
matrix to obtain the gene expression microarray dataset.

Liu et al31 assembled TGF-β signaling pathway genes to identify all
TGF-β signaling pathway-related genes from GO:0007179 from AmiGO 2
(http://amigo.geneontology.org/amigo/landing), TGF-β from Ensembl
Genome Brower (http://grch37.ensembl.org/index.html), BIO-
CARTA_TGFB_PATHWAY, and KEGG_TGF_BETA_SIGNALING_PATHWAY
from gene set enrichment analysis (GSEA) (http://www.gsea-msigdb
.org/gsea/index.jsp). Ultimately, 223 genes involved in the TGF-β
signaling pathway were acquired [Supplementary Table 1].

Relationship between transforming growth factor-β subtypes and patient
prognosis as well as immunological characteristics of the tumor
microenvironment

Colon cancer data collation and consensus clustering in The Cancer Genome
Atlas database

Based on the TGF-β signaling pathway-related genes, the gene
expression of the TGF-β signaling pathway genes in each TCGA colon
cancer sample was obtained from the transcriptome expression matrix.
Consensus clustering identified COAD molecular subtypes using the
“ConcensusClusterPlus” package in R software (version 4.1.2; R Foun-
dation for Statistical Computing, Vienna, Austria). We examined the
optimal number of clusters between k¼ 2 and 10, determined the k-value
as the number of clusters with the lowest cross-validation error, and
repeated this procedure 1000 times to ensure the stability of the results.
The “pheatmap” package in R software generated cluster heatmaps.

Analysis of differentially expressed genes in colon cancer tumor and normal
tissues

Differential gene expression in tumor and normal tissues was assessed
using the empirical Bayesian method of the “limma” package in R soft-
ware. Screening criteria for differential messenger RNA (mRNA) expres-
sion included an adjusted P-value<0.001 and |log2 Fold change (FC)| �1.
The protein–protein interaction (PPI) plots from the Search Tool for the
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Retrieval of Interacting Genes/Proteins (STRING) database illustrated the
relationships among the genes exhibiting differential expression.

Survival and differentially expressed genes analysis of different transforming
growth factor-β subtypes

Kaplan–Meier (K–M) analysis was used to compare the overall sur-
vival (OS) between distinct TGF-β subtype cohorts of patients with colon
cancer using the “survminer” and “survival” packages in R software. The
intersection of TGF-β signaling pathway gene expression and cluster data
were merged to obtain the TGF-β signaling pathway gene expression
levels of different subtypes, as well as to evaluate their differential
expression among the different subtypes. mRNA differential expression
was assessed using a significance level of P-value <0.001 and |log2FC|
�1. For visualization, volcano and heat maps were constructed using the
“pheatmap” package in R software.

Gene ontology, Kyoto Gene and Genome Encyclopedia, and gene set
enrichment analysis of different TGF-β subtypes

To examine the distinct signaling pathways and biological impacts
between different TGF-β subtypes, the “clusterProfiler” package in R
software was used for gene ontology (GO) and Kyoto Gene and Genome
Encyclopedia (KEGG) annotation. In GO and KEGG enrichment studies, a
q-value (P-value after correction) < 0.05 determined statistically signif-
icant elements. GSEA analysis was performed using GSEA software
(http://www.broadinstitute.org/gsea/index.jsp) to evaluate molecule
phenotype in the MSigDB collection (c2.cp.kegg.v7.4.symbols.gmt).

Gene mutation analysis of different transforming growth factor-β subtypes
Tumor mutational burden (TMB) is the total amount of somatic coding

mutations, base substitutions, and insertion-deletion errors permillion bases
in human malignancies with various numbers of somatic mutations. COAD
mutation data from the TCGAdatabasewere processed using the “Maftools”
package in R software. Waterfall plots were constructed to display the
mutated genes, examine the mutation type and frequency in the samples,
and determinewhether TMBdifferentiated among different TGF-β subtypes.

Immunological characteristics of the tumor microenvironment of different
transforming growth factor-β subtypes

The stromal, immune, and tumor purity scores of the TME were
calculated using the “ESTIMATE” package in R software and displayed in
violin plots to emphasize the differential expression of stromal, immune,
and tumor cells between the various TGF-β subtypes. The immunological
features of the TME were then investigated. Immune cell infiltration
analysis was used to visualize the proportionate number of immune cells
in each sample. Cell type identification by estimating relative subsets of
RNA Transcripts (CIBERSORT) (http://cibersort.stanford.edu/) analysis
of COAD expression data was used to compute the relative percentages of
22 immune cell types and the results were presented using a landscape
map. The differences in immune cells, human leukocyte antigen (HLA),
and immune checkpoints between TGF-β subtypes were next investi-
gated. The results were shown in violin plots.

Prediction of response to drug treatment of different transforming growth
factor-β subtypes

Drugs were cycled and visualized using “pRRophetic,” “limma,”
“ggpubr,” and “ggplot2” packages in R software to predict drug sensi-
tivity in each sample and compare differences in drug sensitivity among
different TGF-β subtypes.

Transforming growth factor-β-related prognostic risk signature construction,
validation, and immunological microenvironmental analysis in colon cancer

Merging The Cancer Genome Atlas, Gene Expression Omnibus database
expression, and survival data

The expression data of the TGF-β signaling pathway-related genes in
patients with colon cancer from the GEO database was first extracted.
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Thereafter, TCGA, GEO database expression, and survival data were
merged to obtain sample survival time and status and TGF-β signaling
pathway-related gene expression. Univariate Cox regression analysis was
performed to identify prognosis-related genes (P < 0.05).

Construction of transforming growth factor-β-related prognostic risk signature
TCGA samples served as the training set for the prognostic signature,

while GEOdata served as the test set for signature validation. Least absolute
shrinkage and selector operation (LASSO) regression analysis was utilized
to calculate correlation coefficient values of the TGF-β prognostic risk
signature after identifying statistically relevant TGF-β related prognostic
genes using univariate Cox regression analysis. The risk score was calcu-
lated using the following formula: risk score ¼ P

βixRNAi, where βi is the
coefficient of the ith gene in the LASSO regression analysis. Each sample's
risk category was established based on the median value of the risk score.
High-risk subgroup samples have risk ratings greater than the median.

Validation of transforming growth factor-β-related prognostic risk signature
Risk signature predictive potential was evaluated using K–M survival

analysis and the log-rank test (P < 0.05). Survival differences between
high- and low-risk subgroups in TCGA and GEO colon cancer populations
were investigated, and risk curves and heatmaps were generated. Uni-
and multivariate Cox regression analyses were performed to determine
whether a predictive risk signature could be used as an independent
prognostic variable for individuals with colon cancer. To evaluate the
accuracy of risk scores to predict 1-, 3-, and 5-year survival in patients
with colon cancer in TCGA and GEO, we used the “survivalROC” package
in R software to produce receiver operating characteristic (ROC) curves
and calculate the area under the ROC curves (AUCs). Furthermore, we
constructed a nomogram that incorporates risk scores and clinicopatho-
logic factors to stratify the prognosis of patients with colon cancer for
accurate clinical diagnosis and therapy. Calibration curves were used to
test the nomogram's capacity and accuracy in predicting clinical outcome
events, representing the difference between predicted and actual values.

Immune microenvironment analysis of transforming growth factor-β
prognostic risk signature

To examine the tumor immune microenvironment of patients with
different risks, the “ESTIMATE” package was used to determine the
stromal, immune, and integrated scores of the TME, and boxplots were
generated. Correlation analysis of immune cell infiltration level and risk
scores was conducted to understand the regulatory relationship. The
“ggplot” package in R software was further used to plot the correlation
scatter plot of immune cells with P < 0.05. The Wilcox test was used to
calculate the difference in immune checkpoints between different TGF-β
risk subgroups, and the findings were shown in boxplots.

Statistical analysis

R software (version 4.1.2) was used for statistical analysis and data
visualization. Pearson or Spearman correlation analysis was used to
determine correlations between continuous data; t-tests were employed
for continuous variables with a normal distribution across binary groups;
the Mann–Whitney U test was used for non-normally distributed data.
Risk score and prognosis were compared using uni- and multivariate Cox
regression models. The two-sided P-value was regarded as significant
when it was less than 0.05.

Results

Identification of transforming growth factor-β-related subtypes

The list of TGF-β signaling pathway-related genes was compiled from
a large body of research, and Liu et al31 previously published 223 TGF-β
signaling pathway genes [Supplementary Table 1]. By setting k ¼ 2 to
match the optimal number of COAD clusters, the cohort was partitioned

http://www.broadinstitute.org/gsea/index.jsp
http://cibersort.stanford.edu/


Figure 1. Consensus clustering for identifying TGF-β-related subtypes. (A–C) The area under the CDF curve for k ¼ 2–9 is shown by the delta area curve, and the
heatmap shows the consensus clustering solution for the 223 genes in the COAD samples (k ¼ 2). (D) Expression patterns of the 223 TGF-β-related genes in different
subtypes are depicted in the heatmap. Red indicates higher gene expression; blue indicates lower gene expression. (E) Kaplan–Meier curves of OS in TGF-β-high and
-low subtypes. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. CDF: Cumulative distribution function; COAD: Colon adenocarcinoma; OS: Overall survival; TGF-
β: Transforming growth factor-β.
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into two distinct clusters, each exhibiting unique expression patterns of
genes associated with the TGF-β signaling pathway [Figure 1A–C].
Additionally, cluster C1 could be classified as a TGF-β-high subtype since
TGF-β signaling pathway-related genes were expressed at elevated levels,
while cluster C2 is the opposite [Figure 1D]. The survival analysis indi-
cated that clinical outcomes varied between these TGF-β subtypes. Spe-
cifically, cluster C1 was associated with an unfavorable prognosis,
whereas cluster C2 was linked to favorable clinical outcomes [Figure 1E].

Relationship between transforming growth factor-β subtypes and patient
prognosis as well as immunological characteristics of the tumor
microenvironment

Identification of differentially expressed genes and signaling pathways of
different transforming growth factor-β subtypes

The DEG analysis of the TCGA colon cancer cohort (473 cancer and 41
paracancer samples) revealed differential expression of genes associated
with the TGF-β signaling pathway between colon cancer and normal
samples, as shown in the heatmap [Supplementary Figure 1]. The
302
correlation among these DEGs was shown through PPI network analysis
using the STRING database [Supplementary Figure 2].

We investigated differential gene expression in several subtype sam-
ples based on the above results. Different TGF-β subtypes contained 139
DEGs, of which 88 and 51 were up- and downregulated in colon cancer
tissues, respectively. Volcanic and heatmaps provided a clearer illustra-
tion of DEG distribution between these subtypes [Figure 2A and B].

To better comprehend the underlying molecular processes regu-
lating the prognosis of patients with colon cancer, the relevant
signaling pathways of these important DEGs in various subtypes were
examined. Different subtypes of TGF-β differential genes were mainly
related to signaling receptor activator activity, receptor–ligand ac-
tivity, actin binding, ECM structural constituents, glycosaminoglycan
binding, heparin-binding, integrin binding, growth factor binding,
collagen binding, and proteoglycan binding. KEGG analysis showed
that DEGs were mainly related to the phosphatidylinositol 3-kinase
(PI3K)-protein kinase B (Akt/PKB) signaling pathway, neuroactive
ligand–receptor interaction, human papillomavirus infection, axon
guidance, cytokine–cytokine receptor interaction, and phagosomes



Figure 2. Identification of potential signaling pathways and DEGs in different TGF-β subtypes. (A) Volcano plot of the quantified DEG distribution between TGF-β-high
and -low subtypes with thresholds of |log2FC| > 1 and P < 0.001. (B) Heatmap of the DEG expression in different subtypes. (C) GO enrichment analysis. The dot size in
the point plot represents gene counts (the left side of the figure). In the circle plot, the first circle represents the GOid; the second circle represents genes in GO, and the
color represents the degree of differential gene enrichment; the third circle represents differential gene enrichment (the right side of the figure). (D) KEGG pathway
enrichment analysis is shown as a dot map displaying enriched pathways. (E and F) GSEA analysis identified potential signaling pathways between TGF-β-high (E) and
TGF-β-low (F) subtypes. DEG: Differentially expressed gene; FC: Fold change; FDR: False discovery rate; GO: Gene ontology; GSEA: Gene set enrichment analysis;
KEGG: Kyoto Encyclopedia of Genes and Genomes; TGF-β: Transforming growth factor-β.
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[Figure 2C and D]. Further GSEA analysis was conducted to identify
the signaling pathways and molecular processes of the various TGF-
β-high and -low subtypes (false discovery rate [FDR] < 0.05). TGF-
β-high subtype genes were mainly involved with cell adhesion mol-
ecules, ECM receptor interaction, focal adhesion, and neuroactive
ligand–receptor interaction. The TGF-β-low subtype gene set was
mainly associated with drug metabolism cytochrome p450, fatty acid
metabolism, oxidative phosphorylation, Parkinson's disease, and ri-
bosomes [Figure 2E and F].

Gene mutation and the tumor microenvironment in different transforming
growth factor-β subtypes

Generally, primary initiators and determinants of colon carcinogen-
esis include mutations and aberrant methylation patterns. Accordingly,
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we examined the subtype differences and mutations from a genomic
standpoint. We noted different somatic mutation types and frequencies in
TGF-β-high and -low subtypes. Adenomatous polyposis coli (APC), TP53,
TTN, KRAS, PIK3CA, and SYNE1were the most common mutations, with
approximately similar relative frequencies across subtypes. The TGF-
β-high subtype had a greater incidence of mutations (98.71%) than that
of the TGF-β-low subtype (94.21%) [Figure 3A and B].

Emerging evidence suggests that TGF-β significantly influences the
consequences of immune responses in numerous types of malignancies.33

The TGF-β-high subtype showed higher stromal, immune, integrated, and
lower tumor purity scores than those of the TGF-β-low subtype
[Figure 4A]. Using CIBERSORT, we next examined the differences in
infiltration of 22 immune cells between the two subtypes in patients with
COAD, and the correlation between immune cells in the samples was also



Figure 3. Waterfall plot of somatic mutation comparisons between different
TGF-β subtypes. (A and B) Visualization of the top 10 most frequently mutated
genes in the TGF-β high (A) and TGF-β low subtypes (B). No.: Number; TGF-β:
Transforming growth factor-β; TMB: Tumor mutational burden.
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studied [Figure 4B and C]. The differential study of immune cells revealed
that patients with TGF-β-high subtypes had considerably larger percent-
ages of plasma cells, naïve B cells, resting CD4 T cell memory, and M0 and
M1 macrophages and lower percentages of activated dendritic cells (DCs)
[Figure 4D]. The differential analysis of immune checkpoints and HLA
genes revealed upregulation in most TGF-β-high subtypes, whereas the
TGF-β-low subtype showed the reverse [Figure 4E and F], suggesting that
immunosuppressive cells could be critical in creating an immunosup-
pressive TME in patients with the TGF-β-high subtype. Simultaneously,
immune checkpoints and HLA genes showed higher expression levels,
suggesting that patients with the TGF-β-high subtype could benefit more
from immunotherapy, unlike those with the TGF-β-low subtype.

Drug sensitivity analysis of different transforming growth factor-β subtypes
To assess the sensitivity of the different subtypes to conventional tar-

geted drugs, we calculated the half-maximal drug inhibitory concentration
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(IC50) values of nine common drugs in both subtypes [Figure 5]. Statistical
analysis revealed significant differences between the two clusters
(P < 0.05). Vascular endothelial growth factor receptor (VEGFR) inhibitor
AMG.706, Akt/PKB inhibitor A.443654, proto-oncogene tyrosine-protein
kinase Src (Src) family lymphocyte-specific protein tyrosine kinase (LCK)
inhibitor A.770041, Src/Abl tyrosine kinase (Abl) kinase inhibitor
AZD.0530 (Saracatinib), rapidly accelerated fibrosarcoma (RAF) inhibitor
AZ628, B-cell receptor (BCR)-Abl AP.24534 (ponatinib), PI3K inhibitor
AZD6482, heat shock protein 90 (HSP90) inhibitor AUY922 (luminespib)
and c-jun N-terminal kinase (JNK) inhibitor AS601245 could be more
appropriate for patients with TGF-β-high subtype colon cancer.

Transforming growth factor-β-related prognostic risk signature construction,
validation, and immunological microenvironmental analysis in colon cancer

Construction and validation of transforming growth factor-β risk signature
We developed a prognostic risk signature comprising TGF-β signaling

pathway-related genes applicable to all patients with colon cancer.
Through univariate Cox analysis, we identified 12 TGF-β signaling
pathway-related genes significantly associated with the OS of patients
with colon cancer [Figure 6A]. Subsequently, using LASSO regression
analysis, we evaluated and selected ten TGF-β signaling pathway-related
genes (ADAM9, CDK9, CER1, FOXH1, FSTL3, INHBB, NOG, PPP2CB,
SERPINE1, and TGFB3) to construct a predictive risk signature. These ten
genes significantly impacted the prognosis of patients with colon cancer
[Figure 6B]. The risk signature was developed based on the following
algorithm: risk score ¼ (�0.128)*ADAM9 þ 0.198*CDK9 þ (0.107)*
CER1 þ 0.155*FOXH1 þ 0.043*FSTL3 þ 0.068*INHBB þ 0.281*NOG
þ (�0.214)*PPP2CB þ 00.018*SERPINE1 þ 0.054*TGFB3. Based on the
median risk score, risk scores were determined for each patient. Patients
with a risk score above the median were classified as high-risk.

Furthermore, an investigation was conducted to examine the corre-
lation between risk score and survival status. The results revealed that
the low-risk subgroup exhibited a considerably greater survival outcome
compared with that of the high-risk subgroup. According to the risk
heatmap analysis, the expression levels of high-risk genes, including
CDK9, CER1, FOXH1, FSTL3, INHBB, NOG, SERPINE1, and TGFB3,
increased with increasing risk score [Figure 6C]. Additionally, K–M
analysis was employed to further assess the survival status of patients
with colon cancer. In the TCGA group, the survival rates varied signifi-
cantly between the high- and low-risk subgroups, with higher risk scores
being associated with lower OS. Results from the GEO group's validation
were consistent [Figure 6D].

Application of the transforming growth factor-β risk signature in association
with the tumor microenvironment

Univariate analysis of age, gender, stage, and risk score revealed that
a high TGF-β risk score was significantly associated with a worse OS
[Figure 7A]. According to the multivariate analysis, the TGF-β risk score
for patients with colon cancer may serve as an independent prognostic
predictor [Figure 7B]. In Figure 7C, we compared the accuracy of the
prognostic signature with clinicopathological characteristics such as age,
sex, and stage to predict patient survival. The risk score exhibited supe-
rior predictive performance relative to age (AUC ¼ 0.628), gender
(AUC ¼ 0.497), and stage (AUC ¼ 0.678), as evidenced by its AUC of
0.686. Figure 7D subsequently displays the accuracy of the prognostic
risk signature as determined by the predicted ROC curves over the sub-
sequent 1, 3, and 5 years in the TCGA database; the accuracy of the risk
prediction signature was also confirmed in the GEO database for the same
periods, with model accuracies of 0.778, 0.677, and 0.616, respectively
[Figure 7E]. To provide clinicians with a quantitative method for pre-
dicting the probable risk of cancer progression, we constructed a
nomogram incorporating clinicopathologic variables and risk scores to
predict the 1-, 3-, and 5-year prognosis of patients with colon cancer. The
calibration curves showed good agreement between actual and predicted
1-, 3-, and 5-year survival rates [Figure 8A and B].



Figure 4. TGF-β-high and -low subtype immune profiles. (A) Violin plot of the median and interquartile estimates of immune and tumor purity scores of the tumor
microenvironment. (B) Landscape map of the proportions of TGF-β-high and -low subtype immune infiltration; the horizontal coordinate represents each colon cancer
patient. (C) Correlation of various immune cells in colon cancer. (D) Violin plot of the significantly different immune cells between different TGF-β subtypes. (E and F)
Boxplot showing differential expression of multiple immune checkpoints (E) and HLA genes (F) in TGF-β-high and -low subtypes. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001. HLA: Human leukocyte antigen; NK: Natural killer cell; TGF-β: Transforming growth factor-β; Tregs: Regulatory T cells.
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Evaluation of the stromal, tumor purity, and immune scores indicated
that the TGF-β high-risk subgroup exhibited higher stromal and immune
scores and lower tumor purity scores compared with those of the TGF-β
low-risk subgroup [Figure 9A]. Given the crucial biological function of
TGF-β in the antitumor immune response, the relationship between the
TGF-β risk score and the TME was investigated in depth. The results
showed that high-risk scores negatively correlated with DCs, resting CD4
memory cells, and activated CD4 memory cells and positively correlated
with regulatory T cells (Tregs) and M0 macrophages [Figure 9B]. Upon
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examining immune checkpoint variations, overexpression was observed
in most patients in the TGF-β high-risk subgroup [Figure 9C]. These re-
sults showed that immunotherapy is more beneficial for patients in the
TGF-β high-risk subgroup.

Discussion

Colon cancer is among the most prevalent malignancies, and its low
survival rate is still a pressing issue.4 Studying the TGF-β signaling



Figure 5. IC50 values of nine common drugs in different TGF-β subtypes. (A) VEGFR inhibitor AMG.706; (B) Akt/PKB inhibitor A.443654; (C) Src family LCK inhibitor
A.770041; (D) Src/Abl kinase inhibitor AZD.0530 (Saracatinib); (E) RAF inhibitor AZ628; (F) BCR-ABL AP.24534 (ponatinib); (G) PI3K inhibitor AZD6482; (H) HSP90
inhibitor AUY922 (luminespib); (I) JNK inhibitor AS601245. Abl: Abl tyrosine kinase; Akt/PKB: Protein kinase B; BCR: B-cell receptor; HSP90: Heat shock protein 90; IC50:
Half-maximal inhibitory concentration; JNK: c-Jun N-terminal kinase; LCK: Lymphocyte-specific protein tyrosine kinase; PI3K: Phosphatidylinositol 3-kinase; RAF: Rapidly
accelerated fibrosarcoma; Src: Proto-oncogene tyrosine-protein kinase Src; TGF-β: Transforming growth factor-β; VEGFR: Vascular endothelial growth factor receptor.

J. Chen et al. Cancer Pathogenesis and Therapy 2 (2024) 299–313
pathway is critical to tumor research owing to its elaborate functional
role in contributing to cancer progression, metastasis, treatment resis-
tance, and other aspects.27 The shared functions of TGF-β signaling
pathway-related genes for clustering and constructing prognostic signa-
tures to further advise precise therapy are poorly understood. Therefore,
we sought to address this in the present study.

Our study focused on TGF-β signaling pathway-related genes and
identified two TGF-β subtypes through consensus clustering, with the
TGF-β-high subtype associated with a poor prognosis and a superior
response to immunotherapy. GSEA analysis revealed that the TGF-β-high
subtype gene set was mainly associated with cell adhesion molecules,
ECM receptor interaction, and focal adhesion. Most of these gene
enrichment pathways influence the TME, affecting the onset, progres-
sion, and dissemination of cancer.34–37

The TGF-β-high subtype showed a higher frequency of gene muta-
tions. Previous research has linked colon cancer to APC and TP53 mu-
tations, which had the greatest mutation frequencies in our study.
Mutations in the APC gene, which encodes a protein involved in β-linked
protein degradation, can lead to colorectal polyps and malignant tumors.
The mutation cluster region regulates the Wnt signaling pathway for
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colon cancer cell adhesion, invasion, progression, differentiation, and
stemness.38,39 TP53, a frequent genetic mutation associated with colon
cancer, has oncogenic features controlling cancer cell growth and
metastasis.40,41 TMB can indirectly reflect the tumor's potential and
extent for producing neoantigens and impact immune response intensity,
predicting immunotherapy outcomes for an extensive range of malig-
nancies. Our results imply that patients with the TGF-β-high subtype are
more capable of generating neoantigens and influencing the immune
response. Moreover, administering ICIs as part of the therapeutic
approach yields more favorable clinical outcomes.42,43

The relationship between TGF-β-high/-low subtypes and the tumor
immune microenvironment of colon cancer was also highlighted. We per-
formed an immune microenvironment analysis and found that TGF-β
expression levels correlated with tumor-infiltrating immune cells, HLA
genes, and immune checkpoints. Tumor-infiltrating immune cells affect the
prognosis and survival of individuals diagnosed with colon cancer as they
are implicated in each stage of tumor development, invasion, immune
evasion, and metastasis.44–47 HLA, also referred to as the major histocom-
patibility complex in humans, comprises a group of genes intricately related
to cell recognition and exerts a substantial impact on immune function



Figure 6. Construction and validation of the TGF-β risk signature. (A) Univariate Cox analysis of the prognostic value of TGF-β signaling pathway-related genes in
relation to OS in TCGA database. (B) LASSO regression analysis identifies the 10 genes most associated with OS in the TCGA dataset. (C) Scatter plot of each patient's
risk scores and survival status distribution and heatmap of TGF-β risk signature genes in TCGA database. (D) Kaplan–Meier analysis of the prognostic significance of
the TGF-β risk signature in TCGA (upper) and GEO (lower) cohorts. AUC: Area under the receiver operating characteristic curve; GEO: Gene Expression Omnibus;
LASSO: Least absolute shrinkage and selector operation; OS: Overall survival; ROC: Receiver operating characteristic curve; TCGA: The Cancer Genome Atlas; TGF- β:
Transforming growth factor-β.

J. Chen et al. Cancer Pathogenesis and Therapy 2 (2024) 299–313
regulation. Immune checkpoints are important regulators of the immune
system that modulate autoimmune tolerance. The TGF-β-high subtype was
associated with the immunosuppressive phenotype and high immune
checkpoint and HLA gene expression levels, indicating that individuals
possessing this subtype might respond better to immunotherapy. Various
therapeutic agents that may be beneficial for the TGF-β-high subtype were
identified, thus advancing the goal of treating colon cancer in an approach
that can be customized to each patient.

We also constructed and validated a TGF-β-related prognostic signa-
ture comprising ten genes, including ADAM9, CDK9, CER1, FOXH1,
FSTL3, INHBB, NOG, PPP2CB, SERPINE1, and TGFB3. Previous studies
determined that ADAM9, CDK9, FOXH1, FSTL3, INHBB, PPP2CB, SER-
PINE1 and TGFB3 play roles in cancer. Disintegrin and metalloprotease
(ADAM) proteins are involved in various physiological and pathological
processes, including cancer.48,49 ADAM9 overexpression in various
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cancer types, is associated with reduced survival, poor tumor classifica-
tion, and metastasis.50,51 In colon cancer, ADAM9 impacts 5-fluorouracil
resistance and growth factor-mediated E-calmodulin recirculation.52,53

Cell cycle protein-dependent kinases (CDKs) are essential for normal cell
cycle progression.54 CDK9 regulates gene expression, genomic stability,
DNA damage response, and epigenetic changes.55–60 CDK9 chaperones
are members of the T and K families of cell cycle proteins; they phos-
phorylate RNA polymerase II and are linked to numerous malig-
nancies.61–63 Numerous studies have revealed that specific CDK9
inhibition may be a potential therapy as a promising target for over-
coming drug resistance and extending survival in patients with can-
cer.64–67 The human forkhead-box (FOXH) family is influenced by cancer
development.68 FOXH1 mRNA is expressed in human embryonic stem
cells and mediates the TGF-β signaling pathway through interaction with
Smad2 and Smad4 complexes.69–73 Follistatin-like 3 (FSTL3) is a key



Figure 7. Association of TGF-β risk signature with prognosis. (A and B) Uni- and multivariate Cox analyses assessing the independent prognostic value of TGF-β risk
signature in patients with colon cancer. (C) ROC curves of the accuracy of various indicators predicting cancer progression over 5 years in the TCGA database. (D) 1-,
3-, and 5-year ROC curves for the risk signature in the TCGA database. (E) 1-, 3-, and 5-year ROC curves for the risk signature in the GEO database. AUC: Area under
the receiver operating characteristic curve; GEO: Gene Expression Omnibus; ROC: Receiver operating characteristic; TCGA: The Cancer Genome Atlas; TGF- β:
Transforming growth factor-β.
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biomarker in cancer development. Elevated FSTL3 levels in individuals
with gastric cancer result in a worse prognosis.74 Furthermore, a nomo-
gram containing FSTL3 predicted laryngeal squamous cell carcinoma
patient survival.75 FSTL3 overexpression is associated with poor prog-
nosis in colorectal cancer and could create a suppressive immunological
microenvironment to speed up lymph node metastasis.76 Inhibin (INH), a
dimeric glycoprotein with one alpha and two beta subunits, plays a sig-
nificant role in human reproduction, endocrine-responsive tumors, and
breast cancer.77–81 Nasopharyngeal carcinoma tissues exhibit lower
INHBB expression, correlated with lymph node metastases, disease stage,
and clinical progression.82 However, INHBB expression is increased in
B-Raf proto-oncogene, serine/threonine kinase (BRAF) V600E mutant
thyroid and rectal cancer tissues.83–86 Additionally, INHBB is strongly
associated with colon cancer metastasis through highly dysregulated
methylation.84,87 PPP2CB, associated with the Wnt signaling system, is
an independent prognostic factor for bladder cancer due to its involve-
ment in immune cell infiltration and tumor cell EMT.88 Plasminogen
activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor
(SERPIN) superfamily, is a crucial inhibitor of fibrinogen/fibrinolytic
enzyme systems and a physiological antagonist of fibrinogen acti-
vator.89,90 It reduces fibrinolysis through tissue remodeling, cell migra-
tion, and pericellular protein hydrolysis.91–96 LINC00491 positively
regulates SERPINE1 expression, playing an oncogenic role in COAD
pathogenesis.97–100 Functional data suggest elevated TGFB3 expression
in advanced tumors links it to tumorigenesis.101 TGFB3 stimulates ECM
production but inhibits protease production, leading to excessive con-
nective tissue deposition.102,103 Moreover, TGFB3 inhibition reduces
collagen fibril structure in COAD.104

In K–M analysis, the survival rates varied significantly between the
high- and low-risk subgroups, with higher risk scores being associated
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with lower OS. Next, we examined how TGF-β scores affect patient sur-
vival and the TME. In previous studies, TGF-β affected both innate and
adaptive immune cells in the TME.105 In innate immunity, TGF-β reduces
bone marrow cell proliferation and differentiation in early cancer stages.
In advanced cancers, myeloid cells produce TGF-β, further inhibiting the
antitumor immune response and contributing to tumor metastasis. In
macrophages, TGF-β protects tumors from antitumor activity by inducing
IRAK-M and antagonizing the toll-like receptor signaling pathway. TGF-β
also inhibits the activation of natural killer cells and their cytotoxic po-
tential. TGF-β is crucial for adaptive immunity, inhibiting T cell activa-
tion, proliferation, differentiation, and migration. Furthermore, TGF-β
can differentiate CD4þ helper T cells into effector subtypes and trans-
form naïve T cells into Tregs. TGF-β also blocks cytotoxic CD8þ T cell
activation andmaturation by inhibiting tumor antigen processing and DC
expression. Moreover, TGF-β promotes the antigen-induced expression of
Programmed Death Receptor 1(PD-1), potentially leading to T cell
depletion. However, its function in regulating B cell-mediated antitumor
immunity remains unstudied.106,107

Our analysis of the TME revealed higher stromal and immune scores
and upregulated immune checkpoint expression in the TGF-β high-risk
subgroup, implying that treatment of patients in this subgroup with
ICIs could result in a relatively better prognosis. High-risk scores posi-
tively correlated with M0 macrophages and Tregs and negatively corre-
lated with DCs, resting CD4 memory cells, and activated CD4 memory
cells. Tregs play an important role in maintaining self-tolerance and have
a negative role in evoking an effective antitumor immune response.108

Evidence suggests that Treg depletion or suppression of their function
could enhance antitumor effects. Consistent with our results, the large
number of Tregs suppress effective antitumor immune responses in
high-risk patients, leading to tumor progression and worse clinical



Figure 8. TGF-β risk signature combined with clinicopathologic factors to construct a nomogram. (A) Nomogram. (B) Calibration curve. OS: Overall survival; Pr:
Probability; TGF-β: Transforming growth factor-β.

J. Chen et al. Cancer Pathogenesis and Therapy 2 (2024) 299–313
outcomes.109 DCs are the most efficient antigen-presenting cells and are
required for adaptive immune responses.110 Increased DC numbers and
their improved function enhance antitumor immunity.111 Our results
confirm that the antigen-presenting ability of DCs reduces with their
reduction in number, further leading to disease progression and
decreased patient survival. Thus, patients with a high-risk score had
greater pre-existing inhibitory immunity activity levels and higher levels
of immunosuppressive cells, such as Tregs, which suppress the anticancer
activity of the tumor immune microenvironment and promote tumor
progression. The risk score and the expression of typical immune
checkpoints such as CD27, CTLA-4, and CD70, which are thought to limit
anticancer immunity in the TME, were strongly positively correlated.
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Collectively, these findings demonstrated that the TME with a higher risk
score was more sensitive to immunotherapy and responded better to
immunotargeted treatment.

We comprehensively investigated the common functions of TGF-β
signaling pathway-related genes, clarified their possible roles in
colon cancer prognosis and the TME, and incorporated genes into a
risk prediction signature to inform patient risk stratification and
treatment choice. However, several issues with our study were un-
avoidable. First, all our results are based on public data, which need
to be validated in clinical cohorts. In vitro or in vivo experimental
investigation is also necessary for mechanistic investigations. Sec-
ond, our clinical data are primarily retrospective; therefore,



Figure 9. TGF-β risk signature and tumor immune microenvironment. (A) Bar graph of median and interquartile estimates of tumor microenvironment immune and
tumor purity scores. (B) Scatter plot of the correlation between risk scores and immune cell infiltration. (C) Box plot of the differential expression of multiple immune
checkpoints between TGF-β high- and -low-risk subgroups. TGF-β: Transforming growth factor-β.
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prospective data is urgently needed to strengthen the validity of our
findings. Third, the clinical application of TGF-β features needs
further exploration. Fourth, more research is necessary to confirm
our hypothesis that the median TGF-β risk score serves as the cut-off
value for all studies.

In conclusion, colon cancer is heterogeneous; thus, in the present
study, patients with colon cancer were classified into two subtypes with
different survival and immune characteristics using consensus clustering
analysis based on the TGF-β signaling pathway-related genes. The con-
structed risk prediction signature is a promising biomarker for evaluating
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colon cancer prognosis and immunotherapy effectiveness and precisely
screening individuals for immunotherapy. Nevertheless, further valida-
tion through more extensive research is required.
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