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Blubber transcriptome response to 
acute stress axis activation involves 
transient changes in adipogenesis 
and lipolysis in a fasting-adapted 
marine mammal
J. I. Khudyakov1,2, C. D. Champagne2,3, L. M. Meneghetti4 & D. E. Crocker4

Stress can compromise an animal’s ability to conserve metabolic stores and participate in energy-
demanding activities that are critical for fitness. Understanding how wild animals, especially those 
already experiencing physiological extremes (e.g. fasting), regulate stress responses is critical for 
evaluating the impacts of anthropogenic disturbance on physiology and fitness, key challenges 
for conservation. However, studies of stress in wildlife are often limited to baseline endocrine 
measurements and few have investigated stress effects in fasting-adapted species. We examined 
downstream molecular consequences of hypothalamic-pituitary-adrenal (HPA) axis activation by 
exogenous adrenocorticotropic hormone (ACTH) in blubber of northern elephant seals due to the ease of 
blubber sampling and its key role in metabolic regulation in marine mammals. We report the first phocid 
blubber transcriptome produced by RNAseq, containing over 140,000 annotated transcripts, including 
metabolic and adipocytokine genes of interest. The acute response of blubber to stress axis activation, 
measured 2 hours after ACTH administration, involved highly specific, transient (lasting <24 hours) 
induction of gene networks that promote lipolysis and adipogenesis in mammalian adipocytes. 
Differentially expressed genes included key adipogenesis factors which can be used as blubber-specific 
markers of acute stress in marine mammals of concern for which sampling of other tissues is not possible.

Stress can compromise an animal’s fitness via wide-ranging effects on metabolism, growth, immune capacity, and 
reproduction, which can ultimately impact the stability of populations1. The effects of stress on energy balance 
may be especially deleterious to animals that undergo fasting as part of their natural life histories2. For example, 
due to competing requirements of terrestrial breeding and aquatic foraging, phocid seals exhibit some of the most 
dramatic fasting adaptations known in mammals. Northern elephant seals (Mirounga angustirostris) undergo 
terrestrial fasts of up to four months that are coupled with energy-intensive activities such as breeding, lacta-
tion, molting and post-weaning development3. Fasting metabolism in phocids is fueled by large adipose stores 
(blubber) accrued during foraging, which are mobilized in response to insulin suppression and elevation of the 
glucocorticoid (GC) cortisol across the fast4.

GCs (cortisol, corticosterone) function as part of the hypothalamic-pituitary-adrenal (HPA) stress axis to 
regulate metabolic substrate availability during both rest and duress. In response to acute stress, adrenocortico-
tropic hormone (ACTH) released by the pituitary stimulates GC synthesis and release by the adrenal glands. GCs 
promote catabolism of nutrient stores and suppress energy-intensive processes such as reproduction, growth, and 
immune function5. While acute stress responses are tightly regulated by negative feedback, repeated or sustained 
stress may impair this regulation and impact an animal’s ability to conserve metabolic stores and participate in 
activities that require high energy expenditure (i.e. reproduction)1. Animals are becoming increasingly exposed 
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to sources of anthropogenic disturbance that may cause stress and have adverse physiological impacts. For exam-
ple, marine mammals may experience frequent acoustic disturbance (sonar, oil drilling, boat traffic), negative 
interactions with fisheries, and disturbance by coastal development6. Understanding how free-ranging animals, 
especially those already experiencing physiological extremes, regulate acute stress responses is critical for evalu-
ating the impacts of chronic stress on physiology and fitness in wildlife in order to inform conservation manage-
ment decisions. Due to the practical limitations of field sampling, however, many studies of stress in free-ranging 
animals have been limited to baseline hormone measurements1.

GCs exert pleiotropic physiological effects by directly influencing gene expression in target tissues such as 
adipose, muscle, and liver. GCs bind to intracellular receptors (glucocorticoid receptor, GR, and mineralocor-
ticoid receptor, MR), which translocate to the nucleus, bind to response elements (e.g. glucocorticoid response 
elements, or GREs) of target genes, and alter gene expression. GR target genes may comprise more than 10% 
of the genome and include those involved in metabolism, immunity, and cell survival and growth, among oth-
ers7. For example, in white adipose tissue (WAT) of terrestrial mammals, GCs increase fatty acid availability and 
adipocyte differentiation by upregulating expression of lipases and pro-adipogenesis factors (e.g. peroxisome 
proliferator-activated receptor, PPAR, and CCAAT/enhancer-binding protein, CEBP)8,9.

Other components of the HPA axis may also regulate adipose physiology. In addition to GCs, ACTH also stim-
ulates synthesis and release of the MR-specific ligand aldosterone10, a crucial component of the stress response in 
marine mammals11 that may play a role adipogenesis12. There is recent evidence that MR is expressed at higher 
levels than GR in adipose, and may mediate the majority of GC effects in adipose tissue13. Some of these effects 
may occur through non-genomic pathways via membrane-bound MR14. In addition, ACTH receptors (MC2R) 
are also expressed at low levels in adipocytes and have been shown to stimulate lipolysis in vitro15. Therefore, 
transcriptional responses of adipose tissue to HPA axis activation are mediated by at least 3 hormones – cortisol, 
aldosterone, and ACTH – acting via multiple hormone receptors.

While gene expression changes can supplement hormone measurements as markers of stress, few studies have 
examined the downstream molecular effects of acute HPA axis activation in wild animals. We recently used an 
RNA sequencing (RNAseq) approach to identify genes differentially expressed in skeletal muscle of free-ranging 
elephant seals in response to acute corticosteroid elevation induced by administration of exogenous ACTH 
(exACTH)16,17. Here, we profiled the transcriptome response of elephant seal blubber to exACTH due to its ease 
of sampling and its key role in energy regulation, especially in marine mammals that include several species of 
conservation concern18. We produced the first phocid blubber transcriptome containing 140,672 annotated tran-
scripts, which include many metabolic genes of interest, and identified key regulators of adipogenesis and lipid 
homeostasis as markers of acute HPA axis activation in blubber. These data represent a valuable addition to the 
conservation physiologist’s toolset for evaluating stress states in free-ranging marine mammal species of concern 
from which blubber, but not blood samples, are possible to obtain (e.g. cetaceans).

Results
Acute HPA axis stimulation. Acute corticosteroid elevation in juvenile northern elephant seals was 
induced by administration of exACTH, which has been shown to rapidly increase circulating cortisol, aldos-
terone, glucose, and free fatty acids in juveniles and adults of this species16,19,20. Four juvenile seals received an 
intramuscular injection of exACTH (mass-specific dose: 0.23 ±  0.02 U/kg; Table 1) to induce cortisol synthesis 
and release that would mimic a stress response to environmental factors (e.g. anthropogenic disturbance, preda-
tion). Blood and blubber tissue samples were collected at 3 time-points during the experiment: immediately after 
sedation (baseline) and 2 and 24 hours after exACTH administration (acute response and recovery, respectively). 
Due to the limitations of recapture, recovery samples were obtained for only two study subjects.

The initial (baseline) cortisol concentrations (124.6 ±  31.7 nM; Table 1) were similar to values previously 
reported for juvenile northern elephant seals16,19,21. Administration of exACTH significantly altered corticoster-
oid concentrations (cortisol: F2,5 =  260.80, p <  0.0001; aldosterone: F2,5 =  14.02, p <  0.01; Table 1). Both hormones 
increased (cortisol: 16-fold, aldosterone: 22-fold) in acute response samples collected 2 hours after exACTH 

Seal ID Date Sex Mass (kg) ACTH (U/kg)

Cortisol (nM) Aldosterone (pM)

Baseline Acute Recovery Baseline Acute Recovery

Samples used for RNAseq

 SB3 11/7/14 F 130 0.25 102.4 2259.8* 98.8 1383.4 8553.6* 1176.1

 SB4 11/7/14 F 139 0.23 167.2 1852.2* 133.1 586.0 5233.1* 894.9

 SB5 11/28/14 M 134 0.21 105.0 1936.8* NA 1784.6 4841.6* NA

 SB6 11/28/14 F 134 0.24 94.9 1905.2* NA 1273.1 4077.1* NA

Samples used for qPCR validation

 JS2 10/25/13 M 114 0.25 146.5 2759.0* 146.0 770.5 2582.3* 1423.2

 JS4 11/9/13 F 118 0.24 192.0 2012.1* 146.0 914.3 4129.4* 584.8

 JS5 11/9/13 F 133 0.21 185.7 1882.9* 431.3 972.0 4148.2* 2587.4

 JS6 11/22/13 F 135 0.21 113.9 1305.7* 173.2 537.9 2547.7* 508.8

 JS7 11/22/13 F 127 0.22 159.0 1516.1* 185.8 1287.0 4115.5* 1594.2

Table 1.  Sex, mass, exACTH dose, and serum corticosteroid values of juvenile elephant seals used in the 
study. *Denotes values that were significantly different from baseline (p <  0.05).
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administration (post-hoc least significant difference (LSD) tests, p <  0.01). The magnitude of this increase in 
corticosteroids was within the range that was elicited by handling stress without anesthesia in this species22. In the 
two recovery samples collected 24 hours after exACTH administration, both cortisol and aldosterone concentra-
tions appear indistinguishable from baseline levels (Table 1), similarly to what was observed in a previous, com-
parable study16. Due to the small sample size of this study, the effect of exACTH on free fatty acid concentration 
(FFA) was not statistically significant (data not shown), although FFA weakly increased in response to exACTH 
in previous studies16,19,20.

Blubber transcriptome assembly. Ten cDNA libraries (from 4 baseline, 4 acute response, and 2 recovery 
samples) were sequenced on one Illumina HiSeq 2500 lane, generating 32 Gbases of sequence data with 32.0 ±  2.8 
million reads per sample. Raw reads were deposited at the NCBI Sequence Read Archive (SRA Accession: 
SRP045540; Samples: SAMN04595358–67). Raw sequences were quality-trimmed, abundance-normalized, and 
used for de novo Trinity assembly23. Trinity assembled 660.4 million sequenced bases into 510,060 contigs (or 
“transcripts”) in 391,055 “gene families.” The size of the assembly was 716 Mbases.

Assembly quality statistics obtained according to current recommendations24 are shown in Table 2. The over-
all TransRate quality score for the assembly was 0.42 (on a scale of 0 to 1), which is higher than > 50% of the 
transcriptomes deposited in the NCBI Transcriptome Shotgun Assembly database25. Read mapping statistics 
were used to determine how accurately the assembly represented sequenced reads. Of the 27.33 million aligned 
reads, 87.32% mapped to the assembly as proper pairs, 8.91% mapped as improper pairs, and 1.90% and 1.88% 
mapped as left or right reads only. Transcriptome completeness was assessed by searching for single-copy ort-
hologs of highly conserved vertebrate genes (Benchmarking Universal Single-Copy Orthologs, or BUSCOs26) 
encoded in the assembly. The blubber transcriptome contained 80% of the 3,023 BUSCOs in the Hierarchical 
Catalog of Orthologs (OrthoDB), of which 30% were duplicated in the assembly and 10% were fragmented cop-
ies. These metrics suggest that the transcriptome assembly is well-supported by the sequenced reads and contains 
the majority of highly conserved vertebrate genes.

Due high redundancy of the raw assembly, we filtered the transcriptome using TransDecoder, which 
retained transcripts with candidate protein coding regions while removing short and redundant reads23. The 
filtered assembly contained 49,345 genes, which represented 81% of BUSCOs, suggesting that filtering did 
not reduce transcriptome completeness. Both raw and filtered assemblies are available at https://figshare.
com/s/69f88adad25c4093c602.

Blubber transcriptome annotation. Vertebrate homologs of elephant seal transcripts and 
TransDecoder-predicted peptides were identified by BLASTX and BLASTP searches, respectively, of the UniProt/
SwissProt proteome database with e-value cutoff of 10−5. BLASTX homologs were detected for 140,672 elephant 
seal transcripts. Of these, 24,804 elephant seal transcripts were matched by at least 10% of their length to a 
UniProt/SwissProt hit, 10,284 were matched by at least 90%, and 8,525 transcripts were matched by 100% of their 
length. BLASTP homologs were identified for 147,172 predicted elephant seal peptides. The Trinotate pipeline 
was used to identify additional functional annotation features: transmembrane protein regions (using TMHMM) 
and putative signaling peptides (using SIGNALP). Combined annotation results are available at https://figshare.
com/s/69f88adad25c4093c602.

Taxonomic representation of top BLASTX hits to elephant seal transcripts included human (62.9% of total 
hits), cow (14.4%), mouse (9.9%), domestic dog (2.2%), rat (2.0%), orangutan (1.7%), pig (1.4%), slow loris 
(0.9%), and macaque (0.9%). Fifty northern elephant seal transcripts had best BLASTX hits to marine mammal 
sequences: 24 harbor seal (Phoca vitulina: RHO, MX1, MT-ND5, IL6, IL1B), 10 Weddell seal (Leptonychotes 
weddellii: HBB, APOA2, APOC1, LYZ), 4 grey seal (Halichoerus grypus: MB, LEP), 4 Atlantic bottlenose dolphin 
(Tursiops truncatus: CYBA), 4 Pacific walrus (Odobenus rosmarus divergens: APOA1, HBA), 1 common minke 
whale (Balaenoptera acutorostrata: CYP1A1), 1 southern elephant seal (Mirounga leonina: CYCS), 1 California 
sea lion (Zalophus californianus: APOE), and 1 northern fur seal (Callorhinus ursinus: NR1I3) sequences.

N reads per sample 32.0 ±  2.8 M

N assembled bases 660,425,775

N assembled transcripts 510,060

Assembly size 716 Mbases

Read pairs mapped to assembly 87.32%

TransRate score 0.4221

Mean transcript length 1,294.8 bp

Transcript N50 3,186 bp

Shortest transcript length 224 bp

Longest transcript length 36,322 bp

N BLASTX-annotated transcripts 140,672

Complete BUSCOs 80%

Duplicated BUSCOs 30%

Missing BUSCOs 8.6%

Table 2.  Northern elephant seal blubber transcriptome assembly metrics.

https://figshare.com/s/69f88adad25c4093c602
https://figshare.com/s/69f88adad25c4093c602
https://figshare.com/s/69f88adad25c4093c602
https://figshare.com/s/69f88adad25c4093c602
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Functional annotation was used to identify metabolic and signaling pathways that were enriched in the ele-
phant seal blubber transcriptome relative to the human genome. The top 16 KEGG pathways significantly over-
represented (p <  0.05) in the blubber transcriptome are shown in Fig. 1. The most significantly enriched pathway 
was metabolism, with 771 genes mapping to this category. Other enriched pathways of interest not shown in Fig. 1 
included fatty acid metabolism (40 genes) and adipocytokine (55 genes), mTOR (46 genes), AMPK (86 genes), 
FoxO (90 genes), thyroid hormone (80 genes) and NF-kappa B (61 genes) signaling pathways. Key adipocy-
tokine pathway genes identified in the elephant seal blubber transcriptome included adiponectin and its receptors 
ADIPOR1 and ADIPOR2, PPARG coactivator 1 alpha, mTOR and PPARA, among others.

Gene expression analysis. In silico transcript abundance quantification was conducted using the ultra-
fast quasi-alignment tool kallisto, which pseudoaligned 94.45 ±  0.64% of sequencing reads from each sample 
to the assembly. Differential gene expression analysis was conducted at the gene level using DESeq2, selecting 
for genes with false discovery rate <0.05 and log2 fold-change >1. We identified 426 genes that were differ-
entially expressed during the acute response to exACTH (acute/baseline), of which 184 were upregulated 
and 242 were downregulated in acute response relative to baseline samples (Fig. 2A, Supplementary File S1). 
Only 112 of these genes (46 upregulated, 66 downregulated) were annotated by BLASTX. We identified 106 
genes differentially expressed during recovery from exACTH (recovery/acute), of which 41 were upregulated 
and 65 were downregulated in recovery relative to acute response samples (Fig. 2B, Supplementary File S2). 
Of these, only 46 differentially expressed transcripts (22 upregulated, 24 downregulated) were annotated. 
Lastly, we identified 313 genes that were differentially expressed during recovery relative to baseline (recov-
ery/baseline), of which 141 were annotated (77 upregulated, 64 downregulated; Supplementary File S3).  
Annotated genes from the acute/baseline and recovery/acute datasets were used to predict protein-protein inter-
action networks based on interaction data from public databases using Cytoscape27 (Fig. 3). Network statistics28 
shown in Table 3 suggest that differentially expressed genes likely function within transcriptional networks with 
high connectivity to orchestrate physiological responses to exACTH. The gene sets were not of sufficient size to 
obtain significant functional enrichment; therefore, differentially expressed genes were manually clustered into 
groups based on functional data from UniProt and literature search.

Acute blubber transcriptome response to exACTH. The transcriptional signature of blubber during 
the acute response to exACTH suggested that both lipolysis and adipogenesis were increased (Supplementary 
File S1). Four key regulators of adipocyte differentiation (PPARG, CEBPD, KLF15, DKK1) were upregulated, 
while an inhibitor of differentiation (ID1) was downregulated. A key lipase (LPL), mitochondrial sirtuin (SIRT5), 
and beta-adrenergic receptor (ADRB2) were upregulated, while genes that antagonize lipolysis (LGALS3, EGR1) 
and promote insulin sensitivity (SORBS1, NR4A1) were downregulated. Two other genes recently implicated 
in control of fat mass and insulin sensitivity (TST, ATXN2) were upregulated. Five genes involved in proteol-
ysis (PSME4, TRIP12, RFWD2, ASB18, USP25) were downregulated, but two others (HERC4, ENC1) were 
upregulated.

Blubber transcriptome response to exACTH reflected the pleiotropy of corticosteroid function and hetero-
geneity of the target cell population. Differentially expressed genes included those involved in immune signaling 
(up: FCGR2, CXCL11, TLR4; down: IRF2BPL, IL1R1, DCLK1, DDX60), cytoskeleton and extracellular matrix 
(ECM) remodeling (up: KIF3A, SLITRK2, PLS3, WIPF3; down: WASF2, NID1, CDH15, DDR1, DCTN4, VIM), 
and transcriptional regulation (up: GCFC2, ZNF449, MED28, GTF2IRD2, PARP14, SAFBP2, HOXD4, PRRC2B; 
down: DUSP5, MED4, FOSB, XRN2, EID3, MTERF1, GRSF1, SEC14L5). Genes involved in signal transduc-
tion (HUNK, GNA14, PLCE1, CLK1) and angiogenesis (SOX7, HEY1) were upregulated, while those associated 
with brown fat cell differentiation (LRG1), apoptosis (BNIP3L, NTRK1, ITPR1), and DNA replication (RBMS1, 
GINS4, ARPP19B, ESCO1, CDK5RAP1) were downregulated. Other upregulated genes of interest included a GR 
activity-enhancing chaperone (AHSA1) and a transporter of steroid hormones (SLC10A6). Other downregulated 

Figure 1. Top KEGG pathways significantly overrepresented in the elephant seal blubber transcriptome 
relative to the human proteome (p < 0.05). The x-axis shows significance of enrichment [− 1 * log(p-value)]. 
Dot size is proportional to the number of elephant seal transcripts mapping to each overrepresented pathway.
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genes of interest included an inhibitor of clock genes (BHLHE40), factors associated with cell cycle and reactive 
oxygen species metabolic processes (ARF4, PLK3), and an epigenetic repressor of transcription (SUV420H1).

Blubber transcriptome recovery from exACTH. Transcriptional recovery from acute corticosteroid 
elevation was examined by comparing expression values of recovery and acute response samples. Recovery from 
exACTH involved suppression of adipogenesis-inducing genes and upregulation of genes involved in lipid stor-
age (Supplementary File S2). Pro-adipogenic factors that had been induced during the acute response (DKK1, 
CEBPD) were downregulated during recovery, while genes that promote cell proliferation and suppress dif-
ferentiation (ID1, SOX18) were upregulated. Metabolic factors involved in triglyceride synthesis (MOGAT3), 

Figure 2. Differential gene expression during the acute response (acute/baseline; (A)) and recovery (recovery/
acute; (B)) from exACTH administration. Heat maps depict gene expression changes (yellow: upregulated, 
purple: downregulated) between conditions, clustered by expression pattern.

Figure 3. Predicted protein-protein interaction networks for genes differentially expressed during the acute 
response (acute/baseline; (A)) and recovery (recovery/acute; (B)) from exACTH administration. Nodes 
are color-coded by log2 fold-change in expression levels between conditions (yellow: upregulated, purple: 
downregulated). Network statistics are shown in Table 3.
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lipid import and storage (FABP4), carbohydrate transport (SLC35C1), and metabolic response to insulin, 
GCs, and fasting (PFKFB1) were upregulated during recovery as compared to the acute response. In contrast, 
genes involved in protein and lipid catabolism (DDIT4, FOXO1) and insulin signaling (CISH, EIF4E) were 
downregulated.

Other downregulated genes of interest included GR targets involved in cell stress responses and apoptosis 
(GADD45A, GADD45G), a clock gene (PER1), receptors for interleukin 12 (IL12RB2) and pro-inflammatory 
complement C5 (C5AR1), molecular chaperones (HSPA1, HSPH1), a signaling factor involved in osteoblast dif-
ferentiation (RRAS), and general regulators of transcription (HIC2, ZNF462). Significantly, downregulation of 
the 70 kDa heat shock protein gene HSPA1, which interferes with GR ligand-binding activity29, suggested that 
recovery of sensitivity to GCs occurred within 24 hours. Other upregulated genes of interest included those asso-
ciated with smooth muscle contraction (MYH2, PTARF, TPCN2), cell proliferation (FER, PTPRU), cytoskeleton 
(KIF26A), ECM remodeling (MMP27), and ion transport (CA12, SLC26A10, SLC14A1).

Expression values in recovery samples were also compared to baseline to identify genes that remained up- or 
downregulated after corticosteroid levels returned to baseline levels (Supplementary File S3). Fourteen genes were 
identified in both recovery/baseline and recovery/acute datasets (AHNAK2, C5AR1, DDIT4, EIF4E, FOXO1, 
GADD45A, HIC2, HSPA1, HSPH1, MOGAT3, PER1, PIGW, RRAS, SLC14A1). Upregulated genes that were 
uniquely identified in the recovery/baseline dataset included those involved in fatty acid biosynthesis (ACSM1) 
and regulation of mTOR activity (WDR59), insulin signaling (FAMD3), and heat shock response (HSPA8). 
Downregulated genes included those associated with proteolysis (SPSB1, CAST, USP25), circadian clock (CRY), 
apoptosis (IVNS1ABP, RHOB, CHAC), and cellular response to GCs (KLF9). Other genes of interest included 
factors involved in development and differentiation (up: TBX3, SOX21, HOXB4, HOXD4; down: CHSY1, NOV, 
ATOH8, PTCH2, LGALS3), immune and inflammatory signaling (up: CCR1, CCR5, PARP4, ILRL1, CD4, 
KLHL6, KIF3A, TRAF2, TNFSF10, P2RX7), G protein-coupled and GTPase signaling (up: GPBAR1, GIMAP7, 
RASGEF1B, TBC1D2B, SH3PXD2A; down: ASAP3, INPP5B), general regulation of transcription (up: ZNF37A, 
ZNF263, BANP, TRIP4, NFYA; down: XRN2, ZNF383, ZNF451, MED4), and ECM remodeling and cell-cell 
adhesion (up: LAMB4; down: COL4A2, VIM, LOXL2, FBN1).

Validation of candidate markers. Due to the small sample size of the RNAseq dataset, differential gene 
expression results were validated by qPCR in sequenced samples and additional blubber samples collected from 
five animals during an identical experimental protocol in 201316 (for a total of 9 animals; Table 1). There were no 
differences in corticosteroid profiles between the two experiments (cortisol: p =  0.9639, aldosterone: p =  0.2527). 
Twelve candidate genes for qPCR were chosen based on biological functions of interest, transcript abundance 
in sequenced samples (average transcripts per million (TPM) > 3), and change in expression between condi-
tions (upregulated, downregulated, no change). These included DKK1, CEBPD, DDIT4, LPL, PPARG, FOXO1, 
FABP4, ID1, and LGALS3, and candidate reference genes RPL27, NONO, and YWHAZ (Table 4). YWHAZ 
was selected as the optimal reference gene based on stability of expression across samples (Pearson r =  0.976, 
p <  0.001). Log2-transformed fold-change values determined by RNAseq and qPCR were significantly correlated 
(Pearson r =  0.83, p <  0.0001). Expression of markers did not vary by sex (p >  0.05). All markers that were upreg-
ulated during acute response were downregulated during recovery and vice versa, confirming that transcriptional 
response to exACTH was highly specific (Fig. 4). DKK1, CEBPD, and DDIT4 were significantly upregulated dur-
ing the acute response to exACTH and downregulated during recovery (DKK1: F2,15 =  23.42, p <  0.0001; CEBPD: 
F2,15 =  8.54, p =  0.0035; DDIT4: F2,14 =  19.77, p <  0.0001). While not statistically significant, LPL, PPARG, and 
FOXO1 showed a similar trend. In contrast, ID1 was significantly downregulated during the acute response and 
upregulated during recovery (F2,15 =  19.94, p <  0.0001), and FABP4 showed a similar trend. Differences in magni-
tude of fold-change values were likely due to differences in detection sensitivity of the two methods, with RNAseq 
being considerably more sensitive than qPCR30. Overall, expression data obtained by the two techniques was 
well-correlated and showed that DKK1, CEBPD, DDIT, and ID1 may be robust qPCR markers of acute HPA axis 
activation in blubber.

Discussion
The goals of this study were to profile the transcriptome response of blubber to HPA axis activation in 
fasting-adapted species and identify tissue-specific molecular markers of stress in marine mammals. The tran-
scriptome was produced by RNA sequencing of blubber samples collected prior to, during, and following admin-
istration of a single dose of exACTH to juvenile elephant seals, which induced acute elevation in endogenous 

Parameter Acute/baseline Recovery/acute Range

number of nodes 93 33 > 0

average number of neighbors 10.237 4.545 > 0

network density 0.111 0.142 0–1

network centralization 0.220 0.148 0–1

network heterogeneity 0.579 0.534 0–1

network clustering coefficient 0.193 0.226 0–1

Table 3.  Network statistics for predicted protein-protein interaction networks shown in Fig. 3. In highly 
connected networks, the density, centralization, heterogeneity, and clustering coefficients parameters are close 
to 128.
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corticosteroids that lasted < 24 hours, similar to previous experiments16,19,20. The transcriptome assembly con-
tained thousands of transcripts with homology to mammalian genes involved in lipid homeostasis, adipokine sig-
naling, and other functions of interest. Genes differentially expressed during acute response to exACTH included 

Transcript ID
Gene 

homolog Protein name

RNAseq log2 FC

Primer sequenceAcute Recovery

TR53098  
c0_g1 DKK1 dickkopf-related protein 1 2.29 ±  0.39 − 3.21 ±  0.40

F: CCAAGATCTGTAAACCTGTCCTC

R: CACAGTAACAGCGCTGGAATA

TR63022  
c0_g1 CEBPD CCAAT/enhancer-binding protein 

delta 1.09 ±  0.30 − 1.30 ±  0.27
F: CGACTTCAGCGCCTACAT

R: CCTTGTGGTTGCTGTTGAAG

TR41227  
c0_g1 LPL lipoprotein lipase 1.85 ±  0.29 ND

F: CTCAGGGACACTGCTTCATAC

R: GCTAAGAAAGACCACCTGAAGA

TR53922  
c5_g1 PPARG peroxisome proliferator-activated 

receptor gamma 1.68 ±  0.31 ND
F: GTGCAGCTATTGCAAGTCATAAA

R: TGCGGACTTGTCTGCTAATAC

TR69848  
c0_g1 ID1 DNA-binding protein inhibitor ID-1 − 1.60 ±  0.39 1.64 ±  0.33

F: GATGACGTGCTGAAGGATCTC

R: GTGCTGCTCTACGACATGAA

TR54987  
c1_g2 LGALS3 galectin-3 − 2.22 ±  0.37 ND

F: GTTGCCTGTCTTTCTTCCTTTC

R: GGAATGATGTTGCTTTCCACTT

TR16531  
c16_g1 DDIT4 DNA damage-inducible transcript 

4 protein ND − 1.76 ±  0.27
F: AGGAAGACTCGGCATACCT

R: TGGCACACAAGTGCTCAT

TR68766  
c9_g5 FOXO1 forkhead box protein O1 ND − 2.22 ±  0.47

F: CTGTTGCTGTCACCCTTATCT

R: CCTCATCACCAAGGCCATC

TR40820  
c3_g2 FABP4 fatty acid-binding protein, adipocyte ND 1.42 ±  0.33

F: CAAAGCCCACTCCTACAGTT

R: TGCTACCCTAATGGTTGAGATG

TR34357  
c2_g1 RPL27 60 S ribosomal protein L27 ND ND

F: CCTCTTGGCGATCTTCTTCTT

R: TTGATGATGGCACCTCAGAC

TR6987  
c5_g2 NONO non-POU domain-containing 

octamer-binding protein ND ND
F: GAGGAAGGTTTCGGACTGTAAG

R: GCGGAGATTGCCAAAGTAGA

TR33370  
c1_g1 YWHAZ 14-3-3 protein zeta/delta ND ND

F: AGCAGAGAGCAAAGTCTTCTATT

R: GACTGATCCACAATCCCTTTCT

Table 4.  Candidate markers identified by RNAseq and validated by qPCR. RNAseq log2-transformed fold 
change (FC) values are presented ±standard error of the mean. ND: not detected, F: forward primer, R: reverse 
primer.

Figure 4. Log2-fold change values determined by qPCR for 11 markers identified as differentially expressed 
in the transcriptome. Error bars depict standard error of the mean. *Denotes delta CT values that were 
significantly different between conditions (p <  0.05). Dotted line indicates log2 fold-change threshold of 1.0.
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transcriptional regulators of adipogenesis and lipid metabolism, while recovery from exACTH involved their 
rapid suppression and upregulation of genes involved in lipid synthesis and storage.

While cellular responses to corticosteroids have been examined extensively in laboratory and disease models 
and in vitro study systems, little is known about the coordinated responses of complex tissues to HPA axis activa-
tion, especially in free-living animals. Here, we profiled the transcriptome of elephant seal blubber tissue due to its 
accessibility in marine mammals and its key role in metabolic homeostasis, especially in fasting-adapted species. 
In marine mammal species of concern such as large cetaceans, blubber may be the only tissue that is possible to 
obtain (via biopsy dart) to evaluate stress states and its impacts18. Marine mammal blubber is a multi-functional 
tissue that is stratified into at least two morphologically and functionally distinct layers. A dense outer layer 
performs thermoregulatory and structural roles, while a highly vascularized, metabolically active inner layer is 
used for lipid storage and mobilization according to energy demands31. The inner stratum, which was used in this 
study, contains a heterogeneous mix of white adipocytes, brown adipocytes, connective tissue, cutaneous muscle, 
and nerve fibers32. While detailed cellular analysis of phocid blubber has not been conducted, it probably con-
tains other cell types also found in white adipose tissue (WAT) of terrestrial mammals: mesenchymal stem cells, 
fibroblasts, endothelial cells, macrophages, and preadipocytes in various stages of commitment33. Therefore, the 
blubber transcriptome represents coordinated transcriptional activity of diverse cell types.

The transcriptome was assembled de novo using Trinity, producing 510,060 contigs, of which 140,672 shared 
sequence similarity with known vertebrate proteins. These included members of metabolic and adipocytokine 
signaling pathways of interest to comparative physiology studies. Assembly quality was evaluated using several 
metrics of assembly accuracy and completeness24: (1) mapping rate of sequenced reads, (2) TransRate score, 
and 3) BUSCO analysis. The blubber transcriptome assembly had a proper read pair mapping rate of 87.32%, a 
TransRate score of 0.42 (a relatively high rating25), and contained 80% of highly conserved vertebrate orthologs. 
However, the annotation rate (27.6% of transcripts annotated) for blubber was lower than that of elephant seal 
muscle (66.1% of transcripts)17, which may be the result of differences in annotation methods used and the poor 
representation of blubber tissue in reference databases. Of the top BLASTX hits to elephant seal transcripts, the 
second most highly represented species after human was bovine (Bos taurus, 14.4% of annotated transcripts). 
This was surprising as pinnipeds are more closely related to canids than bovines34. However, high representation 
of bovine homologs in the seal transcriptome may be an artefact of genome annotation quality rather than phy-
logeny, as the Bovine Genome Database is curated by a large-scale collaborative effort35. Further phylogenomic 
analyses will be necessary to address this hypothesis.

We identified 426 and 112 genes that were differentially expressed during the acute response and recovery 
from exACTH, respectively. In addition, 313 genes were differentially expressed between recovery and baseline 
conditions. Due to annotation challenges described above, only 26% of the acute response genes and 45% of 
recovery genes were annotated, limiting our downstream analyses to highly conserved genes overrepresented 
in sequenced genomes of terrestrial mammals. Differentially expressed genes included corticosteroid receptor 
targets involved in regulation of adipogenesis and lipid homeostasis, including several that were identified in 
elephant seal muscle during a similar exACTH experiment16.

The acute metabolic response of elephant seals to exACTH was characterized by differential expression 
of genes that promote lipid catabolism and oxidation at the expense of synthesis and storage, a characteristic 
response to GCs9. However, significant changes in circulating free fatty acids were not observed 2 hours after 
exACTH administration; appreciable changes in circulating metabolites may not be manifested as quickly as 
changes in gene expression. Transcriptional changes during the acute response to exACTH included upregulation 
of lipoprotein lipase (LPL), a key regulator of fatty acid uptake and availability36, mitochondrial sirtuin SIRT5, 
which promotes beta-oxidation of fatty acids37, and the pro-lipolytic catecholamine receptor ADR2B38, con-
comitant with downregulation of galectin-3 (LGALS3)39 and early growth response protein 1 (EGR1)40, both of 
which inhibit the rate-limiting enzyme in lipolysis (adipose triglyceride lipase, ATGL)41. Maintenance of insulin 
resistance, characteristic of fasting elephant seals42, was evidenced by downregulation of orphan receptor NR4A1 
(Nur77)43 and sorbin and SH3 domain containing 1 (SORBS1)44, which promote insulin sensitivity. In contrast 
to this study, SORBS1 was upregulated in elephant seal skeletal muscle in response to exACTH16, suggesting 
that its role in corticosteroid responses may be tissue-specific. Two genes recently implicated in control of insu-
lin sensitivity and fat mass in obese humans – mitochondrial thiosulfate sulfurtransferase (TST)45 and ataxin-2 
(ATXN2)46 – were upregulated. Their functions in other contexts are currently unknown.

Metabolic recovery from exACTH administration was detected within 24 hours of administration as upregu-
lation of genes that facilitate lipid synthesis (monoacylglycerol O-acyltransferase 3, MOGAT3) and uptake (fatty 
acid binding protein 4, FABP4), and downregulation of genes involved in catabolism (DNA damage-inducible 
transcript 4 DDIT4/REDD1 and forkhead box protein FOXO1)47. In addition to its well-described role in pro-
teolysis, FOXO1 also promotes lipolysis by regulating ATGL expression48. Both DDIT4 and FOXO1 were also 
downregulated in elephant seal muscle during recovery from exACTH16, suggesting that corticosteroid-induced 
catabolism of nutrient stores is generally tightly controlled in a fasting-adapted mammal.

Paradoxically, corticosteroids simultaneously promote lipolysis and adipogenesis in mammalian WAT. Recent 
studies suggest that the latter may be effected through MR activation by GCs and aldosterone13. Adipogenesis – 
the process by which pre-adipocyte precursors residing within adipose tissue differentiate into mature functional 
adipocytes – is positively regulated by PPARG, CCAAT-enhancer-binding proteins (C/EBP) and Kruppel-like 
transcription factors (KLF) and opposed by Wnt signaling and ID transcription factors33. The blubber transcrip-
tome response to exACTH was consistent with transient induction of an adipogenesis programme. PPARG, 
CEBPD, KLF15, and the Wnt inhibitor DKK1 were upregulated, while ID1 was strongly downregulated. CEBPD 
and KLF15 were also upregulated in elephant seal skeletal muscle in response to exACTH16, consistent with 
their complex roles in both lipid and protein homeostasis49,50. The effects of exACTH on adipogenesis were tran-
sient: during recovery the pro-adipogenic factors were suppressed, while genes known to promote proliferation 



www.nature.com/scientificreports/

9Scientific RepoRts | 7:42110 | DOI: 10.1038/srep42110

of undifferentiated cells (ID1, SOX18) were upregulated. The role of corticosteroid-induced, post-embryonic 
adipogenesis is poorly understood, especially in non-model systems. We hypothesize that differentiation of 
pre-adipocyte progenitors to mature adipocytes capable of fatty acid uptake and re-esterification may enable 
animals to rapidly recycle lipid metabolites released during acute stress responses. This is especially critical for 
fasting animals, which rely on lipolysis and fatty acid re-esterification to maintain a constant energy supply during 
fasts that require high energy expenditure4.

Differential expression of genes involved in diverse processes such as immune signaling, angiogenesis, ECM 
remodeling, cell signaling, cell proliferation, and apoptosis in response to exACTH reflected the heterogeneity 
of adipose tissue and is beyond the scope of the current study. Genes of interest to further studies include clock 
genes (PER1, BHLHE40, CRY), which were involved in elephant seal transcriptome response to exACTH despite 
the lack of a diel pattern of corticosteroid release in this species51, and genes implicated in oxidative stress (ARF4, 
PLK3), which may be a deleterious consequence of HPA axis activation.

In summary, the elephant seal blubber transcriptome described here provides a valuable resource for further 
studies of adipose biology, energy homeostasis, and stress responses in fasting-adapted animals and marine mam-
mals. We identified dozens of annotated genes and predicted gene networks that were differentially expressed 
in response to exACTH, some of which have not been previously examined in non-pathological contexts in 
free-ranging species. Finally, we isolated DKK1, CEBPD, DDIT4 and ID1 as potential markers of acute HPA acti-
vation in marine mammal blubber. These markers can be used as key tools for evaluating the effects of anthropo-
genic disturbance, such as ocean noise, on marine mammals of concern from which tissues other than blubber are 
challenging to obtain. Expression of the master energy regulators CEBPD and DDIT4 was also altered in elephant 
seal muscle in response to exACTH, suggesting that these markers may be used to evaluate stress states across 
multiple tissue matrices. Future work will be necessary to validate additional markers using an increased sample 
size and to determine if these markers, and whole-transcriptome responses in general, differ between acute and 
chronic stress states.

Methods
Study site and subjects. All experiments involving animals were performed in accordance with relevant 
guidelines and regulations. All animal handling procedures were approved by Sonoma State University and 
University of the Pacific Institutional Animal Care and Use Committees, Department of the Navy Bureau of 
Medicine and Surgery, and were conducted under National Marine Fisheries Service marine mammal permit 
19108. Juvenile northern elephant seals (Mirounga angustirostris) were sampled at Año Nuevo State Reserve (San 
Mateo County, CA). Samples for RNAseq were obtained from 4 animals (3 females, 1 male) of similar age (~10 
months), mass (134.3 ±  3.7 (SD) kg), and body condition in Oct.–Nov. 2014 (Table 1). Samples used for RNAseq 
validation by qPCR were collected from five animals (1 male, 5 female) in Oct. 2013 as described previously 
(Table 1)16.

ExACTH administration and sampling. Study animals were chemically immobilized as previously 
described16. Baseline blood samples were obtained within a mean (± SD) of 15.7 ±  3.5 minutes of initial sedation 
and stored on ice until return to the laboratory. Blubber samples were collected from the posterior flank with a 
6.0 mm diameter biopsy punch (Miltex, USA). The inner half of each biopsy sample was isolated, minced with a 
sterile scalpel, and placed in cryovials containing RNAlater (~300 mg tissue per 1.5 ml; Qiagen, USA). Samples 
were incubated for 24–48 hours at 4 °C, after which RNAlater solution was removed and samples were transferred 
to − 80 °C for storage. After baseline sampling, each animal received an intramuscular injection of 30 U (mean 
(± SD) mass-specific dose: 0.23 ±  0.02 U/kg) corticotropin LA gel (Wedgewood Pharmacy, USA)16,19,20. Sedation 
was maintained and a second set of blood samples and biopsy (on the contralateral side of the animal) was col-
lected 2 hours after administration to capture the acute response to exACTH. Animals were weighed, marked, and 
released to resume normal activity as described previously16. Two subjects were immobilized the following day, 
26.4 and 30.6 hours after exACTH injection, and a third set of recovery blood and tissue samples was collected as 
described above.

Hormone and metabolite assays. Blood samples were centrifuged at 5,000 rpm for 15 minutes at 4 °C and 
isolated serum samples were stored at − 80 °C until processing. Serum cortisol and aldosterone concentrations 
were assayed in duplicate using I125 radioimmunoassays (MP Biomedicals, USA). The mean intra-assay coeffi-
cients of variation (CV%) for the duplicates were 1.6% and 2.5% for cortisol and aldosterone, respectively. The 
assay platform for both hormones was validated by demonstrating parallelism of diluted samples to the standard 
curve and spike recovery of standard additions of > 97%. Free fatty acids were analyzed using an enzymatic fluo-
rometric assay (Cayman, USA). Samples were analyzed in triplicate with mean intra-assay CV% of 3.7%.

RNA isolation. Blubber samples were minced with a sterile scalpel on ice, added to Qiazol (~100 mg tis-
sue per 1.0 ml; Qiagen, USA), and homogenized using 5-mm steel beads in a TissuseLyser instrument (Qiagen, 
USA; 2 cycles of 2 minutes at 20 mHz). Homogenates were further disrupted using a 21-gauge needle to shear 
genomic DNA, and centrifuged for 10 minutes to separate lipids and cellular debris. RNA was isolated from clean 
homogenates using Lipid RNeasy Tissue Kit (Qiagen, USA) with a 20-minute on-column DNase I digest (Qiagen, 
USA). Eluates were concentrated by sodium acetate precipitation. RNA concentration was estimated using Qubit 
fluorometer (Life Technologies, USA) and integrity was evaluated using 2100 Bioanalyzer (Agilent Technologies, 
USA). The mean (± SD) RIN for samples used for RNA sequencing was 8.04 ±  0.40 (lowest: 7.20, highest: 8.50). 
Bioanalyzer traces for each sequenced sample are shown in Supplementary File S4.
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Library preparation and RNA sequencing. cDNA library preparation and Illumina sequencing were 
performed at the University of California, Davis DNA Technologies Core Facility using standard protocols 
(TruSeq RNA Sample Prep Kit v2, Illumina, USA). Specifically, mRNA was isolated from total RNA samples 
using oligo-dT magnetic beads, fragmented, and used as template for first-strand cDNA synthesis with random 
hexamers (SuperScript II Reverse Transcriptase, Invitrogen, USA). After cDNA purification, overhang fragments 
were end-repaired. The 3′  ends of the blunt-ended fragments were adenylated and ligated to proprietary adapter 
oligonucleotides (Illumina, USA). Ligation products were amplified by 10–12 cycles of PCR before library quan-
tification and validation (Agilent Technologies, USA). Individual libraries were barcoded and pooled. Sequencing 
was carried out for 100 cycles on the Illumina HiSeq 2500 platform, generating 32.012 total sequenced megab-
ases and an average of 32.011 ±  2.81 million paired-end 100-bp reads per sample. Fastq files were generated 
using Illumina Casava pipeline v1.8.2. Raw reads were submitted to NCBI SRA (Accession: SRP045540; Samples: 
SAMN04595358–67).

Transcriptome assembly. Transcriptome assembly was conducted using Amazon Web Services Elastic 
Cloud Compute service (AWS EC2) and Extreme Science and Engineering Discovery Environment (XSEDE)52. 
Sequenced read trimming and abundance normalization were conducted using khmer v0.8.4 mRNAseq proto-
col53. Specifically, Illumina sequencing adapters were trimmed from reads using Trimmomatic v0.3054. Sequences 
with quality scores ≤ 30 and quality base pair content ≤ 50% were removed using FASTX Toolkit v0.0.13.2. One 
round of digital normalization (diginorm55) was used to normalize coverage to 20X with k-mer threshold of 
20. Assembly was conducted using normalized reads from all 10 samples using Trinity v2.0.623 with default 
parameters (k-mer size of 25) and maximum memory size of 60 GB with 8 CPU. Assembly metrics were obtained 
using TransRate v1.0.125. Mapping metrics for quality-trimmed reads were obtained using bowtie v1.1.156. 
Transcriptome completeness was assessed using BUSCO v1.226 (with BLAST +  v2.3.0, HMMER v3.1b2 and 
EMBOSS v6.5.7; vertebrate BUSCO dataset downloaded 6/1/16).

Transcriptome annotation. Candidate coding regions within transcript sequences were identified using 
TransDecoder v2.0.123. The transcriptome was annotated using Trinotate v3.0.023 pipeline. Sequence homologies 
between SwissProt reference proteomes and assembled transcripts and TransDecoder-predicted coding regions 
were identified using BLASTX and BLASTP, respectively, using DIAMOND v0.7.1057 and BLAST+  v2.3.058. 
SwissProt and PFAM databases were downloaded on 3/15/16. Signal peptides and transmembrane domains 
were identified using SIGNALP v.4.1 and TMHMM v2.0, respectively, according to Trinotate protocol23. Results 
were compiled into an annotation report with e-value cutoff of 10−5. Functional annotation was conducted using 
DAVID Bioinformatics Resources v.6.8 (beta)59 with human genome as background. The software detected 24,351 
DAVID IDs corresponding to human UniProt IDs, which were used as the input list.

Gene expression analysis. Transcript abundance estimation was conducted using kallisto v0.42.460. 
Differential expression analysis was conducted at the gene level using DESeq261 (Bioconductor v3.2) with 
false discovery rate cutoff of 0.05 and log2 fold-change in expression cutoff of 1.0. Predicted protein-protein 
interaction networks based on differentially expressed genes were produced using GeneMANIA62 with net-
work weighing based on input genes and no additional interacting partners or attributes shown. Predicted 
networks (non-directed) were analyzed using Cytoscape v3.4.027. Network statistics were obtained using the 
NetworkAnalyzer tool in Cytoscape. Statistical parameters are defined in http://med.bioinf.mpi-inf.mpg.de/net-
analyzer/help/2.7/index.html#simple 28.

Quantitative PCR. cDNA was synthesized from 500 ng input of total RNA in 20-μ l reactions using iScript 
Reverse Transcription Supermix (Bio-Rad, USA). cDNAs were diluted ten-fold and 2 μ l were used in each 
20-μ l qPCR reaction with iTaq Universal SYBR Green Supermix (Bio-Rad, USA). Primers were designed using 
IDT PrimerQuest tool (sequences shown in Table 4). Primer sequence specificity was confirmed by BLASTN 
and potential for primer-dimer formation calculated using IDT OligoAnalyzer v3.1. All primers were used at 
200 nM final concentration in each qPCR reaction. qPCR assays were conducted in triplicate on ABI PRISM 
7000 Sequence Detection System (Applied Biosystems, USA) with standard deviation for technical replicates of  
< 0.167 CT. No-template and no-reverse transcriptase controls were included in each run and showed no ampli-
fication. Primer specificity was determined by melt curve analysis and agarose gel electrophoresis of qPCR 
products. Primer efficiency was determined using standard curves with five 1:5 dilutions of cDNA63. Putative 
reference genes were selected based on stable transcript abundances across sequenced samples, and validated for 
expression stability by qPCR. YWHAZ was chosen as the most stable reference gene using RefFinder (http://fulx-
ie.0fees.us/)64, which calculated a comprehensive stability ranking based on delta CT, BestKeeper, NormFinder, 
and GEnorm methods. Across all samples, the BestKeeper-calculated Pearson correlation coefficient of CT 
for YWHAZ was 0.976, and NormFinder and GEnorm stability values were 0.126 and 0.338, respectively. 
Fold-change in gene expression between sampling conditions was calculated using the Pfaffl method63.

Statistical analyses. Statistical analyses of hormone, metabolite, and qPCR data were conducted using 
JMP v12.1.0 (SAS, USA). Changes in hormone concentrations or delta CT gene expression values in response to 
exACTH were analyzed using linear mixed models with sample group (baseline, acute response, and recovery) 
as a fixed effect and animal ID as a random effect. Response variables were log-transformed as necessary to meet 
distribution and variance assumptions. Post-hoc comparisons between repeated samples were conducted using 
Student’s t-test of LSD. Correlation between log2-transformed fold change values obtained by RNAseq and qPCR 
was determined using Pearson’s multivariate correlation analysis.

http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.7/index.html#simple
http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.7/index.html#simple
http://fulxie.0fees.us/
http://fulxie.0fees.us/
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