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A Novel Unsupervised Algorithm for 
Biological Process-based Analysis 
on Cancer
Tianci Song1, Sha Cao2, Sheng Tao2, Sen Liang1,2, Wei Du1,2 & Yanchun Liang1,3

The aberrant alterations of biological functions are well known in tumorigenesis and cancer 
development. Hence, with advances in high-throughput sequencing technologies, capturing and 
quantifying the functional alterations in cancers based on expression profiles to explore cancer 
malignant process is highlighted as one of the important topics among cancer researches. In this article, 
we propose an algorithm for quantifying biological processes by using gene expression profiles over a 
sample population, which involves the idea of constructing principal curves to condense information 
of each biological process by a novel scoring scheme on an individualized manner. After applying our 
method on several large-scale breast cancer datasets in survival analysis, a subset of these biological 
processes extracted from corresponding survival model is then found to have significant associations 
with clinical outcomes. Further analyses of these biological processes enable the study of the interplays 
between biological processes and cancer phenotypes of interest, provide us valuable insights into 
cancer biology in biological process level and guide the precision treatment for cancer patients. And 
notably, prognosis predictions based on our method are consistently superior to the existing state of art 
methods with the same intention.

Many biological processes are rewired or reprogrammed during cancer initiation and progression. Therefore, 
identifying the involved biological processes and quantifying their levels of deregulation over a sample population 
are significant toward understanding cancer behaviors. Moreover, linking deregulation of biological processes 
in cancer patients with sensitivity to therapeutics that target the key components of these biological processes 
provides us an opportunity to guide personalized medicine1, 2. Advances in modern technology have enabled 
us to measure the mRNA abundance at a whole genome scale, and also these have led to comprehensive cata-
logs of diverse molecular functions underlying biological processes in cancers. Therefore, it is essential to design 
a method with capability of quantifying biological processes by integrating gene expression profiles to reveal 
the general aberrations residing in cancers, as well as enabling the patient specific deregulations of biological 
processes.

Nevertheless, there are at least two challenges. Firstly, in the era of high-throughput technology, we are con-
stantly facing large-scale datasets enriched with information, but complex in the feature size and the intrinsic 
structure. And traditional methods using gene expression data in biological process analysis only target the sin-
gle gene, such as oncogene or tumor-suppressor, while they cannot accurately and comprehensively unveil the 
variations as a result of combined effects of associated genes involved in a biological process. It is thus natural to 
transform gene level information into biological process level information so that we not only reduce the data 
dimensionality but also summarize the patterns of biological processes exhibited by the intrinsic structure of gene 
expression data themselves. Secondly, almost all the existing methods try to measure the activity of a biological 
process for entire sample3–5, but actually they do not provide any useful information on deregulation of that bio-
logical process in cancer. In order to guide personalized understanding of cancer biology, our method focuses on 
deducing independently, for every concerned biological process, a score that can represent the relative extent to 
which the pathway is deregulated in every individual sample.
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For quantifying biological processes, there exist two popular frameworks. One of them characterizes the dereg-
ulation of biological process by deducing score for each sample based on network structure, such as PathOlogist6, 
as well as Pathway Recognition Algorithm using Data Integration on Genomic Models (PARADIGM)7. But the 
truth is that, at least for now, for some complicated biological process, we only have a rough understanding about 
its mechanism and relationship among its components, that is, we do not have a clear and complete map of the 
network structure. Moreover, lack of essential relevant data, such as protein data which PARADIGM requires, 
further limits usage of these methods in many occasions. Another framework does not rely on network infor-
mation of biological process, such as Gene Set Variation Analysis (GSVA)8, which estimates variation of gene set 
belonging to a biological process over the samples. It starts evaluating differential expressed gene in each sample 
in the context of the current sample distribution, that is, constructing statistics of expression level and ranking 
these statistics for each sample on each gene, then condensing the statistics of gene expression level into biological 
process level scores by calculating sample-wise enrichment scores. However, GSVA is biased in scoring biological 
process where all genes have the same pattern, and yields less informative score for each sample9.

In this article, we have developed an unsupervised learning algorithm called Local Principal Curve (LPC), 
which is based on the theory of Principal Curve (PC)10, to quantify the variations of each biological process for 
each individual sample. Our algorithm successfully bypasses the shortages of the conventional approaches, such 
as explicitly encoding phenotypes within biological process scoring algorithms, or restricting to detailed knowl-
edge of the network, and further concentrates on summarizing patterns in context-specific manner. Principal 
curve generalizes the principal component line, aiming at passing the middle of the data cloud, and further pro-
vides a smooth one-dimensional curved approximation to a set of data points in Rp. The existing principal curve 
algorithms mainly take two following strategies: “top-down” strategy and “bottom up” strategy. The “top-down” 
strategy is usually used in traditional principal curve algorithm, it starts with a straight line, which is usually the 
first component of the whole data set, and tries to find the principal curve iteratively by minimizing the average 
squared distance between data points and corresponding projections to the curve. And the “bottom up” based 
strategy is applied in our LPC algorithm, it concatenates piece-wise curves that are determined by local neighbor-
hood of currently considered data point. Comparing the two strategies, we find the second strategy seems to be 
more appropriate in finding principal curve, since the stretch of principal curve depends on the local distribution 
of data points rather than an initial line can effectively characterize complex data, such as circled and spiral data, 
even data with multiple branches. Our quantifying algorithm adopts the second strategy to construct princi-
pal curve characterizing the intrinsic structure of a biological process, through which we can obtain Biological 
Process Score (BPS) for each biological process and sample.

To demonstrate the biological process deregulation scores obtained using our method indeed capture biologi-
cally and clinically relevant information in a sensible manner, we applied these biological process scores to model 
survivals of breast cancer as a case study. With the BPSs yielded by our method as inputs, we constructed a bio-
logical process based model that selected several biological processes are highly correlated with clinical outcomes, 
and these BPSs perform best in prognosis prediction in comparison to existing methods. Moreover, we found 
that the biological relevancies with compelling evidences between selected or cancer hallmark related biological 
processes and breast cancer have been referred to in many existing researches.

Results
The Outline Overview.  The outline of proposed algorithm is shown in Fig. 1. The input for biological pro-
cess quantifying algorithm is a gene expression matrix with n samples and p genes, and k selected gene sets which 
are involved in specific biological processes. For each selected gene set, its corresponding expression matrix is 
preprocessed through Principal Component Analysis (PCA), to further maintain the stability and robustness 
of the following biological process scores. The suitable principal components are elaborately chosen and then 
used to construct mapping space (see Methods). With these principal components, each sample can be pro-
jected to mapping space as a data point. Then, the LPCs are stretched with a starting point that is usually the 
central point of reference samples, such as normal samples, or the point with the highest density among samples 
chosen through density estimation. They gradually proceed the data cloud in a localized way until reaching the 
data cloud’s boundary (see Methods). And further, we use the length along the LPC between the endpoint and 
the point of associated sample after projecting onto the LPC to estimate BPS (see Methods). The output of our 
method is matrix consisting of BPSs.

Model based on BPS matrix performs best in identifying biological processes predictive of can-
cer survival.  In this article, we first applied our method on a breast cancer dataset GSE3494 with abundant 
clinical information that includes 236 samples over 1330 biological processes, and obtained corresponding BPS 
matrices (see Method). To validate the effectiveness and robustness of our BPS matrix, we compared our BPS 
matrix with PAM50 gene expression matrix11 and pathway-based deregulation score (PDS) matrix yielded by 
Pathifier12 respectively. Here, PAM50 is a gene set designed for subtyping breast cancer, and also has satisfactory 
performance in breast cancer prognosis13, and Pathifier is derived with the same intention as ours, but using prin-
cipal curve method with classical “top-down” strategy, and was believed to be the best currently available method 
for deducing gene set level scores14.

We selected those biological processes whose scores are significantly associated with breast cancer survival. 
To do so, we applied L1-LASSO penalized multivariate Cox proportional hazards (Cox-PH) model15 on the BPS 
matrix, PAM50 gene expression matrix and PDS matrix respectively with sample survival status as the response 
variable, and scores of each biological process or expression values of each gene as predictor variables. And then 
we calculated the significances of associations between the three matrices and various clinical outcomes. The 
scores for the three matrices and their associations with various clinical outcomes are shown as heatmaps in 
Fig. 2.
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Compare to PAM50 gene wise expression matrix and PDS matrix by the same survival analysis model respec-
tively, BPS matrix is more prognostic for survival status, meanwhile, has high correlation with clinical outcomes. 
This conclusion can be confirmed by following two observations: 1) Dichotomized samples of high risk and low 
risk group through hierarchical clustering of BPS matrix have higher correlation to survival status (Chi-square 
test p-value = 2.43e-4), in comparison with PAM50 gene expression matrix (Chi-square test p-value = 1.62e-2) 
and PDS matrix (Chi-square test p-value = 5.36e-4). 2) Clinical factors such as ER status, PR status, p53 mutation 
status, lymph node status and grade, have stronger association with those two groups dichotomized by cluster-
ing BPS matrix (Chi-square test p-value 6.36e-2, 1.96e-3, 6.63e-7, 9.24e-4 and 3.92e-11), in comparison to PDS 
matrix (Chi-square test p-value 9.97e-2,8.50e-3, 2.20e-5, 1.48e-2 and 1.87e-7) and PAM50 matrix (Chi-square 
test p-value 6.61e-1, 5.38e-1, 3.78e-1, 7.07e-3, 1.82e-4).

To further validate the effectiveness and robustness of BPS matrix, we introduce Prognostic Index (PI) value, 
which is logarithm of hazard ratio obtained from L1-LASSO COX-PH model, as a measure of survival risk for 
each sample (see Methods). Sample with higher PI value tends to have a severe survival status. Therefore, we 
evaluated the effectiveness and robustness of BPS matrix via the following two approaches involving in PI: 1) 
Estimating survival difference between low risk and high risk groups dichotomized by PI threshold, via calcu-
lating Wilcoxon log rank test p-value of Kaplan-Meier survival curves based on these two groups. 2) Calculating 
area under the curve (AUC) of ROC based on binary classification through treating PI as a likelihood of survival 
status.

We applied leave one out cross validation (LOOCV) to assess the effectiveness and robustness of BPS matrix. 
As to the first approach, we trained L1-LASSO COX-PH model using training samples at each fold, and then 
predicted PI value for test sample using the coefficients fitted in the training model. Test sample was further 
labeled with either low or high risk through comparing its predicted PI to PI threshold, which was determined 
from the training model to match the ratio of alive versus dead samples of training and used to dichotomize the 
training samples into higher risk and lower risk groups. Then, we calculated Wilcoxon log rank test p-values of 
Kaplan-Meier survival curves based on these two risk groups for training result (2.95e-10) as well as LOOCV 
result (8.79e-5) respectively. By contrast, we obtained the Wilcoxon log rank test p-values from PAM50 gene 
expression matrix for training result (2.22e-3) as well as LOOCV result (3.76e-1), and from PDS matrix for train-
ing result (4.91e-9) as well as LOOCV result (9.1e-3) using the same procedure described above respectively. As 
to the second approach, we regarded PI as likelihood to survival status, and calculated AUCs for training result 
(0.78) as well as LOOCV result (0.69). In contrast, we also calculated AUCs for training result (0.71) as well as 
LOOCV result (0.47) based on PAM50 gene expression matrix, and for training result (0.74) as well as LOOCV 
result (0.62) based on PDS matrix, see Fig. 3. The BPS matrix shows the best results both in significance of corre-
lation with clinical factors and performance of prognosis prediction. And we conducted the same experiments on 
other two datasets, GSE1456 and GSE4922, BPS matrix consistently performs better than PAM50 gene expression 
matrix and PDS matrix. (see Supplementary Figures S1 and S2).

Figure 1.  An example of quantifying biological processes based on Local Principal Curves (LPCs) algorithm. 
The input for the proposed method are a simulated gene expression matrix with n samples and p genes, and k 
biological processes we concern. 1) For selected biological process, we preprocess expression matrix of these 
three genes involved in by Principal Component Analysis (PCA), and then, and we then choose suitable 
Principal Components (PCs) to construct mapping space (see Method). To keep things simple, we here identify 
gene with PC. The plot intuitively illustrates the distribution of samples in mapping space consisting three 
PCs. 2) We stretch LPC with a starting point and compute projection indices for samples as Biological Process 
Scores (BPSs). (see Method). The plot illustrates a well-defined curve passes through data cloud with samples 
projecting onto corresponding position on the curve. The output of the proposed method is a matrix consisting 
of BPSs.

http://S1
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Moreover, we further evaluated the effectiveness and robustness of BPS matrix considering batch effect across 
datasets. We used one dataset (GSE3494) as training data, and two other independent datasets (GSE1456 and 
GSE4922) as testing data. As to the first approach, we trained L1-LASSO COX-PH model using the training data, 
and then predicted PI value for test data using the coefficients fitted in training model. All samples in the training 
data were divided by PI threshold into low risk and high risk groups, where the ratio of these two risk groups 
matches the ratio of alive versus dead samples in training data. And the same PI threshold was applied to dichoto-
mize the testing data. We repeated the experiments based on the above two approaches and examined the results 
from two independent datasets, then found that the Wilcoxon log rank test p-values of Kaplan-Meier survival 
curves from BPS matrices of testing data (4.42e-2 and 4.79e-2) are more significant in comparison to those from 
PAM50 gene expression matrices (1.5e-1 and 3.26e-1) and PDS matrices (5.3e-1 and 7.65e-1), and the AUCs from 
BPS matrices of testing data (0.54 and 0.57) are better than those from PAM50 gene expression matrices (0.42 and 
0.53) and PDS matrices (0.40 and 0.55). The BPS matrices still consistently show the best results both in signifi-
cance of correlation with clinical factors and performance of prognosis prediction (see Supplementary Figure S3).

The relevance of selected biological processes to cancer.  As for biological processes selected, we fur-
ther explored their associations to related cancer. In this article, we used breast cancer as a case study and found 
that some of biological processes related to signal transduction are observably highlighted. One of these signaling 
biological processes is REACTOME SIGNALING BY ERBB4, where ERBB4, also known as HER4, belongs to 
epidermal growth factor receptor (EGFR) subfamily of receptor tyrosine kinases. Supporting role in promoting 
growth of breast cancer cells, signaling by ERBB4 also has been suggested to induce differentiation and apoptosis 
of breast cancer cells16, 17. The second one is KEGG CALCIUM SIGNALING PATHWAY, which plays an impor-
tant role in the regulation of a variety of key processes in breast tumorigenesis such as proliferation, migration, 
invasion, cell death and angiogenesis18, 19. Also, it is worthy to note that the alterations of calcium signaling path-
way are widely observed among different breast cancer subtypes, which are mediated by different mechanisms 
and result in different functionality changes20, 21. And the third one is PID HEDGEHOG 2PATHWAY, which 
transmits information such as time and position dependent expression patterns to embryonic cells required for 
proper development. It plays a crucial role in vertebrate embryogenesis by controlling cell fate, patterning, prolif-
eration, survival and differentiation, and thus affects development from embryonic stage22, 23. Aberrant activation 

Figure 2.  The comparison of the association between selected biological processes and clinical outcomes 
among gene-based model and biological process-based models. The samples are divided into two groups by 
performing the hierarchical clustering on the PAM50 gene expression matrix, PDS matrix yielded by Pathifier 
and BPS matrix yielded by LPC of selected biological processes, respectively. Green and red colors represent 
alive and dead survival status of samples respectively, White and black colors are associated with positive and 
negative status of ER, PR, p53 mutation, and lymph node of samples respectively. Yellow, blue and dark green 
colors denote different grades of samples respectively. The p-values of these clinical outcomes and dichotomized 
two groups with relation to survival status are calculated using Chi-square tests.

http://S3
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of the hedgehog signaling pathway has clearly been tied to breast cancer development and progression24, 25. The 
last but not the least one is KEGG P53 SIGNALING PATHWAY. Its functionality in breast cancer has been exten-
sively reviewed regarding to its activation in response to cellular stress, initiating DNA repair and cell cycle arrest, 
as well as regulating apoptosis, metastasis and angiogenesis26, 27.

Then, we focused on biological processes about genetic information processing. The first one is PID CMYB 
PATHWAY, where c-MYB is the prototype member of a small family of transcription factors involved in cell sur-
vival, proliferation, differentiation and transformation, and it has been reported recently that c-MYB enhances 

Figure 3.  The comparison of the prognosis performance among gene-based model and biological process-
based models on GSE3494 dataset. The prognosis indices (PIs) for all samples in the dataset are calculated with 
associated models, and applied to dichotomize the samples into high and low risk groups in comparison to PI 
cutoff. The p-values of the survival difference between the two groups are calculated using Wilcoxon log-rank 
tests, and (+) denotes the censored observations. The ROC curves are generated by regarding PI values as 
predictions in comparison to survival status of samples. Leave one out cross validation (LOOCV) are performed 
to calculate Wilcoxon log rank p-values and AUCs across models. We found the Wilcoxon log rank p-values and 
the AUCs derived from the model based on BPS matrix yielded by LPC outperform than those derived from the 
models based on PAM50 gene expression matrix and PDS matrix yielded by Pathifier both in training and cross 
validating results.
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the migration and invasion in breast cancer28. The second one is REACTOME TRAF6 MEDIATED NFKB 
ACTIVATION, where NF-kB is a family of transcription factors that play critical roles in cell survival, prolifera-
tion, inflammation and immunity29. And, there are many evidences show the activation of NF-kB contributes to 
the breast cancer development and progression30.

And the rest of biological processes still remain strong associations to breast cancer. One of them should be 
noticed is BIOCARTA CTLA4 PATHWAY, where Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a key negative 
regulator of T cell activation. Within hostile local microenvironment and in distant organs, immune cells such 
as T cell and their mediators are known to facilitate metastasis formation31, 32. It has been demonstrated that the 
blockade of CTLA-4 augments endogenous responses to tumor cells, thus leading to tumor cell death in breast 
cancer33. And another one needs to be considered is REACTOME REGUALTION OF INSULIN SECRETION BY 
ACETYLCHOLINE, insulin of high level induces proliferative tissue abnormalities because of its strong anabolic 
effect of insulin, which results in stimulated DNA synthesis and cell proliferation34.

The relevance of selected cancer hallmark related biological processes to cancer.  In this arti-
cle, we also applied our method on the same breast cancer dataset over 229 cancer hallmark related biological 
processes (see Methods), and then obtained corresponding BPS matrix. And we then did the same experiment 
on this BPS matrix of cancer hallmark related biological processes, even though the correlation with clinical 
outcomes and prognosis prediction are slightly inferior to those derived from BPS matrix of biological processes 
from MsigDB above, it still performs better in comparison to either PAM50 gene expression matrix or PDS 
matrix of cancer hallmark related biological processes (see Supplementary Figures S4 and S5).

In the following part, we checked 6 biological processes from above survival model that are highly correlated 
to the malignancy (progression, invasion and metastasis) of breast cancer. Firstly, the genome instability is one 
of the most fundamental hallmarks of cancer, while the base excision repair pathway is the “gatekeeper” biolog-
ical process to ensure the genome integrity. It is widely observed that the deficiency of this biological process 
associates with the malignancy of breast cancer patients35. Furthermore, epithelial to mesenchymal transition 
(EMT) confers the trait of advanced or late stage cancer, which is induced by the redirection of TGF-β signaling1. 
The EMT program in breast cancer is also reported to be highly associated with cancer invasion and metas-
tasis36, hence it is valuable to evaluate the related biological processes in our analysis. We then analyzed the 
N-acetly gulcosaminyl transferase pathway, whose synergistic effect with TGF-β to induce EMT in breast cancer 
is reported37. Moreover, SMAD and its downstream target signaling pathway is also highlighted, where SMAD 
acts as the intracellular effector of TGF-β signaling pathway38. In addition, the extracellular matrix cell to cell 
adhesion pathway (EGS_Extracellular_Matrix_Cell_Adhesion) and the global intercellular signaling pathway 
(EGS_Signaling_Pathways) are included, both of which are reported to be highly associated with the invasion 
and metastasis of breast cancer39. At last, we also checked the immune detection pathways, especially the humoral 
immune responses, since this biological process is widely reported to have the anti-tumor role and its deficiency 
is observed during the breast cancer progression40.

Discussion
In this article, we propose a novel unsupervised algorithm based on local principal curve in acquiring intrinsic 
structure of biological process and quantifying corresponding biological process for each sample, which success-
fully bypasses the conventional method of explicitly modeling phenotypes of samples and network information 
of biological process within algorithm itself. The obtained biological process scores provide superior performance 
in survival analysis compared to scores yielded by Pathifier and expression values of PAM50 genes. Moreover, 
the selected biological processes in survival analysis are highly associated with breast cancer and even cancer 
hallmarks, and further can be exploited to target prognosis of breast cancer and even gain an insight into progress 
and development of breast cancer.

Notably, our algorithm is highly potential in detecting the complicated structure of biological process, includ-
ing spiral, bifurcation and even multiple disconnected branches. But in this article, we are constrained by gene 
expression data with insufficient samples, that is, there exist large gaps among different types of samples in some 
mapping spaces of biological processes. We will try to collect more samples in further study to more accurately 
and completely capture the subtle changes. And even if samples are adequate, they may be unevenly distributed 
in mapping space of a specific biological process, we cannot reach a comprise between characterizing subtle 
information and picturing the whole underlying structure of a biological process when using the same step and 
bandwidth in each movement of localized center of mass. Therefore, we will further work on improving our 
algorithm in selecting a data-adaptive parameter dynamically. As for values of the deregulation scores produced 
by our method, they can only be acted as an estimation of the relative extent to which the behavior of biological 
process in a sample deviates from the designated sample, we still cannot use these scores to mine the real changes, 
such as up- and down- regulation, or fluctuations over time in biological process. We will further make efforts to 
find a reasonable way to address this issue.

Furthermore, there still exists some information cannot be reflected in individual omics data, such as gene 
expression data that we used in this article. It is necessary to consider extending our algorithm to integrate mul-
tiple omics data in a reasonable manner. More efforts have been made in modeling cancer hallmarks with their 
network for gain some insights into cancer biology, and they have generated many interesting results41–43. Next, 
we will try to link our scores of the cancer hallmark related biological processes to their networks for each individ-
ual patient, and generally infer the process of the changes over variation of scores in these cancer hallmark related 
network, which will have substantial impact on understanding the mechanisms of tumorigenesis and cancer 
development, even guiding personalized treatment and prevention of cancer.

http://S4
http://S5
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Methods
Data Summary.  In this study, we collected three breast cancer datasets GSE349444, GSE145645, GSE492246 
from public database Gene Expression Omnibus (GEO)47. All datasets are measured on microarray platform of 
Affymetrix HG-U133A, including 236, 159, 249 samples with survival information respectively, and GSE3494 has 
more abundant clinical outcomes, such as status of Estrogen Receptor (ER), Progesterone Receptor (PR), Lymph 
node, P53 mutation and Grade etc. The annotated gene sets are obtained from Molecular Signatures Database 
(MSigDB)48. We used curated gene sets collection (C2 collection), which includes 217 biological processes from 
BIOCARTA49, 186 biological processes from KEGG50, 674 biological processes from REACTOME51 and 253 bio-
logical processes from Pathway Interaction Database52. And all cancer hallmark related gene sets we used in this 
article are gathered from literatures and databases by ourselves (see Supplementary Data files).

Data preprocessing and finding suitable mapping space.  Firstly, the variation of expression values 
may be largely affected by gene wide range scales. Hence, genes of absolute smaller variations caused by its intrin-
sic lower expression scales, are usually overwhelmed by those genes of higher expression scales. To eliminate this 
bias induced by different scales of gene expression values, we normalize gene expression values of tumor samples 
by first subtracting each gene’s expression value of each tumor sample by the mean expression value of the normal 
samples for the corresponding gene, and then dividing each gene’s expression value of each tumor sample by the 
variance of the normal samples for the corresponding gene when normal samples exist, otherwise, we normalize 
gene expression values of tumor samples by calculating z-scores. Here, to reduce technological noise or other 
biases, the gene expression data are processed using limma53 before our normalization procedure. And we reduce 
the batch effect across the datasets using Combat54. Each of normalized gene expression values is regarded as a 
degree to which a tumor sample deviates away from its corresponding normal samples in current gene expression 
scale. Besides, to avoid genes whose variations are attributable to noise, we exclude the genes whose variances 
lower than 25% of all genes.

In addition, it is noteworthy that some genes in the same biological process may be highly correlated, resulting 
in the redundant information that causes higher computation expense. However, some important information 
regarding to the functionalities of the biological processes may hidden in these genes. To counter this issue, we 
decide not to search principal curve for each biological process in its corresponding original space Sp denoted by 
all genes involved in that biological process, but in the subspace S′p of Sp spanned by first k principal components 
from gene expression data of that biological process. Here, k is identified by the number of principal components 
along which the variances exceed by more than 10% of those in normal samples.

Finding local principal curves and calculating projection index.  Assume that we have a data set X1, 
…, Xn, with Xi ∈ Rp. Local principal curves (LPCs)38 are based on the idea that, at each point x ∈ Rp along a prin-
cipal curve, the localized first principal component line forms approximately a tangent to the curve. Beginning 
with a starting point, x = x0 ∈ Rp, LPCs go successively through the data cloud, alternating between the following 
three steps:

	(1)	 Calculating a localized center of mass µ = ∑ = w Xx
i
n

i i1 , where = − ∑ −=w K X x X K X x( ) / ( );i H i i i
n

H i1
	(2)	 Computing the first local eigenvector γx of local weighted covariance matrix of x, Σ σ=

≤ ≤
( )

x

jk
x

jk p(1 )
, where 

σ µ µ= ∑ − −= w X X( )( )jk
x

i
n

i ij j
x

ik k
x

1  and µj
x denotes the j-th component of μx;

	(3)	 Using a predetermined step size t0 to iterate from μx to x = μx + t0γx along the direction of γx.
	(4)	 Stop forwarding when the boundary of data cloud is reached, or the difference of the previous and the 

current center of mass μx falls below a preliminary threshold.

The sequence of local centers of mass μx forms the local principal curve. Here, ⋅ = | | ⋅− −K H K H( ) ( )H
1/2 1/2 , with 

a multivariate kernel K and a positive definite bandwidth matrix = …H h hdiag( , , )p1
2 2 , which steers the size of 

local neighborhood and exhibits a strong influence on resulting estimate local centers of mass. The value of band-
width matrix can be selected through coverage properties of locating local centers of mass discussed in Einbeck 
et al.55. In this article, we arbitrarily choose 10% of range in each dimension for bandwidth matrix. Extensions to 
disconnected and branched curves are also considered in Einbeck et al.56, and easily implemented by using suita-
ble multiple starting points. The issue of crossing and oversteering can be handled by using angle penalization57. 
As only points in the local neighborhood are considered in each iteration, the algorithm is quite flexible, and 
robust to noisy data patterns.

For a fitted LPC consisting of L local centers of mass µ µ µ= …  ( , , )x x
p
x T

1 , = … L1, , , we try to seek a 
curve ∈{ }g t t I( ), g  which interpolates the local centers of mass. And this curve can be parameterized by the func-
tion below:

→ …I t g t g tR , ( ( ), , ( )) (1)g
p

p
T

1

where Ig ∈ R denotes the domain of g, and g is a vector function with p coordinates, each smooth function shares 
the same parameter t. The parameter t corresponds to the projection index, whose variation traces all points along 
the curve. One ending point of the curve is chosen to be the origin corresponding to t = 0.

	(1)	 Computing a discrete, preliminary parameterization ≤ ≤ 

s( ) L(1 ), with the same origin as t, by adding up the 
Euclidean distances between subsequent µ = …

 L, 1, , ;
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	(2)	 For each dimension j = 1, …, p, interpolating the points µ ≤ ≤





s( , )j L(1 ) by a cubic spline, yielding graphs 
µs s( , ( ))j . Integrating them together to obtain a continuous and differentiable spline function 

µ µ µ… ≡s s( , , ) ( ) ( )p
T

1 .
	(3)	 For each value of s within the support of the spline function, recalculating the parameter using the arc 

length,

∫ µ µ= + … +t u u du( ( )) ( ( )) (2)
s

0 1
2

1
2

and setting g(t) = μ(s). It should be noted that smoothing is not involved in previous steps. Once this parameter-
ization is established, each data point xi, i = , …, n can be projected onto the curve through finding the point on 
the curve which is nearest to it in Euclidean distance, meanwhile, yielding the projection index ti.

Scoring biological process and maintaining stability of biological process scores.  Now, we sup-
pose that there exists a p-dimensional space ′Sp, where each point in this space represents a sample with corre-
sponding component scores obtained from gene expression data after performing PCA. In accordance with our 
method, we indeed get a one-dimensional curve passing through the “middle of data cloud”, which best summa-
rizes the intrinsic structure of our data and quantifies all samples through projecting these samples onto curve 
itself. And subsequently, we compute their corresponding projection indexes, which further characterize the 
variability of the samples across ′Sp and provide us the chance to find the hidden factors (e.g. tumor progression) 
that comes from the variance of the biological process. Here, we assume that any two samples in ′Sp that have 
proximal projection onto the curve have similar biological functions.

As to the scoring biological process, we perform LPC based on “bottom-up” strategy mentioned above to find 
a principal curve in ′Sp with as starting point x0 (In fact, when there is no designated starting point, we will choose 
the point of highest density by applying mean shift on all points). Once such a principal curve is found, we project 
each data point xi representing i-th sample onto fi on the curve, and then calculate projection index ti along the 
curve between fi and the projection of one end point of curve f0 (as a matter of fact, we set f0 as x0 when there are 
normal samples as references). Then, we normalize all projection indices as biological process scores BSi, each of 
which measures the degree to which a given biological process of sample i is altered by tumor (see Fig. 1).

Similarly, some genes residing in a same biological process convey less useful information but keep high varia-
tions in seeking principal curves. For example, due to individual differences of samples or noises, their variations 
do not reflect information relevant to biology we are trying to capture. The principal curves may overwhelm 
subtle changes in biological process of tumors and disturb to keep the stability of principal curves. With respect 
to this situation, we prefer omitting these genes to avoid possible adverse outcomes above. Actually, principal 
components are linear combinations of genes, and the same considerations imply that we are also able to omit 
some redundant principal components from first k principal components to filter those noisy genes and evade 
finding unstable principal curves.

Survival analysis.  In this article, we use the COX-PH model for survival analysis with the assumption that 
log hazard ratios are constant over time for features. Suppose that we have a matrix Xp×n with each row repre-
senting a feature and each column representing a sample, COX-PH model characterizes the relationship between 
survival status and Xp×n as following:

= βh t h t eX( ) ( ) (3)X
0

T

where h0(t) is a hazard function only depends on time as baseline, β is a coefficient vector of corresponding fea-
tures. Subsequently, the relative hazard ratio between any two features Xi, Xj (1 ≤ i, j ≤ p) is independent on time 
and only determined by the differences of two features:

|
|

= β β−h t
h t

eX
X

( )
( ) (4)

i

j

X Xi i j j

We finally decide to use PI as an indicator of survival risk for individual sample to further evaluate the effective-
ness and robustness of BPSs in survival analysis, since for any sample Xk (1 ≤ k ≤ n) at one time, PI is relative 
constant to other samples, and can be represented as following:

β=PI X (5)k T k
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