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Abstract

Deep learning-based approaches to markerless 3D pose estimation are being adopted by

researchers in psychology and neuroscience at an unprecedented rate. Yet many of these

tools remain unvalidated. Here, we report on the validation of one increasingly popular tool

(DeepLabCut) against simultaneous measurements obtained from a reference measure-

ment system (Fastrak) with well-known performance characteristics. Our results confirm

close (mm range) agreement between the two, indicating that under specific circumstances

deep learning-based approaches can match more traditional motion tracking methods.

Although more work needs to be done to determine their specific performance characteris-

tics and limitations, this study should help build confidence within the research community

using these new tools.

Introduction

Recent advances in computer vision and machine learning have catalyzed the development of

powerful tools for markerless 3D pose estimation [1, 2]. Although these tools afford promising

new opportunities for rapid, efficient quantitative measurement of animal and human behav-

ior in psychology, neuroscience, and a range of other fields [3], their accuracy and reliability

have not been rigorously established. This situation puts the user community at risk and places

scientific results that depend on these tools on uncertain foundations. Although less frequently

acknowledged, measurement differences are another potential factor underlying the failure of

reproducibility of experimental results across studies which has led to a recent crisis of confi-

dence in psychology and neuroscience [4, 5]. In these fields, where the employment of a

diverse range of methods for measuring behavior (and brain activity) is commonplace, con-

firming that different methods produce consistent, comparable values is critical for scientific

progress.

Here, we describe the validation of one increasingly popular open-source deep learning-

based pose estimation tool–DeepLabCut (DLC v2.1.3; [6, 7]). We systematically compared 3D
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kinematic data generated via a DLC-based workflow using video frames collected from two

cameras positioned at different viewing angles against simultaneous measurements obtained

from a reference measurement system with well-known performance characteristics. We

selected Fastrak (Polhemus, Vermont, USA), an electromagnetic 3D motion tracking system,

as our reference system because of its high accuracy (static position accuracy: 0.76 mm RMS)

and its wide use across human neuroscience and psychology.

Materials and methods

Experimental setup

Data was collected with Polhemus Fastrak (Micro Sensor 1.8) and two cameras (Blackfly S

BFS-U3-04S2M). The filming volume was centered on a Lego plate securely attached to a non-

ferrous table (Fig 1). A Fastrak transmitter was attached to the underside of the table, such that

the entire filming volume remained within one hemisphere of the transmitter (Y+). The cam-

eras were placed on stands attached to a platform at one side of the filming table. The inner

edges of the stands were 30cm apart and camera lenses were positioned approximately 5cm

above the table surface. The center of the filming volume was approximately 60cm from the

outer surface of the camera lenses. A laser pointer was attached on top of each camera to verify

that the cameras were pointed at the same central point a few centimeters above the filming

volume during all recordings. Note that cameras had to be positioned with minimal pitch rela-

tive to the filming volume, because the calibration process does not handle camera pitch well

and produces 3D coordinates that appear to be tilted towards the cameras (i.e., Z-axis coordi-

nates increased disproportionately further away from the cameras).

To obtain concurrent data, we used DLC to track the position of a Fastrak microsensor. In

the tool version of the tasks, the sensor was attached to the ridge formed between two joined

dowels. To improve the accuracy and precision of DLC labelling, crosshairs were drawn over

the center of the microsensor. In the finger version of the tasks, the microsensor was attached

at the center of the fingernail of the left index finger. Both DLC and Fastrak were set up to

have the same origin point (one corner of a Lego brick located in the center of the filming vol-

ume). Both systems measured the position of the sensor relative to the point of origin in three

Fig 1. DLC setup as seen from (a) side and (b) overhead views. The Lego plate marks the boundaries of the testing area. Wooden dowels and the

Fastrak microsensor are shown separately for easier visualization.

https://doi.org/10.1371/journal.pone.0276258.g001
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dimensions (in camera view, X-axis was left-right, Y-axis was depth, and Z-axis was up-down).

Euclidean distance was calculated as a summary metric.

Frame synchronization

Obtaining accurate 3D data and accurate comparisons with Fastrak data requires the video

recordings to be synchronized across the two cameras and with Fastrak. Synchronization

between the two cameras and Fastrak was achieved as follows. Camera 1 was controlled

directly from the computer, and Camera 2 and Fastrak were set up to start and stop recording

on signal from Camera 1. Cameras 1 and 2 were connected via a GPIO synchronization cable

to a digital I/O device (NI USB-6501), which was in turn connected to the computer. Fastrak

was also connected to both the computer and the I/O device in order to detect the signal that

Camera 1 sent to trigger Camera 2 to start and stop recording.

All three devices recorded with the same frequency (120 frames per second for the cameras,

120Hz for Fastrak), allowing for maximum temporal synchronization between data points

from Fastrak and DLC. In some cases, there was a small lag in stopping the Fastrak recording

(~8 data points)–only the first 1200 or 2400 points (depending on task) were analyzed. To

make the data directly comparable, we set Fastrak’s reference point to match the origin point

used for camera calibration (see Calibration section). Fastrak’s settings and recording were

controlled with a Matlab script, and the cameras were controlled with Multi-Pyspin (https://

github.com/justinblaber/multi_pyspin). Multi-Pyspin’s code was edited to collect diagnostic

information and to optimize the frame acquisition process and improve synchronization.

Camera calibration

Accurate 3D pose estimation requires precise camera calibration, which establishes the relative

location and various parameters of each camera such as the focal length and lens distortion.

We chose to use the easyWand software tool [8], over some other available alternatives includ-

ing DLC’s built-in camera calibration tool (3D DLC) and Anipose [9] as we were not able to

produce reliable calibrations with these tools. The decision to use easyWand is by no means a

disparagement of other available camera calibration tools. Additionally, both 3D DLC and

Anipose have likely undergone further development since our early piloting and may no lon-

ger have the issues we experienced when using these tools. During our initial attempts, we

experienced several undocumented issues including the fact that idiosyncrasies in the filmed

videos seemed to change calibration quality or crash the process entirely. New users should

anticipate potential difficulties in obtaining quality calibrations and should allocate some time

to piloting their setup with their chosen software. In some cases, using tools that directly

integrate with DLC (such as 3D DLC or Anipose) could be sufficient and more practical.

We settled on using easyWand because we found it to be the most controllable and reliable

of the three calibration tools we considered. While the other tools use checker or ChArUco

boards for calibration videos and can automatically find 2D coordinates of points needed for

calibration, we found this step to be unreliable. EasyWand requires manual labelling of the

necessary points (2 wand points and 4 axis points, see below for details). Although more labor-

intensive, we found this process to work more reliably–almost every calibration video we

filmed produced a good calibration. EasyWand also allowed us to easily align the reference

frame of the calibration to Fastrak’s reference frame, which simplified subsequent analyses.

We used easyWand to calculate direct linear transformation coefficients and convert 2D pixel

coordinates into real 3D spatial coordinates. We filmed a set of calibration videos with the nec-

essary points labelled in DLC and used the pair with the lowest reprojection error for calculat-

ing the 3D coordinates used in the current analyses.
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To calculate direct linear transformation (DLT) coefficients, easyWand requires a dataset

with 2D coordinates for a set of two "wand points” and four "axis points” from each camera.

Wand points are two points positioned at a fixed distance from each other that are moved

throughout the volume of interest. We used the same joined wooden dowels as in the tool task,

using the crosshairs over the Fastrak sensor as one point, and another set of crosshairs marked

10cm away as the second point. The axis points (one origin point and three points for each of

the axes) allow aligning of the data to a particular set of axes. To get precise axis points, we

placed a Lego cube and an additional Lego brick in the center of the filming volume and

labelled three corners of the cube and one corner of the separate brick as the axis points. All

three axis points were 31mm away from the origin point.

We filmed three pairs of calibration videos (20 seconds each), making waving motions with

the dowel throughout the volume of interest. After obtaining 2D coordinates for the wand and

axis points with DLC, we replaced points with< .95 likelihood with NaNs and inverted Y-axis

values (by subtracting raw coordinates from image height in pixels). The latter was done to

change coordinates into a bottom-oriented system, to match that apparently used by easyWand.

Using raw values has consistently produced nonsense results. We saved every 10th datapoint

for the list of wand-point coordinates to use in the calibration (producing ~120–150 usable

points), because using the entire set (2400 points) made it more difficult to get accurate calibra-

tions. For axis points, easyWand only takes one coordinate point for each, so we calculated

median values from our full dataset to get Origin, X, Y, and Z-axis reference point coordinates.

Intrinsic camera parameters were included to improve calibration quality: image height

(540px), image width (720px), focal length (1450px), and principal point (360px). For the cali-

bration used to acquire current data, we set the calibration to use focal length only, and apply-

ing all lens distortion coefficients. We also excluded outliers until a reprojection error of .28

was achieved with sensible estimates of camera positions. Original reprojection error (.54) was

not overly large, but piloting suggested that reprojection errors < .30 are needed to achieve

this degree of agreement with our setup.

Data processing

After all data was collected, we checked timestamps from both videos and Fastrak to confirm

that the correct number of data points were recorded at approximately equal time intervals.

No issues were observed. To train a DLC network, we labelled 20 frames from each of two vid-

eos (camera 1 and 2) from one randomly selected trial of each task (center-out tool: trial 3; zig-

zag tool: trial 11; center-out finger: trial 11; zigzag finger: trial 6). Frame labelling and network

training was done with default DLC settings, following the published protocol (Nath et al.,

2019).

To convert 2D pixel coordinates into 3D spatial coordinates, we processed our data with a

Matlab script adapted from another markerless tracking software that accepts calibration coef-

ficients in easyWand’s format (DLTdv7, [10]; https://github.com/tlhedrick/dltdv). After align-

ing 3D data with Fastrak, we excluded any points that had< .95 likelihood in the original 2D

pixel format. Plotting the remaining data as 3D scatterplots showed an apparent glitch in the

Fastrak data for zigzag tasks, where its trajectory clearly deviated from the real motion path

(and therefore DLC data) in one small part of the filming volume. This segment of the data (X

±40mm, Y< -120mm, and Z< 25mm) was excluded from further analyses.

Experimental tasks

The task set for the validation consisted of two generic, representative upper limb motor tasks

—a standard center-out reaching task and a more freeform, zigzag movement task, which was
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specifically chosen to evaluate DLC tracking performance with naturalistic 3D human arm

motion. To ensure the validation results were not effector specific, we ran two versions of the

task set–one performed with the index finger and another with a pointing tool (two thin con-

joined wooden dowels). For each task, all trials were completed by one researcher. In the cen-

ter-out task, the researcher made reaches from a central starting position to one of 8 targets

arrayed around a circle (~12cm radius) with 45˚ spacing (Fig 2a). In the zigzag task, the

researcher made movements around the visible edge of the testing area in a vertically oriented

zigzag motion (Fig 2b). 20 trials were performed for each version of the 2 tasks (20 seconds of

data recorded per trial in the center-out task and 10 seconds per trial in the zigzag task).

Statistical analysis

To evaluate DLC tracking performance with naturalistic 3D human arm motion, participants

performed two generic upper limb motor tasks—a standard center-out reaching task and a

more freeform, zigzag movement task. The experimental tasks used can be considered to vary

along two dimensions: type of task (centre-out, zigzag), and sensor location (tool, finger).

After applying exclusion criteria described above, we had 47980 datapoints for the center-out

tool task, 47649 for the center-out finger task, 23406 for the zig-zag tool task, and 22704 for the

zig-zag finger task. This was considered sufficient for all reported analyses.

Agreement between concurrent DLC and Fastrak data was determined by calculating bias

and limits of agreement (LOA) using the Bland-Altman method [11, 12], root mean square

error (RMSE), and conducting a time series analysis. Bias, LOAs and RMSE were calculated

using R, and time-series analyses were conducted in MATLAB (2019b). The Bland-Altman

method is a common approach to quantify the agreement between two systems of measurement

[13], and RMSE has been used as a metric of agreement in several similar motion-tracking mea-

surement agreement studies [14–16]. Bias and RMSE estimate the average difference in mea-

surements between DLC and Fastrak, whereas limits of agreement specify the interval that 95%

of measurement differences fall within. For the time series analysis, cross-spectral coherence

values were used to determine whether the same temporal structure was present in the DLC

Fig 2. (a) Representative example of raw single trial data from the center-out (tool) task; (b) Representative example of raw single trial data from the

zigzag (tool) task.

https://doi.org/10.1371/journal.pone.0276258.g002
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and Fastrak recordings [17, 18]. Zero-lag cross-correlation values were also calculated to deter-

mine the degree of sequential covariance between the DLC and Fastrak recordings [19, 20].

We treated our data as single measurements and computed bias and limits of agreement as

outlined in [11, 12]. Note that despite having multiple trials of the same task, the data cannot

be considered repeated measures because the freehand motion used in this task does not follow

the exact same trajectory on every trial. When calculating RMSE, we considered Fastrak data

as ‘observed’ and DLC data as ‘predicted’. No pre-processing or data smoothing was applied to

the data prior to analysis. Cross spectral coherence measures the relationship or correlation

between two time-series with respect to frequency and results in a value ranging from 0 to 1,

where 1 corresponds to perfect spectral coherence. Here we report the average coherence cal-

culated at each signal’s peak frequency, with each signal’s frequency spectrum calculated using

MATLABs Fast Fourier Transform (FFT) function. Cross correlation measures the covariance

between two time-series signals across a specific range of temporal lags. Given that we were

interested in the sequential dependence of the two signals we calculated the zero-lag correla-

tions between the Fastrak and DLC time-series (note that the maximum cross correlation was

always at a lag of 0 or 1, with the latter due to trivial delays in data synchronization). Like a

standard correlation, cross-correlations values range between -1 and 1, with values close to 1

indicating a high degree of (positive) sequential covariance (i.e., signal similarity).

All data, code, diagnostics, and mean-difference plots are available online (https://osf.io/

mdcqs/).

Results

We found extremely close agreement between DLC and Fastrak (summarized in Fig 3). Both

bias estimates and RMSE indicate close agreement, with an average bias value of 0.8mm and an

average RMSE of 1.4mm. The mean LOA range was 5.3mm, suggesting that most datapoints

from DLC and Fastrak differ by no more than half a centimeter. Relative to Fastrak, DLC gen-

erally underestimated the distance from sensor position to reference point by 0.3–2.3mm

(mean bias, Fig 3a). This was the case for all distance measures, except X-axis (left-right motion

in camera view), where DLC overestimated the distance by 0.6–0.75mm. The overall pattern of

bias was similar for center-out and zigzag tasks, but there were notable differences between fin-

ger and tool versions of the task. When the sensor was attached to the pointing tool, DLC

showed more bias when estimating depth (Y-axis) than when the sensor was attached to the

finger pad. It is not clear why DLC was more accurate when attached to the finger pad. The

ranges of limits of agreement varied from 3.6mm to 7.0mm (i.e., from ±1.8mm to ±3.5mm rela-

tive to bias). Mean limits of agreement with respect to mean bias estimates are presented in Fig

3b. Limits of agreement vary more between trials than bias estimates (Fig 3a and 3c)–suggest-

ing that it may be possible to get better agreement in principle, but not consistently so.

Both cross-spectral coherence and cross-correlation analysis revealed that there was excellent

temporal agreement between the Fastrak and DLC recordings (Fig 4). Both indices have a maxi-

mum positive covariance value of 1, and the analysis resulting in values>0.99 for all three axes

and across all tasks. As with other analyses, a minor reduction in temporal covariance was

observed for Z-axis in the zigzag task, particularly for the finger version of the task. Overall,

however, the results indicate that DLC preserves the temporal structure of human motion with

the DLC and Fastrak recordings have very similar and synchronized motion patterns over time.

Discussion

Measurement is a fundamental aspect of modern science [21]. When new measurement tech-

niques or methods are adopted by a scientific field, careful validation is critical to ensure that
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Fig 3. (A) Mean bias across the twenty trials, for each of the four tasks. Error bars are 95% confidence intervals and grey points are bias

values for each trial (same for graphs C and D). (B) Ranges of limits of agreement across trials, for each of the four tasks. (C) Mean bias

(bars) and limits of agreement (error bars) presented together. (D) Mean RMSE values across trials, for each of the four tasks.

https://doi.org/10.1371/journal.pone.0276258.g003
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these new methods are reliable and accurate. One commonly used approach to method valida-

tion–often called the gold standard or reference system approach–involves confirming that the

new method agrees within acceptable limits with an established field-standard method [11, 12,

22].

Although deep learning-based approaches to markerless 3D pose estimation have taken

neuroscience by storm, unfortunately, many of these tools remain unvalidated. Here, we

Fig 4. (A) Mean cross-spectral coherence values for all tasks. (B) Mean cross-correlation values for all four tasks. Error bars are 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0276258.g004
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report on the validation of one increasingly popular tool (DeepLabCut) against simultaneous

measurements obtained from a reference measurement system (Fastrak) with well-known per-

formance characteristics. We found that under tightly controlled experimental conditions,

DLC can achieve extremely close (mm range) agreement with field-standard motion tracking

systems such as Polhemus Fastrak, with 95% of the differences between Fastrak and DLC fall-

ing below 1 cm. The agreement was generally similar across the entire filming volume, as sug-

gested by similar patterns in agreement measures in both center-out and zigzag tasks. Despite

greater bias along the Y-axis in the tool version of both tasks, bias was similar between tool

and finger versions along other dimensions. Limits of agreement were smaller for all tool task

data. This suggests that overall, there was a small, yet slightly greater cost in accuracy when

tracking more naturalistic motion. However, this cost appears to be well within acceptable lev-

els for most tracking and task scenarios.

Whether the degree of agreement reported in this study is acceptable will depend on the

specific needs of the researcher. We found the calibration step to be the least reliable element

of the DLC pipeline and getting accurate measurements compared to ground truth may

require several attempts and iterative adjustment of the camera calibration settings to get the

desired result. Importantly, care must also be taken to synchronize the video recordings (see

S1 File). If done well, however, excellent 3D kinematic data can be obtained using DLC with

only a minor reduction in accuracy compared to electromechanical tracking systems like Fas-

trak. For many applications, these slight costs in accuracy will be small compared to those

imposed by having to use wired sensors or contend with noisy data due to the presence of

metal near, in, and around the workspace.

Limitations

It is important to acknowledge some limitations of the current validation study, which con-

strain the conclusions one can draw from our work. Because our objective was to validate DLC

against Fastrak, rather than test the conditions under which DLC performance breaks down,

we actively sought to minimize as many sources of variation and noise in our datasets as possi-

ble. Given this objective, we constructed an experimental setup that enabled comparison of

DLC and Fastrak performance when both were operating under near-optimal conditions.

Consequently, we did not necessarily test or probe the full range of conditions in which DLC

might be used by the research community. For example, video data was collected in tightly

controlled laboratory conditions with uniform lighting, invariant camera angles and distances,

using highly constrained task behaviors performed by a single subject to limit movement vari-

ability. These design choices were intentionally made to reduce noise in the data selection step

of the DLC workflow, as DLC performance can be highly sensitive to the representativeness of

the frames used in the training dataset [7]. Although these artificial conditions were important

for validation purposes, they very likely depart from many real-world use cases in which lumi-

nance conditions, backgrounds, camera angles, and other factors will almost certainly vary

across behavioral trials and sessions. Consequently, some caution must be taken when extrapo-

lating DLC performance (or Fastrak performance, for that matter) to less precisely controlled,

real-world contexts.

To obtain concurrent data, we used DLC to track the position of a Fastrak microsensor. For

the tool-based versions of the tasks, crosshairs were drawn over the theoretical center of the

embedded microsensor. In the reaching task, the microsensor was attached at the absolute

center of the fingernail of the right index finger. These steps were intentionally taken to

improve the visibility of the microsensor throughout the experiment, and consequently

improve the accuracy and precision of the DLC labelling process. Like all deep learning
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network-based approaches, DLC performance depends on good input data, which heavily

relies on consistent labelling of similar spots (e.g., the same joint or body part) across frames.

Consistent labelling both within and across individuals can be extremely difficult in practice

for many real-world applications of DLC, where readily identifiable visual features (i.e., mark-

ers) are not present (See S1 File for further discussion of the role of human error in DLC label-

ling). Consequently, this must be factored in when trying to extrapolate DLC performance

observed in our study to other contexts in which labelling noise or variability is more likely to

be in play.

Conclusions

In this study, we validated one increasingly popular deep learning-based tool for markerless

3D pose estimation (DeepLabCut) against simultaneous measurements obtained from a refer-

ence system (Fastrak) with well-known performance characteristics. Our results confirm close

(mm range) agreement between the two, indicating that under specific circumstances deep

learning-based approaches can match more traditional motion tracking methods. Although

more work needs to be done to determine the full range of performance characteristics and

limitations of these new tools, this study should help build confidence within the research

community when considering their use.
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