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Abstract: Peptides constitute molecular diversity with unique molecular mechanisms of action
that are proven indispensable in the management of many human diseases, but of only a mere
fraction relative to more traditional small molecule-based medicines. The integration of these two
therapeutic modalities offers the potential to enhance and broaden pharmacology while minimizing
dose-dependent toxicology. This review summarizes numerous advances in drug design, synthesis
and development that provide direction for next-generation research endeavors in this field. Medicinal
studies in this area have largely focused upon the application of peptides to selectively enhance
small molecule cytotoxicity to more effectively treat multiple oncologic diseases. To a lesser and
steadily emerging extent peptides are being therapeutically employed to complement and diversify
the pharmacology of small molecule drugs in diseases other than just cancer. No matter the disease,
the purpose of the molecular integration remains constant and it is to achieve superior therapeutic
outcomes with diminished adverse effects. We review linker technology and conjugation chemistries
that have enabled integrated and targeted pharmacology with controlled release. Finally, we offer
our perspective on opportunities and obstacles in the field.

Keywords: peptide; peptide-drug conjugate; mixed-mode pharmacology; GLP-1; GnRH; LHRH;
chemical linker; cancer; diabetes; obesity; drug discovery

1. Introduction

Peptides represent a powerful class of medicine that currently serves multiple diseases and often
constitutes indispensable, life-preserving pharmacology [1–4]. They often display exquisite affinity and
specificity for a unique molecular target. This coupled with straightforward endogenous metabolism
to constituent amino acids typically translates to high potency medicines, with minimal off-target
adverse effects. Being of modest molecular size and certainly much smaller than most proteins enables
the relationship of peptide structure to function to be rapidly interrogated by synthetic methods that
have matured over the last fifty years [5–10]. These synthetic methods have also evolved to achieve
success at a commercial scale which is a significant advantage as it enables molecular diversity that is
not readily achieved in larger molecules, facilitates translation to clinical studies and yet often nicely
integrates with biosynthetic approaches for larger production and reduced cost. Prominent examples
include insulin and related analogs, glucagon-like peptide 1 agonists (GLP-1), somatostatins and many
others [1–4,11–14]. Accordingly, peptide-based drug candidates much like proteins have recorded a
higher success rate in commercial development relative to classical small molecules. Novo-Nordisk and
Amgen, which have heavily focused on peptide and protein drugs, reported the highest clinical success
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rates relative to similarly-sized peer companies in 2016 [15]. Multiple factors, however, influence these
results, such as disease selection, portfolio decision making and executive appetite for risk [16,17].

More than sixty peptide-based drugs are commercially marketed globally, with more than a
hundred in various stages of commercial development and many, many more in preclinical research.
Virtually all disease areas are touched at some level with endocrinology, cancer, infectious and
cardiovascular diseases being most prevalent [1–4]. The global sales for peptide-based medicines in
2015 were in excess of fifty billion U.S. dollars and forecasted to reach seventy in 2019 [1]. Among
these, insulin-related medicines are by far the largest given the global epidemic of maturity-onset
diabetes [18]. There are many billion-dollar drugs and notably, the use of multiple GLP-1 agonists is
accelerating rapidly [19]. It is clear that peptides fulfill a unique therapeutic need where traditional
small molecules have not.

Similar to drug discovery directed at small molecules, peptide research has evolved in the direction
of multimode pharmacology, [20–22] where single molecules activate multiple receptors in an additive
and occasionally in a synergistic manner to achieve superior efficacy often at reduced dose [1–4,23–25].
This type of pharmacology is exemplified in purposefully integrated, dual agonism at amylin and
calcitonin, GLP-1 and glucagon, or with gastric inhibitory peptide (GIP), and triple agonism at GLP-1,
glucagon and GIP in treatment of the metabolic syndrome [26–35]. The sequence of these multi-action
peptides largely derives from intermixing resides from each native hormone to achieve balanced,
full agonism at the respective cognate receptors. It is the inherent structural similarity within these
related receptors and their natural ligands that enables the discovery of chimeric peptides that can
promiscuously bind more than once receptor with similar affinity. Consequently, there are limits to
where this approach can be successfully applied as hormones of a more distant sequence will prove
increasingly difficult, if not impossible to successfully integrate to a single common binding face.
In those instances where the respective receptors are too distant to assemble a single ligand that can
fulfill high-affinity binding more traditional approaches to functionate through chemical conjugation to
heterodimeric and higher polymeric forms have been applied. This approach is commonly employed
in antibody-based drug candidates where more than one receptor is blocked [36–38]. Although
less elegant in their molecular design and resulting in appreciably increased molecular size, such
polypeptide conjugates can similarly bestow the pharmacological benefits of peptides with a single
hybridized binding site.

Conjugates of peptides and small molecules empower the virtues of peptide-based pharmacology
with traditional medicinal chemistry [1–3,39–46]. The result is a macromolecule, and as such the
biophysical character of the drug candidate and the resultant properties for patient use have paralleled
what has been advanced in peptide and protein therapeutics. Consequently, the progression of this form
of medicinal chemistry has evolved more from the large molecule side to embrace small molecules, than
vice versa. In this review, we focus on peptide-drug conjugates that promote the integrated benefits
of peptides and smaller, non-peptide pharmacophores. The presentation is intended to supplement
reviews focusing exclusively on peptide-based therapeutics [1–3] and complement those that specifically
emphasize applications in cancer [40,41]. The reader is also directed to other reviews with an emphasis
on physiochemical properties of peptide-drug conjugates [42] and those predominantly employed
for optimizing pharmacokinetic performance [43]. Finally, protein-based drug conjugates other than
antibodies are not reviewed but can be found elsewhere [44], and similarly so conjugates for diagnostic
purposes with imagining agents or organometallic entities [45,46]. We have selectively cited prominent
examples of peptide-drug conjugates as representatives of the class to offer our perspective in molecular
design, selection of covalent linkers, and other aspects that influence performance.

2. Why Peptide-Drug Conjugates?

Peptide-based therapeutics historically represented a small fraction of conventional pharmaceutical
discovery research where the emphasis has been on small molecules that prioritized the convenience
in oral administration nearly as much as the efficacy of the drug. This has resulted in an excessive
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investment on a finite number of high-profile drug targets that have constrained the broader exploration
of human pathology [47,48]. Peptides as a molecular class are well recognized to often provide
unprecedented efficacy and the attempts to reduce them to structural mimetics that could be orally
administered have largely failed, despite sizable investment to do so. The advent of rDNA-based protein
drugs, and in particular antibodies have demonstrated the importance of drug efficacy, especially
when applied to life-altering diseases to dominate the convenience of oral administration. Tangential
to the popularity of protein-based therapeutics has been increased attention for peptide therapeutics.
As a result, notable successes such as parathyroid hormone (PTH), GLP-1, GLP-2 agonists complement
the historical importance of such peptides as insulin, gonadotropin-releasing hormone, somatostatin,
calcitonin and numerous other less prominent entities such as glucagon, vasopressin and oxytocin.
Nonetheless, there is a general sense within the peptide community of there being too few validated
drug targets. The integration of peptides with traditional small molecules provides a venue to advance
novel macromolecular therapeutics that provide supplemental efficacy but also addresses intracellular
drug targets as it has constituted a central limitation in peptide and protein-based pharmacology.

Small molecule drug candidates have historically recorded a higher attrition rate in clinical
development, which partially results from suboptimal physicochemical properties [16,17,49].
Conjugation to peptides is an approach to address poor aqueous solubility, untimely metabolism and
potentially facilitate cell permeability. It has provided targeted delivery of small molecules to diseased
tissue to enhance local drug concentration, and mitigate toxic effects arising from systemic exposure and
accumulation in non-diseased tissues [1–4,50,51]. Drug-Drug Interactions (DDI) constitute a common
cause of adverse drug reactions that undermines efficacy and with the increased use of multiple
drugs in the treatment of complex diseases has emerged as something of elevated importance in drug
development [52]. Peptide-drug conjugates by design can minimize DDI by lessening accumulation in
tissues where inappropriate biological action is adversely increasing pharmacology arising from other
drugs. In this regard, peptide-drug conjugates are largely confined to the extracellular space and as
such have been reported to minimize inappropriate hepatic metabolism [2,51].

The origin in the design of molecular conjugates can be traced as far back as a century ago when the
German physician-scientist Paul Ehrlich coined the term ‘magic bullet’ in characterizing a cytotoxic drug
to be selectively delivered to a tumor via a targeting agent [53,54]. It was in the second half of the last
century when several examples were reported [55–58], with the first instance employing methotrexate
(MTX) conjugation to an antibody directed against leukemia cells [55]. The first clinical trial of such an
antibody-directed cytotoxic agent (ADC) was reported in 1983 [59], in which an anti-carcinoembryonic
antigen (CEA) antibody directed a vinca-alkaloid in treatment of advanced stage cancer. Nearly two
decades later as we entered this century the first ADC was FDA-approved and named gemtuzumab
ozogamicin [60]. With a commercial trade name of Mylotarg, this chemical conjugate consists of an
anti-CD33 antibody linked with calicheamicin, a drug of high systemic toxicity for the treatment of
acute myeloid leukemia (AML). The extended period from Paul Ehrlich’s time to first drug registration
of an ADC was to an appreciable degree due to the relative immaturity of antibody-based therapeutics,
until the advent of the last decade of the twentieth century [61]. The first ADC employed polyclonal
antibodies with cytotoxic agents non-covalently associated, with human sequence antibodies emerging,
with maturation of rDNA-based expression [61]. Subsequent to Mylotarg, brentuximab vedotin
(Adcetris) received regulatory approval in 2011 for treatment of Hodgkin lymphoma and systemic
anaplastic large cell lymphoma [62,63], and trastuzumab emtansine (Kadcyla) was similarly approved
in 2013 for the treatment of HER2-positive metastatic breast cancer [61,64]. Mylotarg was subsequently
withdrawn from distribution in 2010 for safety concerns and the absence of proven clinical benefit in a
follow-up clinical trial [65]. It was successfully reintroduced as Besponsa in 2017 for treatment of AML
and in addition treatment of relapsed or refractory acute lymphoblastic leukemia (ALL) [66]. Currently,
there are more than one hundred registered clinical studies that employ some form of ADC [67].
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Despite the initial clinical successes, multiple challenges exist in the development of next-generation
ADCs. Issues pertaining to the continued identification and validation of disease-specific target antigens
remain a central biological challenge to the approach. Advances in site-specific chemical conjugation,
often employing novel orthogonal conjugation chemistries with linkers designed for improved
therapeutic index continue to provide more homogenous drug candidates. The large molecular size of
antibodies has raised questions pertaining to efficient distribution and delivery to disease tissues with
subsequent cellular transport. In these last domains, peptide conjugates given their inherently smaller
size possess an inherent advantage in comparison to antibodies. The increased molecular diversity and
accuracy in chemical synthesis of peptides provide structural precision and optimization that exceeds
what is possible with antibodies [60–63,68,69]. As such medicinal chemistry has been employed to
enhance potency, drug distribution, pharmacokinetics and metabolism. This approach also simplifies
commercial synthesis and compliance with regulatory demands for registration and subsequent
requirements in drug manufacture [70]. Peptide-based drug conjugates bind to cell surface targets with
high-affinity that parallels that of antibodies and recognize a broad spectrum of biological targets, most
notably G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), and integrins. Being
of significantly reduced molecular size relative to ADCs, there is potential for more efficient delivery to
sequestered-targets leading to enhanced efficacy, and reduced immunogenicity [1,2]. It should be noted
that peptide-drug conjugates are pharmacokinetically distinct from antibodies with a much-reduced
circulation time. This can be of particular advantage in the delivery of highly toxic reagents where
extended exposure is unwarranted. However, it initially proved a disadvantage as treatment of
solid tumors more often required sustained pharmacokinetics, of the type inherent to antibodies.
The maturation in chemical approaches to alter and even tailor time-action of peptides with chemical
lipidation, pegylation and a host of other technologies has largely eliminated this difference relative to
antibodies. While the comparisons will continue, it is less a question of which molecular platform is
superior than celebrating diversity as a tool to be employed in achieving superior disease outcomes,
conveniently administered at a suitable financial cost.

3. Approved Peptide-Drug Conjugates

Somatostatin (growth hormone-inhibiting hormone, GHIH) is a peptide produced by paracrine
cells in the gastrointestinal tract, pancreatic delta cells, and hypothalamic neurons to control multiple
endocrine functions [71,72]. It inhibits secretion of growth hormone, thyroid stimulating hormone,
and other pituitary-derived hormones, as well as hormone secretion from pancreatic and gastrointestinal
cells. Somatostatin exhibits many direct and indirect effects to suppress growth and differentiation in
several different cancer cells. Somatostatin analogs such as Octreotide, Lanreotide, and Pasireotide
are clinically used in the treatment of acromegaly, as well as hormone-dependent tumors such as
pancreatic, and vasoactive intestinal peptide-secreting tumors [72,73]. Somatostatin analogs have also
been clinically studied in breast, lung, prostate and gastrointestinal cancers [73].

Somatostatin biologically functions through a family of related receptors in the GPCR
superfamily [71]. There are five somatostatin receptors subtypes (SSTR1-5) that are differentially
expressed in brain cortex, pituitary, adrenals, pancreas, heart, and gastrointestinal tract [72,74].
The SSTR2 is reported to be overexpressed in many tumors and undergoes ligand-induced
internalization. This latter property renders SSTR2 a potential target for intracellularly delivering
cytotoxic and other growth suppressive agents to tumor cells [71]. Various somatostatin analogs have
been conjugated to radioactive chemotherapeutic agents to induce tumor death by a process termed
peptide receptor radionuclide therapy (PRRT) [75,76]. Targeted radioisotope therapy complements
the inherent anticancer pharmacology of somatostatin, while simultaneously reducing the systemic
radioactive toxicity. Radioactive isotopes conjugated to somatostatin include beta-emitter nuclide 90Y,
gamma-emitter 111In, beta and gamma emitter 177Lu, and other more commonly employed nuclear
medicines [75,76]. PRRT inhibits tumor progression [77–79], and recently a 177Lu Dotatate conjugate
was approved as for treatment of gastroenteropancreatic neuroendocrine tumors [80,81]. 177Lu as a
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beta-emitter exhibits maximal tissue penetration less than 2 mm, which renders it a good irradiation
choice for small tumors. The Lutetium isotope has a reasonable physical half-life of 6.7 days, which
makes it favorable from a therapeutic and safety perspective as 99% of the drug is eliminated within two
weeks [82–84]. The 177Lu is chelated to octreotide, a somatostatin analog through a DOTA high-affinity
binder that is covalently linked to the hormone (Figure 1) [76,85]. The peptide exhibits high potency
(IC50: 1.5 nM) at SSTR2 with greater than a hundredfold selectivity over SSTR5 (IC50: 547 nM) and
SSTR3 (IC50: >1000 nM) [86]. In a single-arm clinical trial in 310 patients with gastroenteropancreatic
cancer, 177Lu-Dotatate treatment provided partial tumor remissions in 28% of patients and complete
remissions in 2%. The median progression-free survival was 33 months [87]. In a recent phase 3
trial in progressing, advanced midgut neuroendocrine tumors 177Lu-Dotatate treatment resulted
in a progression-free survival rate of 65.2% versus 10.8% at twenty months relative to continuing
somatostatin treatment alone [88]. The 177Lu-Dotatate exhibited limited hemato-toxicity, but without
renal toxicity. These results in advanced refractory cancer demonstrate the much-improved therapeutic
efficacy and safety of the peptide-drug conjugate in comparison to somatostatin or radioisotope
therapy alone.
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4. Representative Peptide-Drug Conjugates in Clinical Development

4.1. GnRH-Doxorubicin Conjugate

Gonadotropin-releasing hormone (GnRH or LHRH) is a hypothalamic peptide hormone that
binds to receptors in the anterior pituitary to stimulate the release of the follicle-stimulation hormone
and luteinizing hormone, two hormones seminal to reproduction [89,90]. GnRH also stimulates
gonadotropin release and subsequent steroid hormone release, which are purported stimulants to
many forms of cancer [91,92]. Continuous GnRH receptor activation causes down-regulation and
desensitization to reduce endogenous steroid hormone biosynthesis and release [93]. Consequently,
GnRH super-agonists have been successfully employed in hormone-dependent cancers in what is
termed androgen deprivation therapy (ADT) [92,94].

The GnRH receptor is expressed in many endocrine cancers, including breast, ovarian, endometrial,
and prostate tumors. Its presence provides the means to target oncolytic drugs to these cancer cells to
supplement the clinical benefits currently achieved with ADT alone [90,95]. Zoptarelin Doxorubicin
(AN-152, AEZS-108, ZoptrexTM) is a peptide-drug conjugate composed of a GnRH analog and
doxorubicin through an ester bond with a glutaric acid spacer (Figure 2) [96]. The conjugate proved
more effective than doxorubicin in inhibiting cell proliferation in GnRH receptor positive cancer cell
lines [96]. It also was more potent than either agent alone in several xenograft mouse tumor models [97].
These results validate the virtue of targeted, complementary GnRH and doxorubicin pharmacology.
Phase 1 studies in endometrial, ovarian and prostate cancer established Zoptarelin Doxorubicin’s safety,
pharmacokinetics, and maximum tolerated dose [98–100]. In several phase 2 studies the drug-conjugate
exhibited promising clinical activity with low systemic toxicity in castration and taxane-resistant
prostate cancer [101], advanced or recurrent endometrial cancer [102], and platinum refractory ovarian
cancer [103]. In a recent large phase 3 registration trial in advanced endometrial cancer Zoptarelin
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Doxorubicin disappointedly failed to improve median overall survival, or progression-free survival
when compared to standard doxorubicin therapy [104]. The basis of the failure is unknown but given
that doxorubicin at highest dose did not significantly improve patient survival there is a suspicion that
deficiencies specific to doxorubicin might be the primary cause, as opposed to something inherent to
the drug-conjugate.
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4.2. Angiopep-2-Paxlitaxel Conjugate

Paclitaxel is a potent oncolytic drug that has been widely used in several different cancers [105,106].
However, its low blood–brain barrier (BBB) permeability coupled with multidrug resistance efflux by
P-glycoprotein pump (P-gp) has resulted in limited activity in primary and metastatic brain tumors.
Angiopep-2 is a peptide that binds the low-density lipoprotein receptor-related protein 1 (LPR1) and
it is upregulated in many tumors, including glioma [107,108]. ANG1005 (also named GRN1005)
(Figure 3) is a drug conjugate composed of angiopep-2 and paclitaxel designed to increase brain
transport through LPR1 mediated transcytosis [109]. The ANG1005 conjugate includes as many as
three molar equivalents of paclitaxel relative to a peptide with intent to maximally increase cytotoxic
drug concentration [110,111]. ANG1005 demonstrated excellent cytotoxicity against glioblastoma,
lung and ovarian cancer cells. Furthermore, ANG1005 was effectively transported to the brain in an
LPR1-dependent manner [112] and appeared unaffected by P-gp efflux that would otherwise impair
therapeutic efficacy. The efficacy was established through in vivo studies where ANG1005 significantly
prolonged survival in mice bearing xenografted glioblastoma or lung carcinoma cells [109]. In phase 1
clinical trials in recurrent malignant glioma tumors [110,111], ANG1005 exhibited plasma half-life of
3.6 h and was well tolerated with a toxicity similar to paclitaxel. Importantly, ANG1005 is designed to
cross the BBB to deliver therapeutic concentrations of paclitaxel to the tumor site. A phase 2 study in
breast cancer patients with brain metastases demonstrated in a subpopulation of patients a favorable
median survival time of eight months as compared to four with standard treatment achieved with
other forms of therapy, or two months without treatment [113]. Several additional phase 2 studies
with ANG1005 have completed, and include recurrent high-grade glioma, non-small cell lung and
brain metastases [114]. Currently, ANG1005 has been successfully registered as an orphan drug for
the treatment of multiform glioblastoma [115], and a phase 3 clinical trial with ANG1005 against
leptomeningeal disease from breast cancer is reported to be in recruitment phase [116].
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4.3. Tetrapeptide-Thapsigargin Conjugate

Thapsigargin is a highly potent cytotoxic natural product that induces apoptosis in mammalian
cells by binding the sarco/endoplasmic reticulum calcium ATPase (SERCA) to disrupt the Ca2+ gradient
across cytosolic and reticulum compartments [117]. Unlike other cytotoxic agents which inhibit rapidly
proliferating cells, thapsigargin kills in a less specific manner given its mechanism, and this has
undermined its potential as a chemotherapeutic agent. Chemical conjugation of thapsigargin to a
tetrapeptide yields a charged conjugate termed G202 (Mipsagargin) (Figure 4) that is unable to cross
the cell membrane to reach SERCA [118–120]. The tetrapeptide is a substrate of the membrane-bound
proteolytic enzyme prostate-specific membrane antigen (PSMA), which is overexpressed in prostate
cancer and other tumors, but much less so in normal tissues [121,122]. The tetrapeptide is processed
by PSMA to provide an analog that is now cell permeable, cytotoxic, and extracellularly concentrated
adjacent to cancerous prostate cells [118–120]. By in vitro assessment, G202 was reported to be 57-fold
more potent in cell proliferation assays in human prostate cancer cells expressing PMSA, implying
PSMA-mediated cytotoxicity [118,119]. Subsequent in vivo studies demonstrated potent anti-tumor
activity in mouse xenograft models with human prostate and breast cancer cells, and importantly
with much reduced systemic toxicity [118,119]. A Phase 1 clinical trial was completed in patients with
refractory, advanced or metastatic solid tumors. G202 was found to be well tolerated in patients at
doses up to 88 mg/m2 (or 2.4 mg/kg) and determined to have a favorable pharmacokinetic profile
with a terminal half-life of 21 h, and distribution equivalent to plasma volume [123]. Several Phase 2
clinical trials have completed in prostate cancer, renal cell carcinoma, hepatocellular carcinoma, and
glioblastoma but clinical results have not yet been reported [124].
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4.4. Miscellaneous Peptide-Drug Conjugates

Doxorubicin has been chemically conjugated to a number of other peptides, including cell
penetrating peptides (CPP) [125,126], tumor homing peptide Lyp-1 [127], RGD peptides [40],
somatostatin [128–130], and bombesin/gastrin-releasing peptide (BN/GRP) [128,131,132], and broadly
studied. BIM-23A760, a conjugate of somatostatin and dopamine is in clinical stage development for the
treatment of pituitary adenomas [133–135]. A list of peptide-drug conjugates that have progressed into
clinical development is summarized in Table 1. Given the sizable unmet medical need in many cancers,
it has been the dominant disease for exploring the potential for selectively delivering toxic substances.
Nonetheless, the potential for targeted therapy and synergistic efficacy between peptides and small
molecules is clear and extends to forms of pharmacology beyond cytotoxicity. Recent applications of
peptide-drug conjugates are emerging in other diseases areas, specifically cardiometabolic diseases
where multi-mode pharmacology has been a traditional hallmark for successful disease management.
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Table 1. Peptide-drug conjugates in various clinical development stages.

Generic Name Indication Peptide Drug Linker Mechanism Status Reference

Lu177-dotatate Dastroenteropancreatic
neuroendocrine tumors

Somatostatin analogue
Octreotide

Radio therapeutic
agent Lu177

Amide
(Lu177 chelating to
metalchelating
molecule DOTA)

Somatostatin receptor 2
SSTR2 mediated delivery of
nucleotide 177Lu

Approved by FDA
and EMA [76,85–99]

[111In-DTPA-D-
Phe1]-octreotide Imaging/diagnostic Somatostatin analogue

Octreotide
Radio therapeutic
agent 111In

Amide
(111In chelating to
metalchelating
molecule DOTA)

Somatostatin receptor 2
SSTR2 mediated tumor
scintigraphic imaging

Phase 1 completed [136,137]

Zoptarelin
Doxorubicin,
AN-152, AEZS-108

Endometrial cancer
Ovarian cancer GnRH/LHRH Doxorubicin Ester GnRH mediated delivery of

doxorubicin to cancer cells Phase 3 completed [96,98–103]

ANG1005
GRN1005 Metastases brain cancer Angiopep-2 Paclitaxel Ester

Low-density lipoprotein
receptor-related protein 1
(LPR1) mediated brain uptake

Orphan drug for
glioblastoma
multiform,
Several phase 2
ongoing

[109–116]

Mipsagargin
G202

Various
Cancer Tetrapeptide Thapsigargin Ester

Extracellularly
tumor-activated prodrug of
Thapsigargin

Phase 2 completed [118–120,123]

Paclitaxel
poliglumex
CT2103

Various cancer Poliglumex Paclitaxel Ester

Enhanced permeability of
tumor vasculature and lack of
lymphatic drainage
prolonged tumor exposure
to the active drug
while minimizing
systemic exposure

Phase 3
completed [138–142]

EP-100 Cancer GnRH/LHRH CLIP71 Amide GnRH receptor-mediated
cancer cell membrane lysis

Phase 2
completed [143–145]

BIM-23A760 Pituitary adenomas Somatostatin Dopamine Amide/Thioether

Somatostatin/dopaminethe
dual action inhibit the
expression/secretion of
several pituitary hormones
(especially GH/PRL)

Phase 2
terminated [133–135]

CGC 1072 Psoriasis Heptaarginine Cyclosporin A Ester
CPP mediated topical
delivery and inhibition
of inflammation

Phase 2,
discontinued [146,147]
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Table 1. Cont.

Generic Name Indication Peptide Drug Linker Mechanism Status Reference

KAI-1455 Ischemic organ injury TAT47-57 εPKC activator Disulfide CPP mediated εPKC
activator delivery Phase 1 [148]

KAI-1678 Neuropathic and
inflammatory pain TAT47-57 δ-Protein kinase C

inhibitor peptide Disulfide CPP mediated εPKC
inhibitor delivery Phase 2 completed [149–151]

KAI-9803 Myocardial infarction &
Cardiovascular disease TAT47-57 δ-Protein kinase C

inhibitor peptide Disulfide

CPP mediated εPKC inhibitor
delivery to reduce the injury
to myocardial and endothelial
cells during a heart attack

Phase 2 completed [152–154]

XG-102
Post-cataract surgery,
intraocular inflammation
and Pain

Tat48-57 31-mer peptide
JNK inhibitor Disulfide

CPP mediated JNK inhibitor
delivery to reduce pain and
inflammation upon
cataract surgery

Phase 3 completed [155–158]

DTS-108 Cancer DPV1047 Vectocell
peptide SN38 Ester

CPP DPV1047 mediated
delivery of chemotherapeutic
drug SN38

Phase 1 completed [159,160]

DTS-201 Cancer Tetra peptide Doxorubicin Amide
Extracellularly
tumor-activated prodrug
of doxorubicin

Phase 2 completed [161–163]

BT-1718 Cancer Bicyclic peptide Maytansinoid Disulfide
Membrane type
1-matrixmetalloprotease
mediated toxin delivery

Phase 1 [164]

177Lu- PSMA-617 Cancer Glutamate-urea-lysine Radio therapeutic
agent Lu177

Amide
(Lu177 chelating to
metalchelating
molecule DOTA)

Prostate-specific membrane
antigen (PSMA) mediated
delivery of nucleotide 177Lu

Phase 3 [165]
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5. Representative Peptide-Drug Conjugates in Preclinical Space

5.1. GLP-1-Estrogen Conjugate

Estrogens are a group of steroid hormones which are commonly used in contraception and
hormone replacement therapy. Estrogens also have notable beneficial effects on insulin signaling,
glucose production, appetite, and energy expenditure to promote their potential use in the treatment of
diabetes, obesity, and associated metabolic diseases [166–169]. However, the chronic use of estrogens
has been complicated by oncogenic propensity in gynecological tissues and the increased risk for
cardiovascular diseases (CVD) [170]. It has been suggested that tissue-targeted estrogens that selectively
function in liver, adipose, pancreas, hypothalamus, but not in ovaries, uterus, and breast could prove
efficacious and safe [171,172]. This has long been a priority in the search for small molecule selective
estrogen receptor modulators [173,174].

The prospect of using a peptide hormone to target and supplement estrogen pharmacology was
advanced by Finan et al. [175]. GLP-1 agonists have emerged as powerful therapy in the treatment of
type 2 diabetes, obesity with proven CV benefits. It exerts its effects at specific receptors enriched in
the endocrine pancreas and hypothalamic control centers of metabolism [176,177]. A GLP-1 estrogen
conjugate formed by an ether link between 17β-estradiol and a lysine side chain amine at position
40 of GLP-1 was synthesized and evaluated in vitro and in vivo (Figure 5) [175]. This conjugate was
fully active at the GLP-1 receptor in cell-based assays, and proteolytically stable in human plasma
under physiological conditions for at least 120 h, reducing the prospect for premature plasma release.
The conjugate demonstrated additive metabolic benefits of GLP-1 and estrogen to reverse obesity,
hyperglycemia, and dyslipidemia in diet-induced obese (DIO) mice. Importantly there was no sign of
estrogen associated gynecological toxicity or oncogenicity in the conjugate relative to what was observed
in unstable conjugates that released systemically acting estrogen [175]. The anorexigenic effects of
GLP-1 results from central action and the conjugate delivered estrogenic action to neurons in the dorsal
raphe nuclei in female mice and suppressed binge-like eating behavior [178]. Further, it can activate
both GLP-1 and estrogen receptors in the supra-mammillary nucleus in rats, resulting in superior
effects on food intake and reward, to reduce body weight [179]. Moreover, the conjugate improves
insulin sensitivity and glucose homeostasis in non-diabetic mice [180], attenuates hyperphagia and
protects beta cell health in New Zealand Obese mice [181]. All these benefits were observed to be much
superior to what GLP-1 alone or an untargeted combination provided. These studies demonstrate the
enhanced therapeutic efficacy and safety of a GLP-1-estrogen conjugate, which justifies translational
study in clinical diabetes and obesity. Similarly, a GLP-1-dexamethasone conjugate was also recently
synthesized [182], and its combined therapeutic benefits characterized in metabolically compromised
mice. Such a conjugate delivered potent effects in obese mice to lower body weight, improve glucose
tolerance, and enhance insulin sensitivity with a reduction in hypothalamic and systemic inflammation.
This conjugate was devoid of the adverse effects on glucose handling, bone and body weight typified
by chronic systemic action of dexamethasone.
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5.2. Glucagon-T3 Conjugate

Thyroid hormones are iodinated tyrosine-based amino acids produced by the thyroid gland
and are widely prescribed for the treatment of thyroid hormone deficiency [183]. Thyroid hormones
have profound effects on metabolism, increasing energy expenditure, fat oxidation, and cholesterol
metabolism via multiple pathways to promote therapeutic potential in metabolic diseases [184,185].
However, like estrogens, thyroid hormones are associated with many adverse effects including
increased heart rate, muscle wasting, and reduced bone density [186]. Liver-targeted thyromimetics
have revealed that it is possible to impact hepatic lipids and atherogenic lipoproteins without the
associated adverse effects [187]. Therefore, targeting thyroid hormone action to the liver and adipose
tissues and away from the cardiovascular system might also constitute a viable approach to safely
harness the metabolic benefits. Glucagon is a hormone well recognized as a counter-regulatory
hormone to insulin in its hepatic action to stimulate glucose production. Less well appreciated are
the other attributes of glucagon pharmacology which includes body weight lowering, lipid-lowering
and cardiovascular protection [188]. These effects derive from the direct and indirect hepatic action
of glucagon to promote lipolysis and thermogenesis. It was envisioned that conjugation of thyroid
hormone and glucagon could complement one another in improving body weight while mitigating the
ability of thyroid hormone to elevate plasma cholesterol [189].

A chemical conjugate of glucagon and the most bioactive form of thyroid hormone,
3,3,5-triiodothyronine (T3), was synthesized and biologically characterized (Figure 6) [189].
The conjugate has a DPP4 resistant d-serine at the second amino acid residue, a solubility enhancing
eleven amino acid extension sequence at the C-terminus, and a gamma glutamic acid (gGlu) spacer
linking the C-terminal lysine side chain amine and the carboxylate of T3. The conjugate preserved
full glucagon in vitro potency at its receptor (EC50: 50 pM). The conjugate demonstrated dramatic
metabolic benefits such as body weight lowering via increased energy expenditure, improved plasma
cholesterol and triglyceride management, and much reduced hepatic liver stores in a mouse model
of NASH [189]. The T3 was documented to be enriched in the liver, but not in pancreas or heart
where glucagon receptor expression is less prominent. Analogous experiments in glucagon receptor
knockout mice, as well as employment of peptide-conjugates devoid of one or the other hormonal
activity, demonstrated that the metabolic benefits were the result of glucagon pharmacology and its
targeting of thyroid hormone activity predominantly to the liver. Importantly, concurrent T3 activity
counteracted the adverse diabetogenic effects of glucagon while glucagon lessened T3 elevation of
cholesterol and its hepatic-targeting eliminated any apparent adverse cardiovascular or bone effects.
Hence, pairing glucagon and thyroid hormones as a peptide-drug conjugate provides efficacious
management of multiple elements in the metabolic syndrome, including hyperglycemia, obesity, fatty
liver disease, and atherosclerosis.
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5.3. Knotting Peptide Gemcitabine Conjugate

Integrins are a class of cell adhesion transmembrane receptors that regulate cell growth and function
and are associated with several diseases including cancer, infection, and autoimmune diseases [190].
Integrin overexpression is linked to tumor proliferation and migration, which promotes disease
progression and reduced patient survival [191,192]. Therefore, integrin antagonists are being clinically
developed as therapeutics against cancer [193]. Integrins also provide opportunities for targeted
peptide-drug conjugates. Several integrin targeting peptides were conjugated to cytotoxic agents
for targeted tumor delivery. These include an RGD-doxorubicin conjugate, an RGD-Pt(iv) complex
conjugate, and recently an integrin targeting knottin peptide gemcitabine conjugate [39,40,50,194].
Gemcitabine is a nucleoside based chemotherapeutic agent that blocks DNA replication and is
used in the treatment of multiple cancers [195,196]. Like many other cancer drugs, gemcitabine is
unrestricted in its action and can kill normal cells. To selectively target tumor cells, gemcitabine
was conjugated to an integrin binding knottin peptide named ecballium elaterium trypsin inhibitor
(EETI)-2.5Z. It has three intramolecular disulfide bonds to confer high thermal and proteolytic stability
(Figure 7) [194]. EETI-2.5Z has low nanomolar binding affinity at integrins expressed on tumor
cells, and conjugation with gemcitabine did not measurably affect its activity. Among various
chemical conjugates that included an ester, carbamate, amide, and cathepsin B cleavable Val-Ala-PABC
linkers, the EETI-2.5Z-Val-Ala-PABC-gemcitabine was observed to be highly stable in cell culture,
with minimal premature drug release. More importantly, this conjugate exhibited very potent
growth inhibition (ED50 of 1–10 nM) against a variety of cancer cells, including glioblastoma, breast,
ovarian, and pancreatic cancer cells. The growth inhibition was abolished by the addition of excess
unconjugated EETI-2.5Z, suggesting integrin-mediated internalization of gemcitabine pharmacology.
PANC-1 pancreatic cancer cells have very high resistance to gemcitabine because of the diminished
nucleoside transporter activity in these cells. Nonetheless, EETI-2.5Z-Val-Ala-PABC- gemcitabine
was able to overcome the resistance and exhibited a 25-fold enhanced inhibitory activity relative to
that of gemcitabine. Hence this peptide-drug conjugate further validated integrin as a therapeutic
target for cancer and confirmed that peptides can successfully serve as an alternative to antibody
targeted drug delivery. Of course, further preclinical animal studies and eventually human studies
must be completed to prove its therapeutic efficacy and safety. It is noteworthy that gemcitabine has
also been conjugated to a GnRH agonist [197], similar to the conjugate of GnRH with doxorubicin as
discussed previously.
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6. Linker and Conjugation Chemistry

The linker is a critical part of a peptide-drug conjugate that integrates the peptide and small
molecule medicinal agents. The linker in concert with the peptide and the drug acts to maintain
structural integrity during plasma circulation for a sufficient time and preventing premature release of
the drug that might result in off-target adverse effects. Nonetheless, the linker should efficiently and
specifically release the drug once tissue-targeted to enable a pharmacological effect. Linker technology
has largely matured in the neighboring field of ADCs [198–200], where esters, amides, hydrazones,
disulfides, and cathepsin B cleavable dipeptides have emerged as the preferred choices (Figure 8).
This work has resulted in the development of three marketed drugs (Mylotarg, Adcetris, and Kadcyla),
and a score of ADCs currently in clinical assessment [61,68,69,201–204]. These linkers and others
have been extensively reviewed elsewhere as referenced. Briefly, hydrazones are relatively stable in
plasma, but readily cleaved under acidic conditions, including endosomes and lysosomes where pH
resides between 4.5–6.0. Ester bonds are widely used for conjugating drugs to peptides given their
relatively straightforward synthesis and well-characterized cleavage by esterases, or under acidic
conditions [198–200]. Carbamates perform similar to esters with comparable cleavage mechanisms,
but typically with somewhat enhanced chemical and plasma stability. Although esters do not provide
high plasma stability, it is still possible to successfully target oncolytic agents. If the goal is to develop
a drug candidate of extended duration where the therapeutic index is appreciably increased, an amide
bond may be preferable given the much-enhanced chemical and enzymatic plasma stability. Amide
bonds are typically processed in lysosomes by multiple proteases to release the conjugated small
molecules in a biologically active form [26,120,175]. If cleavage is not observed, dipeptide linkers
such as Val-Cit and related dipeptides should be considered, as these can be cleaved by intracellular
cathepsin B and other proteases [205]. A recent advance in peptide-based linkers combines Val-Cit
with tertiary and heteroaryl amines to achieve traceless release [206]. This overcomes the challenges to
employ tertiary amine bioactive molecules as payloads. The tripeptide linker Glu-Val-Cit was reported
to further enhance stability and efficacy in mice when compared to the dipeptide linker Val-Cit [207].
It is known that Val-Cit linker, although stable in human plasma, is unstable in mouse plasma due
to the cleavage by extracellular carboxylesterases, which causes translational inconsistency when
comparing clinical and preclinical data. Thus, the amide bond seems to confer suitable chemical
and plasma stability. Another enzyme cleavable linker is the β-glucuronide-based linker such as
glucuronide-MABC, this linker offers benefits of high aqueous solubility, serum stability, and facile
drug release. The cleavage is promoted by β-glucuronidase which is abundantly present in lysosomes
and overexpressed in certain tumors [208,209]. Finally, disulfide bonds are extensively employed in
peptide-drug conjugates, owing to what can be high plasma stability, and yet well-known intracellular
cleavage by disulfide reduction. Their stability can be further enhanced through the addition of one or
two methyl groups adjacent to the disulfide bond. Hence, hydrazone, ester, amide, disulfide, dipeptide,
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tripeptide, and glucuronide-based linkers provide a diverse set of linkers that can meet most needs in
the assembly of peptide-drug conjugates for targeted delivery (Figure 8).
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In ADCs, the linker is installed by conjugation of the linker-drug moiety to the antibody
which most often occurs on the reactive surface residues of antibodies such as cysteine and
lysine residues [68,200,210–213]. The conjugation is a very critical step in ADC synthesis since
typically there are multiple cysteine and lysine residues and without optimization results in a
heterogeneous distribution in site and number of drugs that are loaded to the antibody. Molecular
engineering and enzymatic modification have provided non-native amino acids to facilitate site-specific
conjugation, but there remain technical challenges in commercial-scale production of homogenous
ADCs [60,214–216]. Peptide-drug conjugates benefit in employing total chemical synthesis that involves
orthogonal side chain protection to control product integrity. Appropriately functionalized amino acids
(natural and non-natural) can be utilized for conjugation and examples include alkylation [217–219],
Suzuki coupling [220,221], Glaser reaction [222], Diels-Alder reaction [223], CH activation [224],
and oxime ligation [225,226]. The single requirement is that the peptide, the small molecule and
the conjugated products are chemically stable under the conditions for synthesis and purification.
In practice, most of the conjugation reactions still employ a cysteine and lysine residue, but with
methods that govern selective modification. Additionally, click-based conjugation has been widely
used given its orthogonal and relatively mild reaction conditions [227,228].
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6.1. Amide Bond Formation

Amide bond formation is the most straightforward way to attach drug molecules to
peptides [1–4,50,51]. In an Fmoc-based peptide assembly on a solid support, a lysine is typically
orthogonally protected with Mtt. This protecting group once selectively removed can be coupled to a
carboxylic acid of amino acid or small molecule under standard peptide coupling protocols [229,230].
This approach is demonstrated in the synthesis of glucagon-T3, where selectively de-protected lysine
side chain amino at position 40 on glucagon backbone first reacted with amino acid Fmoc-gGlu-OH,
and then with Boc protected T3 (Scheme 1) [189]. The carboxylic acids of protected T3 could also be
pre-activated to something such as a succinate ester to allow direct reaction with the amine without
coupling reagents [213,231–233]. Obviously, the linker and drug molecules must tolerate the conditions
employed in peptide-resin cleavage (95% TFA with 2.5% TIS, and 2.5% water). Alternatively, selective
conjugation can occur with unprotected peptides, employing the enhanced nucleophilic nature of
the ε-amino group, as shown in the synthesis of GnRH-doxorubicin conjugate in Scheme 2 [234].
A dipeptide Val-Cit/Ala linker can be inserted using a similar synthetic approach, and an acidic
acid such as Asp with orthogonal protection can also be used to conjugate with amine-containing
drugs [7,235,236]. In summary, an amide bond is the most conventional and versatile approach to
peptide-drug conjugates of suitable chemical and biological stability.
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6.2. Disulfide Bond Formation

Disulfide bonds have been extensively used in the conjugation of peptides to drugs
given the selective nature in formation and the intracellular reduction-mediated release of the
drug [210,211,213,237]. Typically, a cysteine residue or a similar thiol is introduced to a noncritical
region of the peptide, which is subsequently coupled through a sulfhydryl pre-activated drug
(via 2-thiopyridine or DTNP). This reaction often proceeds very quickly and selectively to yield
conjugated drug-products (Scheme 3) [238]. The inverse approach is also commonly employed where a
peptide cysteine once activated is coupled to a thiol-containing drug to form a conjugated drug-product.
There are also several other ways to form a disulfide bond if the more common methods fail, which
collectively constitute a diverse set of reactions to construct disulfide bonds [239,240]. Relative to
amide bond formation the increased orthogonality of cysteine lessens the need to introduce the drug to
a protected peptide, which constitutes a sizable advantage when there are lysines and when the small
molecule drug is not suitable for use in standard peptide synthetic protocols. It is worth noting that
synthesis of disulfide bonds with adjacent gem-dimethyl groups are better achieved by pre-activating
the gem-dimethyl containing sulfhydryl group to react with the less hindered sulfhydryl group. This is
a consequence of steric hinderance that serves to reduce the reactivity of sulfhydryl groups surrounded
by a gem-dimethyl group.
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6.3. Thioether Formation

The thiol-maleimide reaction is a widely used method to conjugate peptides and drugs,
where a peptide sulfhydryl group reacts with a pre-installed maleimide group on the drug
(Scheme 4) [201,203,204,241–243]. The reaction is selective and efficient across a variety of solvents
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across a wide pH range, and the thioether bond offers reasonable chemical stability. Given the Michael
reaction mechanism, the product is reversed under alkaline conditions and thiol exchange is reported
in storage or in the presence of serum [60,216,244]. This serves to shorten the drug product shelf-life
and often the circulating half-life in plasma. Recently, a ring opening stabilization strategy [245–247] or
next-generation maleimide (NGM) strategy [248–250] was reported to convert the thiol-maleimide bond
to a more stable thioether. In addition to the thiol-maleimide reaction, thiol alkylation is also commonly
utilized to form thioether conjugated peptides and drugs. Peptide cysteine residues are typically
alkylated through a bromo or iodo acetamide group in the drug, or vice versa [210,211,217–219].
Given the higher reactivity of cysteine towards these alkylating groups under slightly basic conditions,
there is no competing amine alkylation, which makes it highly useful in the assembly of chemically
and biologically stable peptide-drug conjugates.

Molecules 2019, 24, x FOR PEER REVIEW 17 of 33 

 

mechanism, the product is reversed under alkaline conditions and thiol exchange is reported in 
storage or in the presence of serum [60,216,244]. This serves to shorten the drug product shelf-life 
and often the circulating half-life in plasma. Recently, a ring opening stabilization strategy [245–247] 
or next-generation maleimide (NGM) strategy [248–250] was reported to convert the 
thiol-maleimide bond to a more stable thioether. In addition to the thiol-maleimide reaction, thiol 
alkylation is also commonly utilized to form thioether conjugated peptides and drugs. Peptide 
cysteine residues are typically alkylated through a bromo or iodo acetamide group in the drug, or 
vice versa [210,211,217–219]. Given the higher reactivity of cysteine towards these alkylating groups 
under slightly basic conditions, there is no competing amine alkylation, which makes it highly 
useful in the assembly of chemically and biologically stable peptide-drug conjugates. 

 
Scheme 4. Conjugation of Polymyxin B and antimicrobial porphyrin via a thiol-maleimide bond. 
Thiol-maleimide bond was formed between maleimide containing porphyrin and unprotected 
peptide polymyxin B with a cysteine residue [241]. 

6.4. Click Reaction 

The so-called click reaction between an alkyne and azide (1,3 dipolar cycloaddition) is a widely 
used method for bioconjugation that is independent of cysteine and lysine residues [214,227,228]. 
This is a very attractive approach for connecting peptides and drugs when there are multiple lysine 
or cysteine residues in the peptide. The reaction occurs under mild conditions. It is efficient and 
devoid of any cross-reaction with natural amino acids, making it an excellent method to make 
homogenous peptide-drug conjugates. An example is shown in Scheme 5, where the azide group is 
stable in conventional methods of peptide synthesis, cleavage, and purification. The alkyne group is 
incorporated into the drug with an additional linker, and the peptide and drug fragments are joined 
together under a classical Cu-catalyzed reaction. Recent applications of click reaction in 
peptide-drug conjugate synthesis include EphA2-paclitaxel, GLP-1-vitamin B12, and 
peptide-glycolipid [251–255]. 

Scheme 4. Conjugation of Polymyxin B and antimicrobial porphyrin via a thiol-maleimide bond.
Thiol-maleimide bond was formed between maleimide containing porphyrin and unprotected peptide
polymyxin B with a cysteine residue [241].

6.4. Click Reaction

The so-called click reaction between an alkyne and azide (1,3 dipolar cycloaddition) is a widely
used method for bioconjugation that is independent of cysteine and lysine residues [214,227,228].
This is a very attractive approach for connecting peptides and drugs when there are multiple lysine
or cysteine residues in the peptide. The reaction occurs under mild conditions. It is efficient and
devoid of any cross-reaction with natural amino acids, making it an excellent method to make
homogenous peptide-drug conjugates. An example is shown in Scheme 5, where the azide group is
stable in conventional methods of peptide synthesis, cleavage, and purification. The alkyne group is
incorporated into the drug with an additional linker, and the peptide and drug fragments are joined
together under a classical Cu-catalyzed reaction. Recent applications of click reaction in peptide-drug
conjugate synthesis include EphA2-paclitaxel, GLP-1-vitamin B12, and peptide-glycolipid [251–255].
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7. Peptide-Drug Conjugate Design Considerations

It is relatively straightforward to make peptide-drug conjugates, given the established synthetic
conjugation strategies but there are a few central considerations that must be addressed to enhance the
chance for pharmacological success. First and foremost, there must be a strong biological basis for
the specific combination of the two molecular entities that compose the conjugate. Ideally, the drug
and peptide operate biologically on different pathways that complement and better yet synergistically
provide superior therapeutic outcomes than either operating alone. This is observed in a conjugate such
as Zoptarelin Doxorubicin where GnRH functions in androgen deprivation therapy (ADT) for prostate
cancer and doxorubicin is a proven oncolytic for multiple cancers. A second consideration pertains
to drug targeting, where small molecule-based agents are inherently efficacious but with liabilities
usually pertaining to toxicity resulting from systemic exposure. Conjugation to a suitable peptide can
provide tissue-specific delivery to concentrate the pharmacology at a preferred site and lessen off-target
adverse effects. This is exemplified by the somatostatin conjugate with 177Lu (177Lu-Dotatate). A third
consideration is the efficiency in drug transport as peptides typically exhibit therapeutic effects at an
extracellular target receptor, and a small molecule drug via an intracellular target. The conjugation
targets the small molecule but places a restriction in its performance that is dependent upon the
peptide-mediated internalization and subsequent intracellular release. The extracellular peptide
receptor must be of sufficient capacity to internalize enough small molecule in a ligand-dependent
manner for the drug to render a pharmacological effect. Peptide receptor agonists are more likely
to fulfill this requirement as they are proficiently internalized and return to the plasma membrane
for reuse in a manner that is more certain than peptide-based antagonists. A fourth consideration
pertains to potency and the need to align them across the delivery peptide and small molecule drug.
Peptide agonists are often very potent molecules operating at nanomolar or lower concentrations at
their target receptors and small molecule drugs are often challenged to match this inherent potency.
Increasing the drug payload by a stoichiometric ratio relative to the peptide is one way to achieve
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potency alignment, but this requires a minimal potency difference in the constituents since there is a
practical limit to the molar equivalents of a small molecule that can be attached to a peptide before it
loses its biological and physical properties. Increasing the dose to levels beyond that which is necessary
for full peptide agonism may be possible if the peptide is devoid of adverse effects when used at
super-pharmacological levels. This is a property that is specific to each peptide, as some such as
insulin have a narrow therapeutic index with life-threatening consequences for overdosing, while
others are more forgiving. Lastly, many small molecules have an appreciable affinity towards plasma
proteins such as albumin and conjugation to a peptide can significantly alter the pharmacokinetic
profile. This effect can alter the biology of the peptide or incorrectly suggest that an altered activity
is a function of the combined biology of the drug candidate. PTH is a hormone where it is well
appreciated that pulsatile administration can potently build bone mass and strength, while sustained
delivery is known to be bone catabolic. Consequently, it would be a dangerous targeting peptide
for any small molecule that alters its pharmacokinetics, independent of any direct change in its
interaction with a target receptor. Similarly, nuclear hormones constitute excellent small molecules
for tissue targeting but often possess high-affinity plasma protein binding and as such, any peptide
conjugate needs to be shown unaltered time-action to attribute additive biology from two supplemental
pharmacological mechanisms. In summary, the synthetic chemistry is relatively straightforward,
but the design considerations are of utmost importance in selecting matching pairs that are capable of
providing supplemental efficacy and selectivity.

8. Outlook and Perspective

Peptide-drug conjugates are a unique class of molecules that integrate peptides and small molecule
drugs to achieve increased therapeutic outcomes. They represent an important field in drug discovery
that is related in principle to antibody-directed drug targeting. These molecular conjugates leverage
the inherent and unique pharmacological abilities of the peptide and the small molecule. A variety
of conjugates have been discovered and developed in several therapeutic areas including numerous
diseases of endocrine, infectious, and autoimmune origins. Several drug candidates have demonstrated
promising preclinical results, and a few have progressed to registered medicines, most notably in
the treatment of various cancers. The most powerful examples are those where the macromolecular
native of the peptide is used to target small molecule effects to those tissues where the peptide is
biologically active. In such instances where the peptide provides supplemental pharmacology to
the small molecule the biological outcomes are enhanced, and often with far less off-target toxicity.
In addition, conjugation to peptides can diminish common physical challenges in the development
of small molecule drugs, and in particular, those pertaining to high lipophilicity, poor solubility and
cell impermeability. The recent regulatory approval for GHIH-177Lu conjugate (177Lu-Dotatate) is a
notable example of success and provides strong momentum for further applications. The research
pertaining to tissue-specific delivery of nuclear hormones in the treatment of the metabolic syndrome
broadens the conceptual approach beyond the delivery of cytotoxic agents to achieve mixed-mode
agonism of small and large pharmacophores with different mechanisms of action.

Nevertheless, sizable challenges remain and there have been more failures than successes.
The obstacles are numerous, and they pertain to both biological and chemical aspects of the strategy.
The latter seems more manageable and to a finite degree are related to the biological uncertainties.
Specificity remains an elusive goal as it is a rare occurrence when an extracellular target is found at only
a single tissue rendering the approach more suitable for improving therapeutic index than engendering
absolute specificity. This is a great obstacle when the objective is the elimination of metastatic disease
as the destruction of the last percent or less of diseased cells requires dose intensity that leads to
toxicity in unintended tissues. In contrast, if the therapeutic objective is to enhance the therapeutic
index by an order of magnitude to permit increased dosing by tenfold than this is something more
easily achieved by enriching the pharmacological action at certain tissues. The second challenge of
appreciable complexity is the immature nature of the collective knowledge of intracellular biochemistry.
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While it is clear that peptide cycling-receptors can internalize a ligand that carries a small molecule
pharmacophore it is less clear how to transport the entity to the intracellular site where biological action
occurs. The escape of small molecules from the endosome remains an emerging field of study and once
liberated facilitated transport to preferred intracellular locations such as the mitochondria, nucleus and
other sites largely remains an unknown. Furthermore, once a desired biological effect is achieved the
question of its termination stands tall and in particular the danger for reverse extracellular transport to
sites that were purposely avoided in peptide-directed tissue targeting. The question is whether the
primarily targeted tissues are capable of metabolizing the small molecule drug to something that is
innocuous to other tissues once released to general circulation? Finally, there remains the common
imbalance between the inherent potency of peptides and small molecules, such that there is a huge
deficiency in the transport capacity of the macromolecule relative to the required concentration of the
small molecule. In this regard, the assembly of defined macromolecular complexes seems the best
hope where large amounts of a single substance or even more than one substance can be packaged
for targeted delivery in a nanoparticular or exosome by a peptide-based surface ligand. It requires
additional refinement to avoid the endogenous defense mechanisms that are designed for non-specific
clearance of macromolecular biological and synthetic entities. The speed in which these fundamental
challenges are addressed will to a large degree determine the productivity in this molecular design
and the fate of future peptide-drug candidates. Until that point when the molecular design is better
defined individual drug candidates will continue to emerge by successfully circumnavigating the
current obstacles. We remain sanguine about the amount of research that remains to be performed and
its ability to further advance the field.
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Abbreviations

ADCs Antibody-Drug Conjugates
ADT Androgen Deprivation Therapy
Ala Alanine
BBB Blood–Bain–Barrier
Cit Citrulline
DAR Drug-Antibody Ratio
DDI Drug-Drug Interactions
DIO Diet-Induced Obese
DOTA 1,4,7,10-Tetraazacyclododeane
DPP4 Dipeptidyl Peptidase 4
DTNP 5,5′-Disulfanediylbis(2-nitrobenzoic acid) or Ellman’s reagent
GHIH Growth Hormone-Inhibiting Hormone
GIP Gastric Inhibitory Polypeptide
GLP-1 Glucagon-Like Peptide 1
GLP-2 Glucagon-Like Peptide 2
gGlu gamma glutamic acid
GnRH Gonadotropin-Releasing Hormone
LHRH Luteinizing Hormone-Releasing Hormone
LRP1 Low-Density Lipoprotein Receptor-Related Protein 1
NSCLC Non-Small Cell Lung Cancer
PABC p-Aminobenzyl Carbamate
PRRT Peptide Receptor Radionuclide Therapy
PSMA Prostate Specific Membrane Antigen
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PTH Parathyroid Hormone
SERCA the Sarco/Endoplasmic Reticulum Calcium ATPase
SSTR Somatostatin Receptor
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