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Background: An untargeted chemical analysis of bio-fluids provides semi-quantitative

data for thousands of chemicals for expanding our understanding about relationships

among metabolic pathways, diseases, phenotypes and exposures. During the

processing of mass spectral and chromatography data, various signal thresholds are

used to control the number of peaks in the final data matrix that is used for statistical

analyses. However, commonly used stringent thresholds generate constrained data

matrices which may under-represent the detected chemical space, leading to missed

biological insights in the exposome research.

Methods: We have re-analyzed a liquid chromatography high resolution mass

spectrometry data set for a publicly available epidemiology study (n= 499) of human cord

blood samples using the MS-DIAL software with minimally possible thresholds during the

data processing steps. Peak list for individual files and the data matrix after alignment

and gap-filling steps were summarized for different peak height and detection frequency

thresholds. Correlations between birth weight and LC/MS peaks in the newly generated

data matrix were computed using the spearman correlation coefficient.

Results: MS-DIAL software detected on average 23,156 peaks for individual LC/MS

file and 63,393 peaks in the aligned peak table. A combination of peak height

and detection frequency thresholds that was used in the original publication at the

individual file and the peak alignment levels can reject 90% peaks from the untargeted

chemical analysis dataset that was generated by MS-DIAL. Correlation analysis for

birth weight data suggested that up to 80% of the significantly associated peaks were

rejected by the data processing thresholds that were used in the original publication.

The re-analysis with minimum possible thresholds recovered metabolic insights about

C19 steroids and hydroxy-acyl-carnitines and their relationships with birth weight.
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Conclusions: Data processing thresholds for peak height and detection frequencies at

individual data file and at the alignment level should be used at minimal possible level

or completely avoided for mining untargeted chemical analysis data in the exposome

research for discovering new biomarkers and mechanisms.

Keywords: LC/MS, exposome, metabolomics, untargeted chemical analysis, birth weight

INTRODUCTION

Small molecules can function as metabolic substrates and
products, signaling molecules, energy equivalents, building
blocks, and toxic exposures in the human body (1). Beneficial
and harmful changes in the levels of these molecules can
occur from the early life to the elderly stage because of
genetic and environmental factors (2–5). Inside the human
body, a small molecule can be absorbed, circulated, metabolized,
degraded, transformed and excreted by organ systems (6, 7).
A comprehensive understanding of these changes and how the
body’s biological pathways react to them can contribute to
advancing prevention strategies for human diseases (8, 9). But,
contrary to the vast knowledge available on functional roles of
genes or proteins, our understanding about the roles of most
small molecules in human health remains rudimentary (10,
11). Fortunately, use of sensitive and high-resolution analytical
techniques such as a gas or liquid chromatography mass
spectrometry (GC/MS or LC/MS) to detect small molecules in
bio-fluids in a comprehensivemanner can expand our knowledge
about relationships between small molecules and human health
(5, 11, 12).

Advanced and cost-effective nucleic acid sequencing methods
can identify rare DNA variants, RNAs, and protein variants to
improve our understanding about the development and spread of
diseases (13–15). Similarly, untargeted chemical analyses using a
high-resolution LC/MS instrument can detect thousands of small
molecules in bio-fluid samples and can generate high quality
and rich semi-quantitative data to identify and discover new
metabolic hypotheses, biomarkers, and risk factors for diseases
and biological phenotypes (16–20). In contrast to a targeted assay
(21), an untargeted assay aims to detect in an unbiased manner
as many possible chemicals present in a bio-fluid sample using
a GC/LC-HRMS instrument (18) and such untargeted assays are
key methods in exposome research to identify and discover new
risk factors and biomarkers for chronic diseases (21–23).

However, untargeted chemical analyses have mandatory
laboratory and computational biases (24) which decide the
composition of the data matrix that will be used for association
analyses. Laboratory biases include the extraction solvent,
sample re-suspension method, type of GC or LC column,
chromatography gradient, ionization mode and parameters
and mass spectrometry detector (25–27). Computational biases
include various data processing thresholds that were used during
peak detection, peak annotation, alignment and gap filling steps.
For the exposome research, it is important that all possible small
molecules in a specimen are reliably captured in the data matrix
to characterize the dark matter or missing biology of the etiology

of human diseases (11).While it is difficult to fix laboratory biases
without re-analyzing the bio-fluid samples, computational biases
can be readily addressed by reanalyzing collected raw LC/GC-
HRMS data with minimum thresholds during data processing
steps. Minimizing the effect of these biases can increase the
number of chemical signals that can be tested for having an
association with a phenotype as highlighted in computational
method optimization studies (28–34).

Intensity and detection frequency thresholds during the peak
detection and peak alignment steps have the strongest effect (35–
37) on the data matrix composition (Figure 1). During the peak
detection step, an intensity threshold TH1 rejects mass to charge
(m/z) values in each scan, then a peak height threshold TH2

rejects chromatographic peaks in individual LC/MS file. In the
next step, peaks are aligned and gap-filled across multiple files if
they pass the peak height threshold TH2 in a minimum number
of samples defined by a threshold TH3. During the gap-filling
process, relaxed criteria are used to recover peaks from raw data.
Then finally peaks are rejected if they were found to be missed
at a threshold TH4 on an intensity threshold TH5 (Figure 1).
While these thresholds are used in almost every untargeted
metabolomics study, there are no guidelines and standards to
justify them, leading to a large variation in data matrix sizes from
one study to another study for the same type of biospecimen (38).

In this report, we have re-analyzed a publicly available
untargeted LC/MS data for 499 cord blood samples (35, 39) using
the MS-DIAL software (40) with minimum possible thresholds
during data processing, and highlighted how different levels of
these thresholds (Figure 2) alter the data matrix composition.
We also highlight that a practice of stringent thresholds can
miss metabolic hypotheses about a phenotype of interest such as
newborn birth weight. Our results underscore the need to avoid
or to use minimally possible values for these thresholds when
processing untargeted LC/MS datasets for exposomics research.

METHODS

Dataset
We have utilized a publicly available large untargeted
metabolomics dataset of cord blood (35, 39). The dataset was
collected using an Agilent 1290 Infinity Liquid chromatography
system connected to an Agilent quadruple time of flight (qToF)
6550 mass spectrometry instrument in the ESI positive mode.
The details of the sample preparation, LC and MS conditions
are provided in the original article (39) and at the MetaboLights
database (accession number MTBLS1684). In brief, metabolites
from a cord blood sample were extracted using acetonitrile and
separated by ACQUITY UPLC HSS T3 (2.1 × 100mm, 1.8µm;
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FIGURE 1 | Overview of different thresholds in processing LCMS data in untargeted metabolomics assays.

FIGURE 2 | Prevalence of low and high abundant peaks across 499 data files.

X-axis shows the scaled detection prevalence, where 1.0 means a peak was

detected in all the samples. Y-axis shows the median peak height across all

files for a peak. MS-DIAL parameters are available in the

Supplementary Table 1.

Waters) reversed phase column using methanol as solvent B. A
pooled QC sample was injected after every 12 injections. The
original analysis was conducted using a workflow of the Agilent
Qualitative Analysis B.06.00, DA Reprocessor, and Mass Profiler
Professional 12.1 software. Briefly, in the original analysis,
compounds were detected as proton adducts (M+H)+ using
the recursive molecular feature extraction algorithm with a mass
intensity threshold of 1,500, a chromatographic peak height
threshold of 10,000 and a mass tolerance threshold of 0.0025 for
isotope pattern matching. Features that were detected in at least
2% of all the samples were aligned using a RT tolerance of 0.075
and a mass tolerance of 15 ppm + 2 mDA. Aligned features
were used as target list for recursive feature extraction using the

find by formula algorithm with a mass tolerance of 10 ppm and
0.04min. Finally, features that would not present in at least 60%
of samples were removed.

We have downloaded the raw data files in the Agilent.d format
from the EBIMetaboLights database. Data files were converted to
the mzML format using the ProteoWizard MSConvert software
version 3.0.20183 with binary encoding precision of 64-bit,
zlib compression, write index and TPP compatibility enabled.
Birth weight data were available for all the samples. Original
reported untargeted data matrix was also downloaded from the
MetaboLights repository.

LCMS Data Processing
We have used the MS-DIAL software to perform peak-
detection, alignment and gap filling for the mzML files. MS-
DIAL parameters are provided in the Supplementary Table 1.
Key MS-DIAL parameters were—MS1 tolerance: 0.01 Da,
Retention time tolerance: 0.05min, MS1 tolerance: 0.015 Da,
N% detected in at least one group: 0, Smoothing method:
LinearWeightedMovingAverage, Smoothing level: 3, Minimum
Peak Height: 0 and Minimum peak width: 5. Individual peak
list for all 499 files and alignment results for peak height were
exported tab delimited text files from the MS-DIAL software.
Individual peaks lists and the aligned peak table are provided
in the Figshare repository at https://doi.org/10.6084/m9.figshare.
13564823.v1 and https://doi.org/10.6084/m9.figshare.13564838.
v1. MS-DIAL also computed peak height, peak area, signal
to noise ratio (S/N) for each detected peak. The % fill value
column indicated that proportion of files in which a peak was
detected with a high confidence, where 1.0 means the peak was
present in all the samples before the gap-filling step. De-isotoping
was performed by MS-DIAL with default settings. We did not
perform any adduct grouping on the aligned tables, which may
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have penalized the p-value adjustment for multiple hypotheses
testing, however the rank order of top fifty significant peaks and
our conclusions are unaffected by it.

Statistics and Graphics
The MS-DIAL generated data matrix was imported in the R
software version 4.0.3. For each LC/MS peak, min, max, average
and standard deviation were computed after removing the zero
values. For the peak list of each file, peak heights were divided
into 20 bins and upper boundaries for those bins were obtained.
Signal to noise (S/N) ratio as computed by MS-DIAL were
extracted from each peak-list and divided into 20 bins similar
to the steps taken for peak height summarization. For individual
files and the final data-matrix, peak height thresholds of 1,000,
2,000, 5,000, 10,000, and 20,000 were used and corresponding
coverage of peaks across all files were obtained. Correlation
between the peak height and birth weight was computed using
a spearman coefficient for all the peaks. P-values obtained for the
spearman analysis were adjusted for multiple hypothesis testing
using the Benjamini & Hochberg false discovery rate approach in
R. Graphics were prepared by R and Microsoft Excel.

RESULTS

Effect of Peak Height Thresholds on the
Peak List at Individual File Level
Descriptive Summary
We have re-analyzed 499 LC/MS data files available from
a publicly available cord blood metabolomics study [EBI
MetaboLights accession number MTBLS1684 (39)] using MS-
DIAL (40), an universal and free software for processing GC
and LC/MS data for metabolomics and lipidomics analyses.
This study was chosen as a case study because of it’s large
sample size, but it has a negligible drift in retention time and
mass spectrometry signals (Supplementary Figures 1–5). The
published data matrix for this study was generated using Agilent
Mass Hunter Qual and Mass Profiler Professional software using
stringent thresholds for peak detection, alignment, and detection
frequency (39) during the data processing workflow (see section
Methods). For this case study, MS-DIAL detected an average of
23,156 (±1,385) peaks across all files when the lowest possible
thresholds for data processing were used (see section Methods).
We have chosen peak height as an abundance indicator for a
peak because it is minimally affected by baseline fluctuations in
chromatography. For the case study, the highest peak height was
12,392,001, giving the lowest reliable point in the dynamic range
as 1,239 peak height because of the four order of dynamic range
for Agilent QTOF instruments. Across all the 499 files, 80% of
peaks had an average peak height <8,428 (±11.2%), indicating
that a vast majority of detected peaks in those files were low
abundant (Table 1 and Figure 2) and within the dynamic range
of the QTOF instrument.

Since, we have used minimally possible thresholds in the data
processing to retain low abundant peaks, the data quality of the
detected peaks needed to be evaluated. But it is not feasible to
manually inspect each peak in each file by plotting an extracted
ion chromatogram, so signal to noise ratio (S/N) parameter was

used as a gross indicator of the peak quality and tabulated for
all detected peaks. We observed that across all the 499 files, at
least 50% peaks in each file had a S/N of at least 5, indicating
that detected low abundant peaks had a reasonably good quality
(Table 2).

Next, we assessed how different peak height thresholds can
impact the peak list composition at individual file level by
counting the rejected peaks by a threshold and a S/N ratio of at
least 2. At the peak height threshold 10,000 which was used by
the MassHunter software in the original publication, 64% peaks
(Table 3) on average across all files were rejected, suggesting
that a majority of low abundant peaks were excluded from the
statistical analysis in the original publication.

Effect of Peak Height and Detection
Frequency Thresholds on the Aligned Peak
Table Composition
For the case study, MS-DIAL generated an aligned and gap
filled data matrix which had a total of 63,393 peaks, representing
the detected chemical space for the study in a comprehensive
manner. We asked howmany of those peaks will be rejected from
this data matrix if they were not found in at least one LC/MS
data file at a peak height threshold (Table 4). At a peak height
threshold of 10,000 peak height which was used in the original
publication, up to 70% peaks were rejected.

Next, we evaluated that how many peaks will be rejected by a
combination of both a detection frequency threshold (TH3) and
a peak height threshold (TH2) across all 499 files at the alignment
level (Figure 3). We use the MS-DIAL provided % fill property as
an indicator of the positive detection of a peak in the sample. On
a 2% detection frequency threshold (TH3) along with a 10,000
peak height threshold, as it was used in the original publication,
additional 5% peaks were rejected, retaining only 25% peaks at
the 10,000 peak height threshold in the aligned peak table.

Commonly used statistical methods and data normalization
strategies require that input data matrices are not sparse,
therefore missing values are replaced with an imputed value
(41). The input for missing value imputation is generated by
constraining the aligned peak table by a global peak detection
frequency threshold (TH4). Often, peaks that were missing
in >50% samples in the aligned table are rejected before the
missing value imputation step. For the case study, in the original
publication, peaks were rejected if they were not found in at least
60% of samples. At this threshold, 20% additional peaks were
rejected, leaving only 10% peaks that have passed the 10,000 peak
height cutoffs (Figure 3).

Overall, a combination of peak height (TH2) and detection
frequency thresholds (TH3 and TH4) that were used in the
original publication has rejected 90% of peaks which were defined
by MS-DIAL for the case study. These results suggest that the
informatics strategy that was used in the publication may have
missed many metabolic hypotheses in relation to birth weight.

Data Processing Thresholds and Missed
Biological Insights
Next, we asked if any of the rejected peaks were associated
with birth weight by computing spearman correlation co-efficient
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TABLE 1 | Distribution of peak height values across 499 files.

Bin (%) Average peak height

boundary

Relative

standard

deviation (%)

95–100 12,392,001 8.2

90–95 50,518 9.5

85–90 21,326 10.2

80–85 12,521 10.6

75–80 8,428 11.2

70–75 6,069 11.7

65–70 4,588 12.0

60–65 3,576 12.3

55–60 2,837 13.0

50–55 2,274 13.5

45–50 1,829 14.1

40–45 1,467 14.9

35–40 1,158 16.1

30–35 890 17.6

25–30 657 18.9

20–25 466 19.1

15–20 322 17.2

10–15 222 13.5

5–10 152 9.7

0–5 99 6.3

0–0 0 0.0

It provides an overview of the how the use of different peak height thresholds can decide

the composition of peak list at individual LC/MS data file level.

TABLE 2 | Distribution of S/N ratio across 499 files.

Bin (%) Average S/N boundary Relative standard deviation (%)

95–100 31,957.6 14.7

90–95 95.0 8.7

85–90 43.9 8.8

80–85 28.0 9.3

75–80 20.3 9.3

70–75 15.7 9.5

65–70 12.7 9.4

60–65 10.6 9.4

55–60 8.9 9.3

50–55 7.6 9.2

45–50 6.5 9.2

40–45 5.5 9.1

35–40 4.7 9.0

30–35 4.0 9.0

25–30 3.4 9.0

20–25 2.8 10.1

15–20 2.2 10.8

10–15 1.7 9.5

5–10 1.2 7.3

0–5 0.9 5.2

0–0 0.0 0

TABLE 3 | Peak rejections by different peak height thresholds on the individual file

level.

Peak height cutoff Average % rejection

of peaks with S/N

ratio of ≥2

Standard deviation

100 0.15 0.06

200 1.90 0.30

500 10.00 1.16

1,000 20.34 1.60

2,500 39.72 1.54

5,000 53.77 1.09

10,000 64.15 1.09

TABLE 4 | Effect of peak height thresholds on the peak rejection at the peak

alignment level.

Peak height threshold

at the alignment level

Rejected peaks (total) Percentage (%)

20,000 51,924 81.9

10,000 44,331 69.9

5,000 33,444 52.8

4,500 31,404 49.5

4,000 28,998 45.7

3,500 26,194 41.3

3,000 22,781 35.9

2,500 18,493 29.2

2,000 13,079 20.6

1,500 6,626 10.5

1,000 4,273 6.7

500 2,910 4.6

200 878 1.4

100 71 0.1

A peak was rejected if it failed to pass a given peak height threshold in all files.

between peak height of each peak and birth weight data.
Since, none of the co-variate data for the study participants
were publicly available at the MetaboLights entry for the
study, the correlation analysis can be considered as a crude or
un-adjusted linear regression model. The correlation analysis
suggested that 623 peaks in the complete aligned peak table
were significantly associated with birth weight after adjusting
for multiple hypothesis testing by a false discovery rate (FDR)
cutoff of 0.05. On a peak height threshold of 10,000, 80% of those
significant peaks were rejected (Figure 4) which was consistent
with the overall peak rejection rate (Figure 3). The results
highlighted that a combination of peak height and detection
frequency thresholds has rejected peaks that indicated significant
associations between metabolic pathways and birth weight.

A complete list of peaks that were significantly associated
with birth weight is provided in Supplementary Table 2. Top
50 significant peaks are shown in the Table 5 to demonstrate
few examples of missed metabolic insights because of stringent
data processing thresholds. First three peaks share the same
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FIGURE 3 | Detection frequency cutoffs and peak rejection in LC/MS data

processing. For each peak height cutoff (1,000, 2,000, 5,000, 10,000, and

20,000) (TH2), a count of total retained peaks which were found in at least one

sample was obtained as shown by the % values on each curve. Y-axis shows

the loss of peaks as a function of detection frequency cutoffs. For example, at

a detection frequency cutoff of 50% and peak height cutoff of 10,000,

additional 20% peaks will be lost, retaining only 10% peaks.

FIGURE 4 | Rejection of biological relevant peaks by peak height and

detection frequency thresholds. For each peak height threshold (1,000, 2,000,

5,000, 10,000, and 20,000), a count of total peaks that were associated with

birth weight are shown in the inside table. Y-axis shows the additional loss of

peaks as a function of detection frequency cutoffs. For example, at a detection

frequency cutoff of 50% and peak height cutoff of 10,000, additional 100

significant peaks will be lost, yielding retainment of only 84 peaks.

retention time, suggesting they may have fragmented from a
single compound in the ESI ion-source. The peak ofm/z 412.3035
and RT 5.75min is a putative hydroxy acyl-carnitine, indicating
that acyl coenzyme A-dehydrogenases may play a role in birth
weight. The peak of m/z 289.2162 and RT 4.83min. is a putative
C19 steroid hormone, probably testosterone which have been
previously linked with birth weight (42–44). Both of these peaks
passed the 60% coverage cutoff (TH4) but failed to pass the
10,000 peak height in 2% sample cutoff (TH3) and therefore
were missed in the original publication’s statistical analysis
(Table 5). Querying the m/z values for top 50 peaks against

the Metabolomics Workbench RefMet database (45) suggested
that a majority of them belong to lipid, acyl-carnitine and
aromatic chemical classes. We cannot confidently annotate these
peaks with chemical structures without analyzing the authentic
standards using the same analytical conditions, these suggestive
chemical annotations can be useful to derive new metabolic
hypotheses for the birth weight and to conduct follow up studies.

DISCUSSION

Untargeted chemical analysis of blood specimens has a
great potential in the exposome research to expand our
understanding about the hazardous effect of chemical exposures,
to identify risk factors for disease and to identify biomarkers for
physiological disturbances. Our analysis highlights how various
data processing thresholds affect the comprehensiveness of the
data matrix in untargeted chemical analysis of human blood
samples in a large epidemiology scale study. Our key conclusion
is that to maximize the impact of untargeted chemical analyses in
the exposome and in broader metabolomics research, different
thresholds that are used in the data processing workflows
(Figure 1) should be avoided or used at a minimally possible
level. We have shown that how a combination of these thresholds
has rejected peaks that could provide new insights into the
biological relationships among C19 hormone, hydroxylated
acyl-carnitines and birth weight. Poorly explored and under-
represented untargeted chemical analysis datasets are missing
opportunities to expand our understanding about hazardous
effect of chemical on human health.

Low abundant and non-ubiquitous signals precisely reflect
the exposome phenotype of an individual (46). Small molecules
at a low concentration tends to carry more risk for diseases
(47, 48), need regulatory guidelines and biomonitoring (49, 50),
are biologically more active and several are toxic. Whereas,
high abundant and ubiquitous small molecules in blood are
originating from normal endogenous metabolic pathways, carry
less risk and are less toxic (11, 51). Data processing thresholds can
inappropriately reject peaks for these highly relevant compounds
in the former category for exposome research. A previous
study has highlighted the negative effect of these thresholds
on comprehensiveness (52) of untargeted data matrices, but
it has not yet been demonstrated for a large-scale study with
∼500 samples.

A highly sparse data matrix with the peak distribution skewed
toward low abundant peaks realistically represent the expected
blood exposome in an epidemiology study. There are several
reasons to support it. (1) limit of detection for the method
and analytical instruments so a peak will be detected only
in samples in which it was sufficiently abundant (2) many
endogenous compounds are found at the low abundant level
because of the evolutionary advantages of enzyme promiscuity,
providing structurally diverse low abundant compounds (53–
55) (3) intermediate substrates in a metabolic pathways have a
short life-time and less accumulation because of high affinity of
enzymes in non-rate limited steps (4) many compounds are not
ubiquitous and show a tissue and organ specificity so they can
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TABLE 5 | Top 50 peaks that were significantly associated with birth weight using a spearman correlation coefficient corrected for multiple hypothesis testing using the

FDR approach.

Retention time m/z p-value (birth weight) Maximum peak height Passed 60% detection threshold Passed the 10,000 peak height in

in at least 2% samples threshold

3.664 549.1632 3.12E-12 3,703 No No

3.663 487.1944 2.25E-11 5,983 No No

3.665 518.1235 9.11E-11 1,624 No No

5.566 416.3373 1.52E-10 4,241 No No

5.751 412.3035 1.62E-10 11,160 Yes No

8.868 402.7667 3.32E-10 17,350 Yes Yes

8.866 788.5606 3.61E-10 14,002 Yes Yes

3.655 482.2388 3.88E-10 34,862 Yes Yes

3.662 429.1907 8.25E-10 3,790 No No

4.834 289.2162 8.61E-10 11,937 Yes No

9.05 766.5737 1.25E-09 5,761 Yes No

4.704 351.5335 2.27E-09 1,564 No No

8.87 394.7769 2.81E-09 3,892 No No

4.703 326.5377 4.22E-09 1,922 No No

5.702 456.3321 4.23E-09 2,804 No No

4.225 390.2097 4.75E-09 8,354 No No

8.399 407.766 5.07E-09 2,780 No No

8.402 776.5789 5.25E-09 3,936 No No

5.796 367.157 5.64E-09 4,124 No No

0.613 144.1254 6.27E-09 11,772 Yes No

0.813 287.2451 8.31E-09 2,335 No No

0.599 390.3455 8.39E-09 6,976 No No

8.961 386.7638 8.64E-09 21,069 Yes Yes

8.863 766.5765 9.28E-09 60,338 Yes Yes

9.078 385.3477 1.10E-08 50,276 Yes Yes

4.704 567.123 1.32E-08 8,785 No No

4.704 582.0884 1.43E-08 10,873 Yes No

8.961 756.5529 1.65E-08 12,703 Yes No

4.705 342.5484 1.81E-08 3,836 No No

5.648 463.2338 1.84E-08 15,180 Yes Yes

4.846 475.1308 2.74E-08 2,328 No No

5.307 464.6273 2.91E-08 1,382 No No

3.828 274.0564 3.24E-08 2,644 No No

8.962 734.571 3.95E-08 44,901 Yes Yes

4.71 328.0402 4.45E-08 2,742 No No

0.606 287.2457 4.93E-08 116,177 Yes Yes

4.703 550.0624 5.80E-08 3,398 No No

9.466 416.7825 5.81E-08 3,475 No No

4.704 482.1513 5.84E-08 15,513 Yes No

4.705 310.5219 6.33E-08 2,155 No No

8.958 453.8122 6.82E-08 1,363 No No

6.279 492.3678 6.96E-08 1,687 No No

4.7 587.0983 7.11E-08 2,010 No No

4.838 271.2058 7.36E-08 9,064 Yes No

3.831 358.0548 7.46E-08 2,924 No No

4.703 487.1076 7.86E-08 14,291 Yes No

5.311 503.1375 8.51E-08 3,875 Yes No

9.076 407.3296 1.03E-07 29,957 Yes Yes

4.704 535.0978 1.06E-07 4,169 No No

Sixty percentage threshold indicates that the peak was found in at least 300 samples and the last column indicate that the peak must have a 10,000 peak height in at least 10 samples.

These two thresholds were used in the original publication (39).
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only be detected in blood samples from individuals with organ
specific damages (56). (5) Exogenous compounds correlate with
diet, exposures and other lifestyle factors which are known to vary
greatly among general population (5). Therefore, for a blood or
urine analysis, it is expected that many small molecules will be
found in few samples and often on the low abundance levels.

A majority of exposome chemicals are at low abundance
and tend to be less ubiquitous (46). It is a common situation
that exposures above a threshold level can be present in blood
specimens for only a few individuals (57, 58) and majority of
the population will not be exposed to certain chemical unless
we are studying a focused population such as metal-industry
workers and firefighters. It is known that commonly used LC/MS
instruments can have a four to five orders of dynamic range
(52) and limit of detection (LoD) for an untargeted assay can
be 0.02 ng/l for environmental pollutants (59). Any chemical
compound present in a human biospecimen can be considered
an exposure for an exposome wide-association study and a
11-order magnitude of concentration range is expected for
compounds in the human blood (11). An untargeted LC/MS
assays using an instrument having 4–5 order dynamic range and
an optimized sample preparation can cover a significant portion
of the exposome and metabolome, but a use of higher intensity
thresholds and detection frequency threshold can miss many
relevant compounds that were actually presented in the raw data.
Merely, the presence of a hazardous chemical in an untargeted
chemical analysis data of a blood specimen can be alarming since
it shows that the level is higher than the expected LoD of that
assay which can be higher than the safe level of an exposure.

We acknowledge that the annotation of low abundant peaks is
a major challenge in the field of metabolomics and exposomics.
It needs a holistic approach to get proper experimental MS/MS
spectra and to prioritize their candidate structures for a
confirmation by authentic standards (60–62). Furthermore,
several detected peaks can correspond to in-source fragments,
artifact and solvent contaminants, and removal to those peaks
require a data filtering strategy such as blank subtraction or
filtering by inconsistent intensities in a quality control sample.
However, a peak that is strongly associated with a phenotype
of interest will unlikely to be corresponding to a non-biological
chemical compound. The critical limitation of a quality control
(QC) sample based filtering and normalization approach is that
it does not work for sparse matrices and excludes compounds
that are low abundant and have a lower detection frequency.
Our analysis underscores the need for development of data
normalization strategies for sparse matrices which may or may
not have a compound present in a QC sample.

Because quality control or blank samples were not submitted
in the EBI Metabolights entry for the study, we are limited
in terms of filtering data by additional methods. But a
negligible drift in the ESI signal in total ion chromatograms
and extracted ion chromatograms across 499 files was observed
(Supplementary Figures 1, 2), suggesting that a QC based
correction was not needed for this study and importantly a
peak that is significantly associated with a phenotype will have
a minimum likelihood of being falsely detected. MS-DIAL may
have included some spurious peaks in the data matrix because

of lower TH1–TH4 thresholds. However, the gain of using
minimum levels of these thresholds out-weighs the risks of
having few extra spurious peaks, as it finds more potential
biomarkers and the ones that are strongly correlated with a
phenotype as we have shown in the manuscript. Since, the
primary application of untargeted LC-MS assays is to generate
new hypotheses, a false-negative rate is more concerning.

These data processing thresholds were originally developed
for processing untargeted chemical analysis data to study central
metabolic pathways or universal pathway such as Krebs cycle
intermediates (63) or lipid metabolites (64–66), but exposome
research warrants that we detect and report all the chemicals
present in the untargeted data at any possible level and at even in
one sample. There has been development in the direction to build
automated workflows that reject peaks using machine learning
models (67) and rule based approaches (68), and those tools can
be used to filter out low abundant peaks with a poor quality.

CONCLUSION

Low abundant and less ubiquitous compounds in untargeted
chemical analysis is an under-mined repertoire of missing
biology and metabolic hypotheses in the metabolomics and
exposome research. However, use of different thresholds during
peak detection, alignment and statistics steps to reject LC/MS
peaks constraints the untargeted analysis to only ubiquitous
and core metabolic pathways. Therefore, for the exposome
research, untargeted chemical analysis data matrices should
be generated using minimally or no thresholds during data
processing which can be achieved using MS-DIAL, a freely
available software for processing epidemiology scale untargeted
LC/MS datasets. A re-analysis of the case study data suggests
a role of C19 steroids and acetyl dehydrogenase enzymes in
regulating the birth weight, a biological insight that was missed
in the original publication.
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Supplementary Figure 1 | A negligible drift in the ESI signal across 499 files.

Calibration compound (m/z = 922.0098) was injected on a constant flow rate by a

secondary HPLC pump directly into the ESI ion-source. In case of a significant

signal drift, a gray to black gradient in this plot would appear according to the

injection order. Absence of such gradient shows a negligible signal drift in the

study.

Supplementary Figure 2 | A negligible drift in the ESI signal across 499 files as

demonstrated by overlaying total ion chromatograms. In case of a significant signal

drift, a gray to black gradient in this plot would appear according to the injection

order. Absence of such gradient shows a negligible signal drift in the study.

Supplementary Figure 3 | Demonstration of a negligible drift in retention time for

the peak of PC 32:0 (m/z 734.57).

Supplementary Figure 4 | Demonstration of a negligible drift in retention time for

the peak of tryptophan (m/z 205.0976).

Supplementary Figure 5 | Demonstration of a negligible drift in retention time for

the peak of AC 16:1 (m/z 398.3264).

Supplementary Table 1 | MS-DIAL parameters that were used for processing

the LCMS data files.

Supplementary Table 2 | Correlation between birth weight and LC/MS peaks as

computed by the spearman correlation coefficient.
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