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Abstract
Background: Insecticide treated nets (ITN) have been proven to be an effective tool in reducing
the burden of malaria. Few randomized clinical trials examined the spatial effect of ITNs on child
mortality at a high coverage level, hence it is essential to better understand these effects in real-life
situation with varying levels of coverage. We analyzed for the first time data from a large follow-
up study in an area of high perennial malaria transmission in southern Tanzania to describe the
spatial effects of bednets on all-cause child mortality.

Methods: The study was carried out between October 2001 and September 2003 in 25 villages in
Kilombero Valley, southern Tanzania. Bayesian geostatistical models were fitted to assess the effect
of different bednet density measures on child mortality adjusting for possible confounders.

Results: In the multivariate model addressing potential confounding, the only measure significantly
associated with child mortality was the bed net density at household level; we failed to observe
additional community effect benefit from bed net coverage in the community.

Conclusion: In this multiyear, 25 village assessment, despite substantial known inadequate
insecticide-treatment for bed nets, the density of household bed net ownership was significantly
associated with all cause child mortality reduction. The absence of community effect of bednets in
our study area might be explained by (1) the small proportion of nets which are treated with
insecticide, and (2) the relative homogeneity of coverage with nets in the area. To reduce malaria
transmission for both users and non-users it is important to increase the ITNs and long-lasting nets
coverage to at least the present untreated nets coverage.

Background
Plasmodium falciparum malaria is a leading infectious dis-
ease, accounting for approximately 300 to 500 million
clinical cases each year and causing over one million
deaths, mostly in African children younger than 5 years.

Insecticide treated nets (ITN) have been proven to be an
effective tool in reducing the burden of malaria [1-3].
Numerous trials all over the world have shown that such
nets can reduce child mortality in endemic areas in Africa
by 17% and roughly halve the number of clinical malaria
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episodes [4]. These results were later confirmed under
programme implementation [5,6]. It is well known that
the use of ITNs provides significant individual protection,
but direct and indirect effects on malaria transmission of
treated and untreated nets on the wider community of
bednet users and non-users are still little understood,
despite some recent progresses [7]. Randomised trials in
different malaria transmission regions examined the effect
of ITNs on mortality of children without bednets. A study
carried out in northern Ghana estimated that mortality
risk in individuals without insecticide nets increased by
6.7% with every 100 m shift away from the nearest inter-
vention compound [8]. In western Kenya households
without ITNs but within 300 m of ITN villages received
nearly full protection [9]. These results conflict with those
found from studies in The Gambia which concluded that
protection against malaria seen in children using ITN is
due to personal rather than community effect [10-12]. A
better understanding of these spatial effects in real-life sit-
uations is paramount for setting control targets, especially
for understanding equity issues since these spatial effects
mainly improve the situation of unprotected individuals,
who are on average poorer. Moreover, the spatial effects of
ITNs on non-bednet users in relation with the degree of
density of bednets will indicate the type and level of bed-
net coverage that control programs need to achieve in
order to maximize protection of non-bednet users. Here
we present for the first time results for the spatial effects of
mosquito nets in a "real-life" programme. One of the lim-
itations of previous studies is that they used standard sta-
tistical methods which assume independence between
observations. When these methods are applied to spatially
correlated data, they underestimate the standard errors
and thus overestimate the statistical significance of the
covariates [13]. In this paper we analyzed data from a
large follow-up study in a highly malaria endemic area in
southern Tanzania. Making use of a demographic surveil-
lance system (DSS) we tracked child mortality prospec-
tively and assessed the relation between all-cause child
mortality rates and the spatial effect of bednet density. To
account for spatial clustering we fitted Bayesian geostatis-
tical models with household-specific random effects.
Models for geostatistical data introduce the spatial corre-
lation in the covariance matrix of the household-specific
random effects and model fit is based on Markov chain
Monte Carlo methods (MCMC). MCMC estimation
requires repeated inversions of the covariance matrix
which, for large number of locations is computationally
intensive and time consuming. To address this problem
we propose a convolution model for the underlying spa-
tial process which replaces large matrix inversion by the
inversion of much smaller matrices.

Methods
Study area and population
The study was carried out from October 2001 to Septem-
ber 2003 in the 25 villages covered by a demographic sur-
veillance system (DSS) in the Kilombero Valley, southern
Tanzania. The DSS updates every 4 months demographic
information on a population of about 73, 000 people liv-
ing in 12, 000 dispersed households (Figure 1) in two dis-
tricts – Kilombero and Ulanga [14]. Most residents
practice subsistence farming with rice and maize being the
predominant crops. The climate is marked by a rainy sea-
son from November to May with annual rainfall ranging
from 1200 to 1800 mm. Malaria is the foremost health
problem, for both adults and children [15]. The prevailing
malaria vectors in this region are Anopheles gambiae and
Anopheles funestus with an estimated average entomologi-
cal inoculation rate estimated of over 360 infective bites
per person a year [16]. A large-scale social marketing pro-
gramme of ITNs for malaria control has been running in
this area since 1997 [6].

Data collection
Mortality data were obtained prospectively and continu-
ously over a two-year period from the DSS, which allowed
us to register age and sex data, births and migrations in
and out the study area. Exact procedures are described in
[14].

An additional survey was carried out in the DSS popula-
tion in 2002 to collect socio-economic information. The
survey questionnaire included a list of household assets
(e.g. bednet), housing characteristics (e.g. type of roofing
material) and type of energy and light. Although informa-
tion on ITNs ownership was also collected, we did not use
these data in our analysis since it was shown [17] that in
this area two-thirds of the nets that were reported as hav-
ing been re-treated within the last 12 months had insuffi-
cient insecticide to be effective.

Households and health facilities were geolocated using a
hand-held Global Positioning System (Garmin GPS 12,
Garmin corp.) and Euclidean distances between houses
and the health facilities were calculated. Oral informed
consent was obtained from the heads of the households
included in the study.

Statistical analysis
Bednet density was defined as the number of bednets per
person within a certain radius around each household.
The following radii were chosen: 0 m (bednet coverage at
household level), 50 m, 100 m, 150 m, 200 m, 300 m,
400 m, 500 m and 600 m.

A wealth index was calculated as a weighted sum of house-
hold assets. It has been shown that there is an inverse rela-
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tionship between mortality and socio-economic status
[18]; therefore the weights of the wealth index were
obtained from the coeffcients of a negative binomial
model which estimated the effect of assets on all-age mor-

tality. The weight of asset i was calculated as ,

where bi is the regression coeffcient corresponding to asset

i. The wealth index was divided into quintiles correspond-
ing to poorest, very poor, poor, less poor and least poor
groups of the population.

Negative binomial models were fitted to assess the effect
of different bednet density measures on child mortality
after adjusting for possible confounders: sex, wealth index
and distance to the nearest health facility, using STATA v.
9.0 (Stata Corporation, College Station, TX, USA).

To estimate the effect of bednet density on the mortality
of children without nets we performed a similar analysis.
In particular, we defined bednet density as above, consid-

ering as index households the ones without any bednet.
We then fitted the negative binomial models adjusted for
the above mentioned confounders.

The household mortality data are correlated in space since
common environmental risk factors, proximity to breed-
ing sites and socio-economic exposures may influence the
mortality outcome similarly in households within the
same geographical area. The independence assumption of
the standard negative binomial models may result in
overestimation of the significance of the bednet coverage
covariate. To address this problem Bayesian geostatistical
negative binomial models were fitted with household-
level random effects. Spatial correlation was modeled by
assuming that the random effects are distributed accord-
ing to a multivariate normal distribution with variance-
covariance matrix related to an exponential correlation
function between household locations, i.e. σ2 exp (-dijρ),
where dij is the Euclidean distance between households i
and j, σ2 is the geographic variability known as the sill and
ρ is the rate of correlation decay. The distribution of ran-

wi
bi

bii

=
∑ 2

Distribution of the DSS households according to their socio-economic statusFigure 1
Distribution of the DSS households according to their socio-economic status. Socio-economic status of the DSS 
households: from light red to dark red: most poor, very poor, poor, less poor and least poor.
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dom effect defines the so called Gaussian spatial process.
Model fit requires the inversion of a covariance matrix
with the same size as the sample size. Due to the large
number of observations in our dataset, the estimation of
model parameters becomes unstable and unfeasible. To
overcome this problem we propose a model based on a
convolution representation that is, we approximate the
spatial random process by a weighted sum of a small
number of stationary spatial processes. The size of the cov-
ariance matrix that needs to be inverted is then much
smaller, therefore the method is computationally effi-
cient. We employed Markov chain Monte Carlo simula-
tion to estimate the model parameters. Further details on
this modeling approach are given in the appendix. The
analysis was implemented using a software written by the
authors in FORTRAN 95 (Compaq Visual FORTRAN Pro-
fessional 6.6.0) using standard numerical libraries (NAG,
The Numerical Algorithm Group Ltd.).

Results
A total number of 11, 134 children from 7, 403 house-
holds with children had information available on both
geolocation and socio-economic covariates.

The pooled data revealed an overall all-age crude mortal-
ity rate of 9.5 per 1000 person-years and an overall child
mortality of 26.2 per 1000 person-years with no differ-
ence between the two districts (P = 0.98 and P = 0.73,
respectively).

The insecticide treatment status of the nets was difficult to
ascertain, therefore the results reported in this section
refer to bednets only, whether treated or not. The mean
bednet density in Kilombero Valley was 270 nets per 1000
inhabitants. 10, 160 households (85%) had at least one
bednet and the mean number of bednets per household
was 1.64.

Table 1 shows the overall child mortality rates together
with district-specific child mortality rates by sex, socio-
economic status, distance to the nearest health facility and
bednet density at household level. Since there were no sig-
nificant differences between child mortality rates in Kil-
ombero and Ulanga Districts, all further analysis was
done by pooling the data of the two districts. Males had a
slightly lower mortality rate than females, but sex was not
significantly associated with childhood mortality rates
(Incidence-Rate Ratios (IRR) = 0.90, P = 0.216). Similarly,
socio-economic status was not significantly associated
with child mortality (P = 0.124), but we could notice a
trend for children from the relatively better off house-
holds to have a lower mortality rate than their poorer
counterparts. No significant association was observed
with distance to the nearest health facility, but children
living ≥ 1 km away from the nearest health facility tended
to have higher mortality rates than those living in close
proximity.

Table 1: Overall and district-specific child mortality rates by sex, socio-economic status, distance to the nearest health facility and 
bednet density at household level

Explanatory variables Number of children(%) Child mortality ratea P-value

Overall Kilombero Ulanga

Sex
Female 5669 (50.9) 27.6 29.8 25.0 0.814
Male 5465 (49.1) 24.7 27.1 21.6 0.795
Socio-economic status
Poorest 2203 (19.8) 31.1 36.5 26.0 0.752
Very poor 2265 (20.3) 26.0 27.5 24.1 0.916
Poor 2281 (20.5) 25.7 29.5 20.6 0.791
Less poor 2239 (20.1) 21.3 21.1 21.6 0.986
Least poor 2146 (19.3) 27.1 28.9 24.5 0.898
Distance to nearest health facility
< 1 km 2793 (25.1) 23.3 25.9 20.7 0.860
1 – 4.9 km 4666 (41.9) 27.2 29.4 24.1 0.819
≥ 5 km 3675 (33.0) 26.9 29.0 24.7 0.865
Bednet density at household levelb

0 1199 (10.8) 28.9 40.4 19.5 0.662
0 – 0.2 2531 (22.7) 27.9 28.9 26.8 0.946
0.2 – 0.3 3426 (30.8) 28.5 30.3 28.5 0.873
0.3 – 0.5 3026 (27.2) 22.3 22.4 22.3 0.996
> 0.5 952 (8.5) 22.6 28.9 13.9 0.794

a : Mortality rate per 1000 person years.
b : Number of bednets per person within a 0 m radius around each household.
Page 4 of 9
(page number not for citation purposes)



BMC Public Health 2008, 8:356 http://www.biomedcentral.com/1471-2458/8/356
A simple bivariate analysis showed that bednet density at
household level was significantly associated with child
mortality (IRR = 0.50, P = 0.020). There was a tendency
for mortality rates to decrease for children living in house-
holds with at least 30% bednet density coverage.

The effect of various bednet density measures on child
mortality after adjusting for possible confounders is
shown in Table 2. Surprisingly, the only measure signifi-
cantly associated with child mortality was the bednet den-
sity at household level (R0) (IRR = 0.53, P = 0.037). We
noted that the mean bednet density was similar for all
radii, whereas the standard deviation tended to become
smaller as the radius was increasing.

The results of the bivariate and multivariate non-spatial
negative binomial models are shown in Table 3. None of
the explanatory variables were significantly associated
with child mortality, except the fourth wealth quintile.
After taking into account the spatial correlation present in
the data, the effect of the covariates remained non-signif-
icant. However, the confidence intervals became wider,
confirming the importance of taking into account spatial
correlation when analyzing geographical data [19]. The
parameters σ2 and ρ shown in Table 3 measure the spatial
variance and the rate of correlation decay (smoothing
parameter), respectively. The estimates of the smoothing
parameter ρ indicate a low spatial correlation in the child
mortality rate data. In fact ρ was estimated to be 774.5,
which in our exponential setting is translated to a mini-
mum distance for which spatial correlation decrease to
0.05 of only around 0.43 km.

Table 4 depicts the effect of different bednet density meas-
ures on the mortality of children without any bednet after
adjusting for sex, socio-economic status and distance to
the nearest facility. The results show no significant associ-
ation between any bednet density measure and mortality

of children without nets, indicating no detectable com-
munity effect.

Pearson's correlation coeffcient between bednet density
and bednet usage was 0.83, indicating a strong correlation
between the two measures. Hence, the results regarding
the bednet density could be extended to bednet usage.

Conclusion and discussion
We examined the effect of a variety of factors on child
mortality in an area of high perennial malaria transmis-
sion in southern Tanzania and identified that the density
of household bed net ownership was the only factor sig-
nificantly associated with child mortality reduction. The
spatial effects of bednets on all-cause child mortality in an
area of high perennial malaria transmission in southern
Tanzania have been presented here. The effect of different
bednet density measures was estimated after adjusting for
possible confounders like sex, socio-economic status and
distance to the nearest health facility. We concentrated on
all-cause child mortality because in rural Africa it is diffi-
cult to assess malaria-specific mortality. Most deaths occur
at home and verbal autopsy is the only tool available to
determine the cause of mortality. It has been shown
[20,21] that this is an inaccurate method to detect
malaria, having a low sensitivity and specificity.

Our results indicated an apparent lack of community
effect of bednets on childhood mortality. This conclusion
is based on the fact that only the bednet density at house-
hold level had a significant protective effect on child mor-
tality. When net density within ≥ 50 m was considered,
the risk of child mortality increased slightly but the rela-
tion was not significant. Our findings contrast with previ-
ous studies in Africa, which demonstrated a strong
community-wide effect of ITNs on child mortality [8,9].
However, our study differed from the studies mentioned
above in a number of ways.

Table 2: Summary of bednet density measures and estimates of the effect of bednet measures on child mortality, adjusted by sex, 
socio-economic status and distance to the nearest health facility

Bednet density Mean (St. dev.) % of households without bednets IRRa 95% CI LRTb P-valuec

R0 0.25 (0.15) 0.00 0.53 (0.29,0.97) 4.37 0.037
R50 0.18 (0.20) 0.09 0.64 (0.40,1.03) 3.48 0.062
R100 0.24 (0.18) 12.68 1.13 (0.73,1.74) 0.27 0.607
R150 0.25 (0.13) 13.84 1.18 (0.61,2.30) 0.24 0.623
R200 0.26 (0.12) 14.44 1.69 (0.79,3.61) 1.79 0.181
R300 0.26 (0.09) 15.04 2.51 (0.96,6.55) 3.46 0.063
R400 0.27 (0.08) 15.04 2.10 (0.79,5.59) 2.05 0.153
R500 0.27 (0.07) 15.18 2.40 (0.70,8.25) 1.89 0.169
R600 0.27 (0.07) 15.23 2.89 (0.74,11.25) 2.32 0.128

Results obtained by fitting negative binomial models.
a : IRR:Incidence-rate ratios.
b : LRT:Likelihood ratio test.
c : P -value based on likelihood ratio test (LRT).
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Firstly, the epidemiological studies that demonstrated the
mass effect of ITNs on child mortality were all designed as
community-trial interventions, ensuring a uniformly high
coverage of treated nets in the intervention group, with a
control group almost not using any sort of nets. This cre-
ates a strong gradient of ITN at the margins use, which
allows a good measure of spatial effects. By contrast, net
usage, treated or not, was uniformly high in our study
area, with the result that any sort of spatial effects would
be more difficult to detect unless there would be heteroge-
neity in coverage, which was not the case.

Secondly, we were not able to distinguish between treated
and untreated nets in the field because there is no reliable
testing method to do this at present. [17,22] showed that
in our study area compliance with insecticide re-treatment
is relatively low, with only 32% of the nets having enough
insecticide to ensure an entomological impact. Since
untreated nets are less effective than treated ones [4,5,23],
this had certainly an impact on the analysis by reducing
differences between users and non-users. However,
despite these limitations, our study showed that mosquito
nets still show a protective effect on child mortality.

Table 3: Results of the association of sex, socio-economic status, bednet density at household level and distance to nearest health 
facility with child mortality, resulting from the bivariate and multivariate non-spatial models and spatial model

Indicator Bivariate model Multivariate model Spatial model

IRRa 95% CIb IRRa 95% CIb IRRa 95% CIb

Sex
Female 1.0 1.0 1.0
Male 0.90 (0.75,1.07) 0.89 (0.75,1.06) 0.88 (0.73,1.06)
Socio-economic status
Most poor 1.0 1.0 1.0
Very poor 0.83 (0.64,1.09) 0.84 (0.65,1.11) 0.87 (0.63,1.21)
Poor 0.82 (0.63,1.08) 0.84 (0.64,1.10) 0.82 (0.64,1.05)
Less poor 0.69 (0.52,0.91) 0.70 (0.53,0.93) 0.68 (0.51,0.94)
Least poor 0.87 (0.67,1.14) 0.90 (0.69,1.18) 0.90 (0.68,1.20)
Bednet density at household level
0 1.0 1.0 1.0
0 – 0.2 0.96 (0.71,1.32) 0.99 (0.73,1.36) 1.03 (0.83,1.29)
0.2 – 0.3 0.99 (0.73,1.33) 1.02 (0.76,1.39) 1.04 (0.81,1.39)
0.3 – 0.5 0.77 (0.57,1.06) 0.81 (0.59,1.11) 0.84 (0.56,1.13)
> 0.5 0.78 (0.52,1.17) 0.81 (0.54,1.23) 0.76 (0.54,1.24)
Distance to nearest health facility 0.80 (0.16,3.96) 0.60 (0.10,3.68) 0.23 (0.03,3.71)
Spatial parameters
σ2 0.75 (0.35,1.16)
Range (3/ρ)c 0.43 (0.39,0.48)

a : IRR:Incidence-rate ratios.
b : Credible intervals.
c : Spatial correlation is significant (> 5%) within this distance.

Table 4: Estimated effect of bednet measures on mortality of children without nets, adjusted by sex, socioeconomic status and 
distance to the nearest health facility, obtained by fitting negative binomial models

Bednet density Incidence risk ratio P-valuea

No bednet 0 – 0.2 0.2 – 0.3 > 0.3

R50 1.0 0.88 (0.42,1.83) 0.70 (0.31,1.60) 0.89 (0.42,1.71) 0.935
R100 1.0 0.64 (0.29,1.42) 1.04 (0.51,2.10) 1.15 (0.57,2.34) 0.519
R150 1.0 0.82 (0.34,1.98) 0.91 (0.38,2.17) 2.06 (0.91,4.64) 0.077
R200 1.0 0.74 (0.30,1.79) 0.68 (0.28,1.63) 1.35 (0.57,3.20) 0.303
R300 1.0 1.18 (0.33,4.16) 1.64 (0.48,5.62) 1.40 (0.38,5.08) 0.713
R400 1.0 1.40 (0.31,6.28) 1.90 (0.44,8.24) 1.49 (0.32,7.00) 0.809
R500 1.0 1.97 (0.26,15.15) 2.31 (0.31,17.38) 1.80 (0.22,14.54) 0.732
R600 1.0 1.22 (0.16,9.33) 1.63 (0.22,12.03) 1.14 (0.14,9.06) 0.811

a : P-value based on likelihood ratio test (LRT).
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Lastly, as specific data on bednet use was not available for
the whole sample, we created a different measure of the
impact of bednets: the "bednet density" defined as the
ratio between the number of bednets owned and the
number of people living in a specific area. Previous stud-
ies in this region showed that on average 2 people sleep
under a bednet with an overall bednet use of about 75%
[16]. A limitation of our study consists in linking child
mortality data across 2 years (2001 – 2003) with data on
mosquito net ownership collected at a single time point
(2002).

All analyzes of bednets effect on different malaria-related
outcomes so far have been based on the assumption of
independence between observations. However, house-
hold mortality data are spatially correlated due to com-
mon exposures. When the spatial correlation present in
the data is ignored, the statistical significance of the cov-
ariates is overestimated. We could control for that by
using a Bayesian geostatistical approach to assess the child
mortality-bednet density relation. Bayesian computation
implemented via MCMC enabled simultaneous estima-
tion of all model parameters together with their standard
errors, a feature that is not available in the maximum like-
lihood based framework. Fitting geostatistical models for
non-Gaussian data requires repeated inversions of the
covariance matrix of the spatial random effects. These
computations are not feasible when analyzing DSS mor-
tality data collected at very large number of locations. A
convolution model for the underlying spatial process has
been suggested for handling large spatial data sets. This
approach can be further applied for modeling mortality
data coming from other DSS sites.

Despite these limitations, our results are consistent with
the analysis of ITN' protective efficacy against malaria
transmission in Kilombero Valley [24], which predicted
little community-level protection for the individuals not
using ITNs. The most likely explanations for this were the
small proportion of re-treated nets and the insufficient
concentration of insecticide present in the bednets. A
recently developed model for the transmission of malaria
using data collected in Tanzania [7] predicted that modest
bednet coverage (35% – 65%) of the entire population,
rather than just high-risk groups (pregnant women and
young children) is needed to achieve community-wide
protection similar to, or greater than, individual protec-
tion. Hence, there is clearly a strong case for improving the
status of insecticide treatment through the introduction of
long-lasting insecticidal nets (LLINs) which are now
becoming increasingly available [25] and for the wide-use
of ITNs and LLINs by the whole population. We expect
that achieving a high coverage with LLINs will result in
further substantial reductions of malaria transmission

and hence malaria-related mortality and morbidity for
both users and non-users.
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Appendix
Let Yil be the mortality outcome of child l at site sii = 1, ...

, n taking value 1 if the child is dead and 0 otherwise. We
assume that Yil arises from a negative binomial distribu-

tion, that is Yil~NegBin(pil, r), where pil is the probability

that child l at location si is dead and r is the parameter that

quantifies the amount of extra Poisson variation. To
account for spatial variation in the data, location-specific
random effects were integrated in the negative binomial

model. The probability pil, is modeled as , with

log(zil) = log(pyrsil) +  + ϕi, where Xil is the vector of

associated covariates, β are the regression coeffcients and

ϕi's are the spatial random effects. pyrsil represents the

number of person-years corresponding to child l at loca-
tion si and log(pyrsil) is considered as covariate with regres-

sion coeffcient fixed to 1 and is referred as offset.

The standard approach to model the spatial dependence is

to assume that the covariance of ϕi's at every two locations

si and sj decreases with their distance dij, that is Σij = σ2f (dij;

ρ) with f(dij; ρ) = exp(-dijρ), where ρ > 0 is a smoothing

parameter that controls the rate of correlation decay with

increasing distance and σ2 quantifies the amount of spa-
tially structured variation. Estimation of the location-spe-
cific random effects and of the spatial parameters requires

repeated inversions of the covariance matrix Σ. Due to the
large number of locations in our dataset (7, 403), matrix
inversion is computationally intensive and is not feasible
within practical time constrains. To overcome this issue
we develop a convolution model for the underlying spa-

pil
r

r zil
= +

Xil
Tβ
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tial process. In particular, we choose a small number of
locations tk, k = 1, ... , K over the study region, assume a

stationary spatial process ωk over these locations and we

model the spatial random effect ϕi at each data location si

as a weighted sum of the fixed location stationary proc-

esses. That is, , where the weights a(i,

k) are decreasing functions of the distance between data

location si and the fixed location tk and ωk~N (0, Σk), with

(Σk)hl = σ2exp(-dhlρ), where dhl is the distance between the

fixed locations th and tl. This approach avoids the inver-

sion of the large covariance matrix nxn, reducing the prob-
lem to the inversion of a much smaller size matrix KxK.
For this specific analysis we have chosen K = 200.

For the correlation function chosen, the minimum dis-
tance for which spatial correlation between locations is
below 5% is 3/ρ (range). The above specification of spa-
tial correlation is isotropic, assuming that correlation is
the same in all directions.

Following a Bayesian model specification, we adopt prior
distributions for the model parameters as follows: non-
informative uniform prior distributions for the regression
coeffcients β, inverse gamma prior distribution for σ2 and
gamma prior distribution for the decay parameter ρ and
the over-dispersion parameter r.

We estimate the model parameters using Markov chain
Monte Carlo simulation. In particular we implemented
Gibbs sampler (Gelfand and Smith, 1990), which requires
simulating from the full conditional distributions of all
parameters iteratively until convergence. The full condi-
tional distribution of σ2 is inverse gamma distribution
and it is straightforward to simulate from. The conditional
posterior distribution of β, ρ, and r do not have known
forms. We simulate from these distributions using the
Metropolis algorithm with a Normal proposal distribu-
tion having the mean equal to the parameter estimate
from the previous Gibbs iteration and the variance equal
to a fixed number, iteratively adapted to optimize the
acceptance rates. We have run a five-chain sampler with a
burn-in of 10, 000 iterations and we assessed the conver-
gence by inspection of ergodic averages of selected model
parameters after 200, 000 iterations.
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