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Abstract
The application of artificial intelligence (AI) and machine learning (ML) is rapidly expanding and has begun to make a sig-
nificant impact on polymer development and characterization. This perspective article explores the current state of AI in this 
field and highlights areas where its potential remains underutilized. While the optimization of polymer synthesis to achieve 
desired properties and the classification of polymer types are well-established, opportunities for AI integration in detailed 
characterization, analytical method development, and data processing remain largely untapped. Greater automation of the 
analytical laboratory, whether through dedicated algorithms or AI-driven solutions, will enable analytical chemists to focus 
more on addressing research questions and interpreting results, rather than on method development and routine measurements.

Keywords Polymer characterization · Machine learning · Artificial intelligence

Introduction

In modern society, polymers play a pivotal role, with appli-
cations spanning everyday items (e.g., consumer electronics, 
photovoltaics, coatings, food packaging, etc.) to advanced 
materials (e.g., medical implants, space travel). To address 
present and future challenges, the development of sophis-
ticated polymers with increasingly tailored properties is 
essential. While polymer synthesis offers significant flex-
ibility in achieving diverse properties, chemists ultimately 
require reliable information to optimize the synthesis pro-
cess. Generally, this information can be obtained through 
analytical methods, or physical property-based relations 
combined with trial-and-error experiments. Often, the physi-
cal properties of a polymer can be linked to its molecular 
structure, offering valuable insights into the structure–prop-
erty relationship.

To streamline the research and development process 
and provide this information on the structure–property 

relationship, automated platforms have emerged as valuable 
tools for polymer synthesis [1–4]. The advent of machine 
learning (ML) has only contributed to this for cases where 
optimal polymer properties can be represented in a scor-
ing framework. This score quantifies the desirability or the 
optimality of the polymer properties and can then be used 
to guide ML methods to facilitate systematic exploration, 
effectively automating the trial-and-error process [5–7]. 
Integrating chemical information into such ML models fur-
ther enhances their predictive capabilities, transforming the 
process into a more informed and efficient endeavor. This 
chemical information can be obtained through detailed sim-
ulations or advanced characterization techniques. Beyond 
refining the methods themselves, chemometrics and ML also 
play critical roles in the optimization of the analytical meth-
ods [8] as well as in analyzing and interpreting the results of 
these methods [9].

Unfortunately, despite the availability of numerous pub-
lications and reviews highlighting the promise of machine 
learning in the polymer field [1, 4–7, 9], its practical applica-
tion remains limited in several key areas.

In this perspective article, we examine the current appli-
cations and future potential of artificial intelligence (AI), 
particularly ML, in advancing polymer science and char-
acterization. We first clarify the terms AI and ML and then 
review a select number of areas in which ML has been 
demonstrated to deliver on the great promise. The reviewed 
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literature is then used to recalibrate expectations toward 
future outlook.

Definitions of Machine Learning 
and Artificial Intelligence

It is essential to first clarify the term AI as it is often mis-
applied to any automated workflow or algorithm. AI spe-
cifically refers to algorithms or robots that are capable of 
mimicking and surpassing human capabilities by perceiv-
ing and interacting with an environment [10]. In the subset 
of AI known as ML, a common approach involves provid-
ing solutions based on a set of parameters either directly 
or iteratively. The outcomes are evaluated through one or 
more scores, and depending on the algorithm, it either seeks 
to maximize these scores or predict them based on param-
eter combinations. A relevant example is an ML algorithm 
designed to optimize specific or various properties of a poly-
mer by iteratively refining the synthesis process based on 
feedback [11].

Machine Learning to Aid Polymer 
Development

Simulation of Properties of Polymers

An effective initial approach to identify which chemical 
properties influence the physical properties of a final poly-
mer product is to utilize simulations. While polymer simula-
tions often do not fully replicate real-world conditions, they 
provide valuable insights into identifying aspects of interest. 
For both simulation-derived and experimentally obtained 
data, it is crucial to describe structural information in an 
organized and standardized manner.

One framework that facilitates this standardization is 
Polydat, which allows for the recording of both structural 
data and characterized parameters [12]. Such efforts toward 
standardization can greatly benefit the polymer characteriza-
tion community, enabling models to more readily integrate 
and utilize data from other researchers. Commonly, general 
polymer structures are reported using BigSMILES notation 
[13–16], an extension of the normal SMILES format that 
incorporates features specific to polymers, such as repeat-
ing units, branching, and end groups. However, BigSMILES 
representations are often too complex for direct use in the 
training of models. To address this, molecular descriptors 
can be employed to simplify the structural information [17]. 
This reduction in parameter space not only streamlines 
model development but also helps generalize the features 
responsible for the properties of interest. This standardiza-
tion effort helps in the creation of a database that enables the 

research community to collaborate to build more advanced 
models [18, 19]. Once polymers are accurately described, 
ML models can be trained to predict their properties based 
on composition and/or structural information [11].

Optimization of Properties

ML proves highly effective for optimizing measurable prop-
erties and modifying synthesis conditions to enhance those 
and potentially other related properties [20, 21]. Notable 
examples of such applications include the design of poly-
mer-based biomaterials [22], polymeric long-acting injecta-
bles [23], and orodispersible films used for drug delivery 
[24]. To perform these optimizations, it is first necessary to 
define the features of interest (polymer properties) and the 
adjustable variables [25]. The number of variables that can 
be adjusted simultaneously is often constrained as the search 
space expands exponentially with each additional variable. 
Features of interest can be selected either manually by the 
analyst or automatically using tools such as principal com-
ponent analysis (PCA). Following the optimization process, 
interpreting the impact of various features is highly valuable. 
Eliminating features with minimal impact streamlines the 
workflow while the insights gained contribute to a deeper 
understanding of the underlying mechanisms [26].

Polymer Synthesis and Discovery

As described in the previous section, the synthesis condi-
tions may be modified to achieve more desirable polymers. 
Some works have developed closed-loop automated work-
flows to achieve this while incorporating ML, flow chemistry 
synthesis, and automated chemical analysis. The use of flow 
chemistry for optimizing synthesis has been demonstrated 
for multiple applications, including optimizing the yield for 
photocatalysis [27], and the optimization of functionality of 
various polymers [28]. For polymer synthesis, a property 
of interest may be the monomer conversion where ideally 
100% of the monomers are converted. To achieve this, a 
flow reactor was connected with nuclear magnetic resonance 
(NMR) [29]. Moreover, it can be coupled to size-exclusion 
chromatography (SEC) to assess the molar mass dispersity 
as a second parameter [30]. The closed-loop system auto-
matically processes the SEC and NMR data to obtain the 
dispersity and monomer conversion. This data was fed into 
a Thompson sampling efficient multi-objective optimiza-
tion (TS-EMO) model with every iteration to predict and 
subsequently identify the Pareto front for these objectives. 
It should be noted that this workflow can only identify the 
Pareto optimum within the user-defined reaction space (e.g., 
a maximum residence time of 20 min and a temperature 
range of 80–120 °C). While the previous synthetic routes 
were performed in flow, some reactions are better suited for 
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batch processes. As such, a similar automated setup may be 
designed that enables batch operation modes [31]. It has, 
however, not yet been combined with online characterization 
and ML algorithms for the prediction of polymer properties.

Besides optimizing synthesis parameters, a similar system 
can be used to discover better-performing copolymers. Using 
a similar TS-EMO-based algorithm, conflicting optimiza-
tion objectives, such as cost and yield, may be optimized 
using inline reversed-phase LC (RPLC) to determine yield 
for a single-step synthesis [32]. Automated flow synthesis 
has been used to discover 19F magnetic resonance imaging 
agents by coupling it directly with 19F NMR analysis [33]. 
Using a six-variable compositional space, 397 unique copol-
ymer compositions were synthesized of which > 10 outper-
formed state-of-the-art materials, demonstrating such an 
approach to be efficient at tackling high-dimensional struc-
ture–property relationships that are otherwise difficult to 
model. Moreover, the discovery of new polymer designs for 
flame retardants was explored using a ML-assisted approach 
while manually synthesizing the proposed polymers [34].

Analytical Methods Developed 
and Enhanced by Machine Learning

Chromatography

Chromatographic Response Functions Are Needed to Drive 
ML Algorithms

There are many ML approaches developed already that are 
capable of aiding in the development of LC methods [8, 35, 
36]. However, incorporating them in a closed-loop fashion 
remains challenging but has been demonstrated in a few 
examples using a Bayesian optimization algorithm [37–39]. 
The prime bottleneck appears to be the development of a 
chromatographic response function (CRF) that can guide 
the optimization process.

The above Bayesian optimization approaches were dem-
onstrated using small molecules. Polymer characterization 
through LC often does not yield single peaks to be sepa-
rated, but rather distributions. Defining a CRF that a ML 
algorithm can optimize is therefore more challenging. The 
simplest way to define such a function is by trying to achieve 
a resolution of at least 1.5 between neighboring peaks. While 
this may not be applicable to classical synthetic polymers, it 
has been investigated for oligonucleotides [40]. The authors 
demonstrated the use of a support vector regression (SVR) 
model to predict the resolution between impurities in 12- 
and 16-mer oligonucleotide sequences for ion-pair reversed-
phase LC. This model may be used to aid in predicting suit-
able method conditions for arbitrary sequences [40].

Nevertheless, the development of specialized CRFs 
tailored to distribution analysis would be highly benefi-
cial. There appear to be at least two potential strategies for 
such a CRF. [41]. The first strategy would aim to enhance 
resolution within a single distribution by stretching it as 
much as possible, providing more detailed insights into the 
resolved distribution. However, this approach has practical 
limitations as excessive stretching can result in a distribu-
tion that is too wide, leading to low signal intensity and 
poor detection at the outer edges of the distribution. The 
second strategy would focus on maximizing the separation 
between multiple distributions. To incorporate these strat-
egies into CRFs and enable automated optimization for 
distribution separation, it is essential to accurately char-
acterize the distributions. The simplest method for this 
involves characterizing distributions using their average 
moments, such as mean retention/elution time, asymmetry, 
and kurtosis.

Prediction of Polymer Solubility to Optimize Separations

An intriguing property of synthetic polymers is their abil-
ity, or inability, to dissolve in specific solvents. This char-
acteristic is particularly critical in techniques such as liquid 
chromatography where the analyte must be soluble in at least 
the strong solvent used during the process. Accurately pre-
dicting the solubility of novel polymers can be challenging. 
However, modeling and predicting this behavior could pro-
vide significant advantages in both research and application 
contexts. ML approaches can be employed to estimate the 
Flory–Huggins interaction parameter of a polymer–solvent 
mixture [42–44], which provides valuable insights into solu-
bility. Alternatively, neural networks can be trained using 
large databases that include solvent compatibility informa-
tion for various polymers. By leveraging polymer structural 
data, these models can predict suitable solvents with a high 
degree of accuracy [45, 46].

While these solubility models have not yet been applied 
to the optimization of chromatographic separations, they do 
offer a potential solution for automated method optimization. 
Common chromatographic modes for synthetic polymers 
rely on polymer precipitation and subsequently redissolving 
for elution. This is performed using either a solvent gradient, 
which is referred to as gradient polymer-elution chromatog-
raphy (GPEC), or a temperature gradient, referred to as tem-
perature gradient interaction chromatography (TGIC). More-
over, to perform LC under critical conditions, a combination 
of a “good” and “bad” solvent is required in a specific ratio 
to obtain a mass-independent separation condition. While 
these critical solvent conditions are known for a handful of 
polymers, it would be a great advantage if such conditions 
could be predicted by solubility models.
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Detection and Identification Methods

Detection

 While significant progress has been made in applying 
ML to method development on the chromatographic side, 
advancements in detection techniques and the analysis of 
resulting polymer data have been comparatively limited. Fre-
quently, dedicated algorithms based on expert knowledge 
are employed to extract specific information from the data 
[47–49]. For ML to be effectively utilized in this domain, 
it is crucial to generalize problems across multiple poly-
mer types. Nevertheless, ML has demonstrated its utility in 
efficiently solving complex problems, particularly in fitting 
intricate models to challenging datasets. An example of this 
is the determination of block length distributions in copoly-
mers based on fragment data [50].

Identification

Machine learning can be highly advantageous for processing 
raw data and translating it into more informative insights. A 
common application is the identification of classes within 
datasets, typically achieved by training a model on labeled 
data where the class distinctions are known. For instance, 
ML has been employed to identify microplastics [51]. In 
one study, a random forest model was trained to distinguish 
between polymethyl methacrylate (PMMA), polystyrene 
(PS), polytetrafluoroethylene (PTFE), polyvinylchloride 
(PVC), and polyethylene (PE) based on Raman spectra 
obtained from environmental samples [52]. Similarly, lev-
eraging infrared (IR) spectroscopy data, classification tech-
niques have been used to identify plasticizers in PVC [53] 
and nylon particles [54].

The same principles can be extended to mass spectrom-
etry (MS) data, including imaging MS [55]. While these 
identification methods typically determine the most likely 
class, they often provide limited insights into the probabil-
ity of the classification. Logistic regression is frequently 
employed for such tasks, and when threshold criteria are 
omitted, it can also be used to report probabilities for vari-
ous classes. This approach has been applied, for instance, to 
identify monomers leaching from dental composites [56]. 
ML has also been employed to discriminate between virgin 
and recycled poly(ethylene terephthalate) (PET) based on 
data from headspace comprehensive two-dimensional gas 
chromatography coupled with mass spectrometry [57].

Beyond direct identification, ML is also applied to pre-
dict polymer characteristics such as their size. These pre-
dictions can assist in identification processes, particularly 
with techniques like ion mobility spectrometry where ML is 
used to predict the collision cross-section of polymers. Such 
predictions help narrow the search window for potential 

candidates, enhancing the efficiency and accuracy of the 
identification process [58].

Future Perspectives

ML is increasingly applied across various aspects of poly-
mer development and characterization, accelerating research 
and expanding capacity. While ML often enhances a single 
component of the workflow, its potential extends to multiple 
stages of the process. Although ML has demonstrated suc-
cess in optimizing synthesis procedures to improve polymer 
properties and classifying polymers using established meth-
ods, greater attention should be directed toward automating 
method development for characterization techniques as well 
as improving data processing and interpretation. This shows 
that the readiness of different aspects of polymer science 
to benefit from ML varies significantly. These varying lev-
els of readiness are depicted in Fig. 1. Addressing the less-
developed areas is essential for achieving a fully versatile 
and integrated workflow. The primary areas with significant 
potential for advancement are detection techniques, chroma-
tography, and the analysis of the resulting data. Applying 
ML in these fields to optimize methods offers the potential 
to greatly enhance sensitivity and separation performance. 
Furthermore, ML-based models for data interpretation can 
uncover novel insights into structure–property relationships 
that were previously inaccessible.

Advancements in ML are expected to accelerate the 
optimization process, thereby reducing the number of steps 
and measurements required in experimental workflows. 
Another promising avenue is the integration of ML with 
expert knowledge of fundamental principles. This can be 
achieved by supplementing experimental data with data from 
simulations. A recent example of an algorithm capable of 
handling this approach is multi-task Bayesian optimization 
[37]. These algorithms can identify and correct biases in 
simulations based on experimental data, enabling efficient 
optimization of more complex problems.

A distinctly different, yet rapidly advancing class, of algo-
rithms is large language models (LLMs). LLMs are funda-
mentally trained to generate and predict patterns based on 
vast amounts of data. They "mimic" understanding rather 
than develop a mechanistic model of the process being opti-
mized. While LLMs can suggest optimizations based on 
learned patterns, they do not explicitly model uncertainty or 
actively search for the optimal solution in a structured way. 
While LLMs are unlikely to contribute directly to optimiza-
tion or characterization processes, since they do not inherently 
understand data but rather mimic understanding, they hold 
potential in facilitating more intuitive interactions with labo-
ratory equipment and specialized data processing software. 
Additionally, they could play a valuable role in streamlining 



361The Role of Artificial Intelligence and Machine Learning in Polymer Characterization: Emerging…

reporting and documentation processes, enhancing accessibil-
ity and efficiency in polymer research.

We envision a future where these advancements empower 
researchers to dedicate more time to addressing scientific 
questions and interpreting results while also enhancing and 
streamlining method development and synthesis processes. 
While this level of automation may require years or decades to 
achieve, the eventual integration of laboratory processes could 
lead to the creation of interfaces capable of recommending 
experiments, within the laboratory’s capabilities, to effectively 
answer specific research questions.
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