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Abstract: Benzoxazine containing fluorinated aromatic ether nitrile linkage (FAEN-Bz) had been
synthesized from 2,6-dichlorobenzonitrile, 4,4’-(hexafluoroisopropylidene)diphenol (bisphenol AF),
3-Aminophenol, formaldehyde, phenol by condensation polymerization and Mannich ring-forming
reaction. Structures of the monomer were verified by Proton NMR spectrum (1H-NMR) and Fourier
transform infrared spectroscopy (FTIR). Curing behaviors and curing kinetics of designed monomers
were investigated and discussed. The activation energy was calculated and possible polymerization
mechanisms were also proposed. Then, properties of cured polymers including crosslinking degrees,
thermal decomposition, surface wettability and energy, and dielectric properties were studied and
discussed. Additionally, programmed integral decomposition temperature (IPDT) was also used to
evaluate the thermal stability of final polymers. Results indicated that the incorporation of benzoxazine
and nitrile resulted in increased thermal stability and char yields. Moreover, the surface wettability
and dielectric properties of poly(FAEN-Bz) can be easily controlled by tuning the curing temperatures
and time.

Keywords: benzoxazine; aromatic ether nitrile linkage; curing kinetics; thermal stability;
dielectric properties

1. Introduction

With the development of science and technology, thermosetting resins play an important role
in electronics, substrate materials, aeronautics-aerospace industry and new energy applications.
Thermosetting resins, like epoxy, cyanate ester, phthalonitrile, bismaleimide and so on, due to the
advantages including high specific strength and compressive strength, corrosion resistance, electrical
properties, light weight, high glass transition temperature (Tg) and outstanding bonding properties
were intensively investigated and applied in many high-tech areas [1–5]. For applications in particular
areas and human encountered with energy crisis, polymer-based materials with easy processing
were widely used to replace the conventional metal materials to reduce the weight and decrease the
costs [6,7]. However, common thermal stability (150–300 ◦C) and low glass transition temperature
(80–180 ◦C) of traditional polymers limit their further applications in the fields of aerospace, ocean,
car industry, new energy and electronic component packaging.

Phenolic resin possesses many good properties, such as low cost, dimensional stability, heat
resistance, electrical insulation, flame retardant and so on. It has been widely used in construction,
electronics, aerospace and other fields [8]. However, traditional phenolic resin often releases volatiles
which corrode the processing equipment during the curing process [9]. It will lead to the formation of
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micro-voids, and damage the performance of final materials. Benzoxazine resin is generated from
traditional phenolic resin which not only retains advantages of common phenolic resins, such as high
thermal stability, good mechanical properties, and better electrical properties, but also has some unique
properties superior to phenolic resins, such as rich molecular design flexibility, no small molecule
release during the crosslinking process, close to zero volume contraction, low water absorption,
and high Tg and high char yield [10].

In our previous work, novel kinds of benzoxazine with various active groups were designed
and fabricated [11,12]. All of the previous work indicated that the benzoxazine-based resin
containing nitrile groups and allyl possessed satisfactory properties in curing processing and
structural applications. For example, allyl-functional phthalonitriles-containing benzoxazine and
phthalonitrile-containing benzoxazine were successfully prepared with excellent properties like wide
process temperature (~80 ◦C), high modulus, high Tg (> 350 ◦C) and high thermal stability (T5% >

450 ◦C in N2). Unfortunately, benzoxazine-base resin is usual brittleness, insufficient toughness,
poor resistance to impact and stress cracking, which limit its wide applications in structural
materials with high toughness [13,14]. To improve the brittleness of thermosetting composites,
various methods were attempted, including the physical blending of thermoplastic and thermosetting
resins, the chemical bonding of long molecular segments into the thermosetting resin by molecular
designing. High-performance thermoplastic polymers such as poly(ether imide), polyaryletherketone,
poly(arylene ether nitrile) and amines (octanediamine and m-xylylenediamine) were blended with
benzoxazine resins to enhance the toughness [15–18]. Results indicated that the brittleness of the
composites was improved, but the incompatible also led to the decrease in thermodynamic performance.
Another efficient way to improve the toughness was to synthesize the benzoxazine resin with intrinsic
flexible molecular linkages. In this way, the prepared benzoxazine resin not only possessed the
improved toughness, but also can maintain the thermodynamic performance. Chen and their
co-workers reported three main-chain type benzoxazine polymers with improved toughness were
synthesized via bishydroxydeoxybenzoin and three kinds of aromatic diamines, respectively. As the
results showed that the thermal stability were maintained [19]. Thus, increasing researches focused on
the molecular designing to improve the final properties of thermosetting resins.

Recently, materials with high performance and low dielectric constant have attracted wide
attentions of researchers. Thermosetting and thermoplastic materials containing fluorine were
designed and prepared. The researchers investigated various kinds of benzoxazine resins containing
fluorinated groups such as bisphenol-AF [20], 1,4-tetrafluorobenzene or 4,4-octafluorobiphenylene
dioxyphenylene [21,22] in molecular chains. The results indicated that the introduction of fluorine
can serve the reducing of dielectric constants and dielectric loss. It was proposed that electron cloud
density of fluorine is high, so the polarizability of fluorine is low when polarized by external electric
field. At the same time, fluorine-containing groups with larger volume were introduced into polymer
molecules to increase the free volume between molecular chains to reduce the dielectric constants and
loss. Moreover, the introduction of fluorinated groups can improve the thermal properties of polymers
to a certain extent because of the high binding energy of C–F bonds (489 kJ/mol) [23,24].

Polymer bisphenol A-based poly(arylene ether nitrile) was a kind of high performance
thermoplastics, due to the aromatic ether nitrile linkage the polymer exhibited a high Tg

(>170 ◦C), outstanding tensile strength (>90 MPa) and excellent thermal stability (T5% > 480 ◦C
in N2) [17,25]. Herein, in this work, a molecular designing method was used to prepare modified
benzoxazine containing fluorinated aromatic ether nitrile linkage. The molecular structures, its curing
behaviors, kinetics, and possible polymerization mechanisms were investigated and discussed.
Also, properties including thermal stability, surface wettability and dielectric properties were
analyzed to discuss the influence of the fluorinated aromatic ether nitrile linkage on the properties of
benzoxazine-based polymers.
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2. Experimental

2.1. Material

4,4′-(Hexafluoroisopropylidene)diphenol (bisphenol AF) and 2, 6-dichlorobenzonitrile were
purchased from Tianjin BODI Chemicals, Tianjin, China. 3-Aminophenol (purity 98%) was provided by
Aladdin Industrial Corporation, Shanghai, China. N, N-dimethylacetamide (DMAc, AR), ethanol (AR),
toluene (AR), potassium carbonate anhydrous (K2CO3, AR), paraformaldehyde (AR), phenol (AR),
acetone and methanol were obtained from Chengdu Kelong chemicals Corporation, Ltd., Chengdu,
China. All of the chemicals were used as received without further purification.

2.2. Synthesis of the Amino-Terminated Fluorinated Aromatic Ether Nitrile Linkage (FAEN-NH2) Monomers

The amino-terminated fluorinated aromatic ether nitrile linkage was synthesized according to
our previous work with minor modifications [26,27]. The synthetic route was presented in Scheme 1.
In Scheme 1a, chlorinated terminated monomers (FAEN-Cl) were first synthesized in solvent of DMAC

and toluene (volume ratio 3:1), from 2,6-dichlorobenzonitrile and bisphenol AF in the presence of K2CO3.
This synthetic procedure was as follows. The solvent DMAC and toluene, 2,6-dichlorobenzonitrile,
bisphenol AF and K2CO3 were added in three flasks with a mechanical stirring and refluxing condenser.
The reaction was kept at 155–160 ◦C for 2 h to remove the water and toluene. After that, the temperature
gradually increased to 170 ◦C for 1 h. Then the system was cooled to 100 ◦C, 3-Aminophenol was
added into the solution and keept at 90 ◦C to prepare amino terminated monomers (FAEN-NH2).
The structures and prparation process were shown in Scheme 1b. The obtained mixed solution was
precipitated in deionized water. Then, the precipitation was purified several times with deionized
water and dried in a vacuum oven at 60 ◦C for 10 h.
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Scheme 1. The synthetic route of designed FAEN-Bz: (a) chlorinated terminated monomers (FAEN-Cl),
(b) amino-terminated monomers (FAEN-NH2) and (c) benzoxazine containing fluorinated aromatic
ether nitrile (FAEN-Bz).

2.3. Preparation of Bbenzoxazine Containing Fluorinated Aromatic Ether Nitrile (FAEN-Bz) Monomers

The FAEN-NH2 monomers were added into a bottle with moderate phenol and paraformaldehyde,
and ethanol and toluene was added as the solvent. Then, raising the temperature slowly to 80–85 ◦C
and maintained for 5 h to get FAEN-Bz solution. After that, the prepared FAEN-Bz with solution was
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placed into oven at 110 ◦C for 4 h to remove the solvents to obtain the FAEN-Bz resin [12]. The detailed
synthetic route was shown in Scheme 1c.

2.4. Preparation of Benzoxazine Containing Fluorinated Aromatic Ether Nitrile Polymers (poly(FAEN-Bz))

FAEN-Bz monomers were dissolved in DMAc (VDMAc:mFAEN-BZ = 1:1) with stirring at 50 ◦C for
30 min. Then, the FAEN-Bz solution was cast onto a clean glass plate in an oven with the sequential
temperature procedure at 80 ◦C for 1 h, 100 ◦C for 1 h, 120 ◦C for 1 h, 140 ◦C for 1 h, 160 ◦C for 2 h
and 180 ◦C for 2 h to remove the DMAc solvent. The basic curing program was carried out 200 ◦C for
4 h. To study the effects of curing degree on final properties, FAEN-Bz was heat treated at various
temperature conditions, including 220 ◦C for 2 h, 240 ◦C for 2 h, 260 ◦C for 2 h, and 280 ◦C for 2 h.

2.5. Characterizations

Fourier transform infrared spectroscopy (FTIR) spectra was recorded with Shimadzu FTIR 8400S
(Shimadzu, Kyoto, Japan) in KBr pellets. In situ FTIR spectra was characterized by PerkinElmer
Spectrum 200 (PerkinElmer, Waltham, MA, USA) with a heating rate of 10 ◦C/min from 50 ◦C to 300 ◦C.
Proton NMR (1H-NMR) spectra were obtained by Bruker AV400 nuclear magnetic resonance (NMR,
Bruker, Karlsruhe, Germany) spectrometer at a proton frequency of 400 MHz. Curing behaviors of
FAEN-Bz were studied by differential scanning calorimetric (DSC, Q100, TA Instruments, Newcastle,
DE, USA) under a nitrogen atmosphere with a flow ratio of 50 mL/min. Gelation time was performed by
Shanghai Yijia Electrical Co. Gel time tester (YJ139-LA38-11BN), Shanghai, China. Thermal gravimetric
analysis (TGA) tested on TA Instruments Q50 (TA Instruments, Newcastle, DE, USA) with a heating
rate of 20 ◦C/min under nitrogen from 50 ◦C to 800 ◦C. The fracture surface morphology of the
polymer was scanned though scanning electron microscope (SEM, JSM25900LV, JEOL, Akishima,
Japan) operating at 20 kV. Small angle X-ray scattering (SAXS, Bruker AXS D8, Karlsruhe, Germany) was
applied to investigate the phase morphology of cured FAEN-Bz. Surface wettability was characterized
with JY-PHa Contact Angle Tester (Chengde youte Testing Instrument Co., Ltd., Chengde, China).
Dielectric properties were tested by TH 2826 LCR meter (Tonghui Electronic Co., Ltd., Changzhou,
China), which was carried out at different frequencies (500 Hz–5 MHz) at room temperature.

3. Results and Discussion

3.1. Characterization of the Structures of FAEN-NH2 and FAEN-Bz Monomers

The molecular structure of FAEN-NH2 monomer and FAEN-Bz were investigated by 1H-NMR
(Figure 1) and FTIR (Figure 2) spectroscopy. In Figure 1a, the resonance peak appearing at 3.76 ppm
was assigned to the protons of amino groups. Resonance appearing at 6.82 and 7.46 ppm were protons
from aromatic rings with nitrile groups. In Figure 1b, resonances appearing at 4.64 and 5.35 ppm were
assigned to the methylene protons in oxazine rings [28]. Similarly, the aromatic protons with nitrile
groups were observed at 6.82 and 7.46 ppm, indicating that the designed structures were obtained.
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Figure 2 shows the FTIR spectra of FAEN-NH2 and FAEN-Bz. In Figure 2a, it was obvious that the
intensive absorption peak of nitrile groups appeared at about 2230 cm−1 [29]. An absorption band of
–C–F and –C–O–C of asymmetric stretching oscillations appeared at 1200 and 1245 cm−1, respectively.
Characteristic absorption band of –NH2 was observed at 3460 and 3381 cm−1 [30]. In Figure 2b,
the characteristic absorption band of antisymmetric oxazine ring stretch appeared at 953 cm−1 [16,31].
Moreover, a wide absorption band at around 3412 cm−1 was observed, which can be assigned to the
intermolecular association of hydroxyl bonds, generated from the trace hydrogen and nitrogen atoms
in benzoxazine rings. To sum up, results of 1H-NMR and FTIR spectroscopy confirmed the designing
structures of FAEN-NH2 and FAEN-Bz.
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3.2. Curing Kinetics of FAEN-Bz Monomers

3.2.1. Gelling Analysis of FEAEN-Bz Monomers

For thermosetting resin matrix, gel time was usually used to reflect the reaction activity and
curing behaviors. In this work, the gel time of FAEN-Bz at various temperatures were studied and
results were presented in Table 1. It can be seen that with increasing test temperatures, the gel time
significantly decreased. Moreover, when the temperature was 190 ◦C, gel time of FAEN-Bz was less
than 3 min, which had direct meaning to the preparation of FAEN-Bz polymer.

Table 1. Gel time of FAEN-Bz monomers at various temperatures.

Sample T/◦C T/K 1/T 1/T × 1000 Tgel/s lgTgel

1 150 423 0.002364 2.364066 1602 3.204663
2 160 433 0.002309 2.309469 1001 3.000434
3 170 443 0.002257 2.257336 619 2.791691
4 180 453 0.002208 2.207506 308 2.488551
5 190 463 0.002160 2.159827 169 2.227887
6 200 473 0.002114 2.114165 83 1.919078

According to the Arrhenius equation, the relationship between gel time (tgel) and reaction activity
(Eα) was presented as Equation (1).

lgtgel = Eα/(2.303RT) + A (1)



Polymers 2019, 11, 1036 6 of 19

From the equation, a plot of lgtgel vs. 1/Tα would result in a straight line with a slope of Eα/2.303R.
The plot of lgtgel as function of 1/Tα was shown in Figure 3. A good linear relationship is observed from
the plot and the average energy values (Eα) of FAEN-Bz was calculated as 98.7 kJ/mol from the slope of the
straight. The average activation energy value was slightly lower than that of benzoxazine (102–116 kJ/mol)
reported previously [32,33]. It was well known that the polymerization of oxazine rings began along with
that the oxygen or nitrogen atoms in oxazine rings were attacked by active hydrogen. Thus, increasing the
electron cloud around oxygen or nitrogen atoms was in favor to increase the activity of benzoxazine-based
monomers [34]. For FAEN-Bz, it can be attributed to the fact that electron withdrawing groups (nitrile
groups and fluorine atoms) have induced the πelectron cloud of benzene slightly shifted to O and N atoms
in oxazine rings, which accelerated the polymerization of FAEN-Bz.
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3.2.2. Kinetic Analysis by Differential Scanning Calorimetric (DSC)

Curing behavior tested with DSC could provide the data necessary for calculating the
time/temperature-dependent conversion of kinetic parameters. Figure 4 showed DSC curves of
FAEN-Bz at various heating rates. There was an exothermic peak in all of the curves, which indicated
that FAEN-Bz possessed one polymerization process. With increasing the heating rate, exothermic
peak became higher and moved to higher temperature range, which was dominated by the instrument
sensitivity and was accredited.

According to our previous work [32,35], conversion rates (α) were calculated and presented as functions
of curing temperatures in Figure 4b. It can be seen that increasing curing temperature, the conversion rates
α increased correspondingly. And increasing heat rates, the conversion rate α varied at the same curing
temperature, indicating heat rates would obviously affect the polymerization processes.

Based on the iso-conversion principle, temperature dependent of iso-conversion rate can be
utilized to calculate the activation energy. Among the various empirical equations, Straink proposed
somewhat more accurate estimates of Eα are accomplished when setting B = 1.92 and C = 1.0008,
so that the equation turns into Equation (2):

ln

 βi

TB
α,i

 = Const−C
( Eα

RTα

)
(2)

For the equation, a plot of lnβi/T1.92
α,i vs. 1/Tα value at the same fractional extent of conversion

from a series of dynamic DSC experiment at different heating rates would result in a straight line with
a slope of −1.0008Eα/R. The plots of lnβi/T1.92

α,i as a function of 1/Tα value for α = 0.1–0.9 are shown
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in Figure 5a. A good linear relationship is observed from the plots shown in Figure 5a. Repeating the
procedure, the Eα values corresponding to different α from DSC curing curves can be obtained and shown
in Figure 5b. From the plots, the values of apparent activation energies (Eα) were shown to be somewhat
dependent of the curing extent. It was obvious that Eα was independent of the curing extent in the range
from 0.1 to 0.6, while in the range from 0.7 to 0.9, Eα reduced significantly with the increasing of curing
extent. It can be ascribed to the piecewise polymerization of FAEN-Bz resin. When the curing extent was
low, polymerization of FAEN-Bz was dominated by chemical polymerization driven by thermos-motive,
and when the curing extent increased, polymerization translated to diffusion polymerizations, which were
dominated by the motion of molecular chains. Thus, the average value of Eα in the chemical polymerization
can be obtained in the range from α = 0.1–0.6, which was about 127 kJ/mol.Polymers 2019, 4, x FOR PEER REVIEW  7 of 20 
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Moreover, in comparison with the Eα obtained from gelation and thermodynamic analysis,
the average values were different. It may contribute to the different ways of collecting data. For the
gelation method, the analysis based on gelation time reflected the general polymerizations. In the
analysis of thermodynamic data from the results of the DSC, more details on the curing behaviors
were taken into consideration. Thus, thermodynamic analysis based on DSC may be more accurate in
the discussion of polymerization mechanisms.

3.3. Curing Behaviors of FAEN-Bz and Its Polymerization Mechanisms

DSC was used to characterize the curing behaviors of FAEN-Bz at different temperatures, shown
in Figure 6a. One obvious exothermic peak was obviously for FAEN-Bz, which can be assigned to
ring-opening polymerization of oxazine rings [12,36]. Elevating the curing temperature, exothermic
peaks shifted to a higher temperature range, indicating that the polymerization of oxazine rings was
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impressible to the heat treatments. As presented, the exothermic peak of FAEN-Bz treated at 180 ◦C
was obviously higher than that treated at 160 ◦C. As we know, the polymerization of self-catalyzed
resins were dominated by the ‘initiator’. For FAEN-Bz, the initiator of its polymerization was the
trace of active hydrogen remained in the resins. Thus, at a lower curing temperature, trace hydrogen
catalyzed the polymerization slowly and active hydroxyl groups generated from the ring-opening
reaction of oxazine rings. When the curing temperature increased, the generated hydroxyl groups
catalyzed the further polymerization of oxazine rings sharply [34]. Increasing the curing temperature
persistently, no obvious exothermic peaks can be observed in the range from 200 to 250 ◦C for the
poly(FAEN-Bz), shown in Figure 6a. According to the polymerization of pristine benzoxazine rings,
ring-opening polymerization occurred at around 230 ◦C and finished at about 260 ◦C. Thus, post-cured
treatment in this work was designed to obtain the completely cured poly(FAEN-Bz). Figure 6b showed
the thermal properties of poly(FAEN-Bz) cured at various temperatures, and obvious transformations
can be observed. With continue increasing the curing temperatures, transformations occurred in higher
temperature range. The tan δ of dynamic mechanical analysis (DMA) of glass fiber feinforced FAEN-Bz
composites (FAEN-Bz/GF) cured at 200 ◦C for 4 h and 240 ◦C for 2 h was presented in Figure S1.
Glass transition temperature (Tg) was about 233 ◦C.
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To further confirm the structural transformation during post-cured processes, FTIR spectra were
presented in Figure 7. In the spectra, characteristic absorption peaks/bands of ring-opened oxazine
rings and nitrile groups were marked. Obviously, absorption peak appeared at about 2230 cm−1

had no changes after being treated at various temperatures, which was ascribed to nitrile groups,
indicating that nitrile groups were not involved in the polymerization during the temperature from
240 to 280 ◦C [17,37]. In the previous work, nitrile groups participated into the polymerizations and
ring-forming polymerization occurred along with the ring-opening polymerization of oxazine rings at
about 240 to 280 ◦C [36,38]. The differences can be attributed to the phthalonitrile and single nitrile, which
showed distinct reactivity. During the polymerization of phthalonitrile, triazine and phthalocyanine
rings can be formed logically. For the single nitrile groups in FAEN-Bz, the ring-forming polymerization
was much difficult due to the low nitrile content and high steric hindrance. The characteristic
absorption observed at around 3289–3555 cm−1 can be mainly assigned to the intermolecular and
intramolecular H-bonds, which were formed between the hydroxyl and nitrogen atoms generated
from the ring-opening polymerization of oxazine rings [39,40]. As the references reported that the
intramolecular H-bonds could turn into intermolecular H-bonds when the temperature went on which
contributed to the increase of surfce free energy of cured matrix [41,42]. It was well known that the
formation of hydrogen bonds was sensitive to temperature. The intermolecular formation of hydrogen
bonds would be reduced at elevated temperature if the H-bonds were not sufficiently strong. It can
be seen that with increasing the treatment temperature, the absorption intensity of H-bonds slightly
decreased, indicating that the H-bonds were not stable at the temperature above 240 ◦C [40].
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In order to study the curing reaction of FAEN-Bz, the structure changes as a function of temperature was
characterized by in situ FTIR ranging from 50 to 300 ◦C. The results are shown in Figure 8. The characteristic
asorbtion at 953, 1200, 2230 and 3400 cm−1 were corresponed to the antisymmetric oxazine ring stretch,
–C–F, intermolecular and intramolecular association of hydroxyl bonds, respectively. It can be seen that
the absorption at 953 and 3400 cm−1 gradually decreased with the increasing of temperature. Before the
temperature 175 ◦C, the ring-opening reaction of oxazine rings occured slowly and the H-bonds would be
increased with the hydroxyl group generated from the ring-opening reaction of oxazine rings. When the
temperature went on (>250 ◦C), due to the higher temperature the reaction of oxazine rings intensively
carried out which leaded to the absorption of oxazine ring rapidly decreased. With the ring-opening of
oxazine rings, the formation of H-bonds between intramolecular and intermolecular chains increased [42].
However, the characteristic asorbtion of nitrile group at 2230 cm−1 did not exhibit an obvious decrease at
various temperature except for 300 ◦C. This also indicated that curing reaction of nitrile groups was not
involved in the polymerization of FAEN-Bz.Polymers 2019, 4, x FOR PEER REVIEW  10 of 20 
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In sum, the polymerization processes of FAEN-Bz can be summarized as follows and shown in
Scheme 2: ring-opening polymerization occurred at about 160 ◦C in the presence of traces of hydroxyl,
and at that temperature the polymerization happened slowly (Scheme 2a); then, elevating the curing
temperature to about 180 ◦C, the ring-opening polymerization of oxazine rings speeded up (Scheme 2b).
Amounts of hydroxyl groups were generated and H-bonds formed between nitrogen atoms and
hydrogen (Scheme 2c). With continuously increasing the curing temperatures, the polymerization got
slower gradually, due to the hindrance of molecular chains. When the temperature was 240 ◦C and
even higher, with the ring-opening of oxazine rings, the formation of H-bonds between intramolecular
and intermolecular chains increased. Thus, the possible structures of final polymers (heat treated at
280 ◦C) can be simulated as Scheme 2d.Polymers 2019, 4, x FOR PEER REVIEW  11 of 20 
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3.4. Thermal Stability of Poly(FAEN-Bz) and the Thermal Decomposition Mechanism

Thermal properties of poly(FAEN-Bz) polymer was also examined under nitrogen atmosphere with
the heating rate of 20 ◦C/min from 50 to 800 ◦C. The curves were shown in Figure 9 and the main data
was collected in Table 2, including the weight loss of 5 wt % (Td5%), 10 wt % (Td10%) and the char yield at
800 ◦C. According to the TGA curves and the data listed in Table 2, it was obvious that the decomposition
temperature of Td5% and char yield were greatly affected by the treatment temperature and increased
with increasing curing temperatures. The poly(FAEN-Bz) cured at 280 ◦C exhibited thermal stability
of Td5% and Td10% up to 407 and 449 ◦C, and the char yield at 800 ◦C was 63.5% under nitrogen.
Compared to thermal properties reported by Zeng (Td5% ~356.7 ◦C, char yield at 800 ◦C ~39.9%) [43],
Wang (Td5% ~363.7 ◦C, char yield at 800 ◦C ~44%) [13] and Khan (Td10% ~360 ◦C, char yield at 800 ◦C
~3.3%) [44], poly(FAEN-Bz) exhibited a excellent thermal stability. Moreover, the curves of thermal
decomposition showed the same trend, indicating that the decomposition processes were consistent.
Figure 9b presented the DTG curves of poly(FAEN-Bz), which represented the temperature at which
the materials decomposed at the maximum rate. We could see intuitively that all of poly(FAEN-Bz)
showed double decomposition processes in Figure 9b. The double maximum decomposition peaks of
poly(FAEN-Bz) appeared at 400 and 540 ◦C, respectively. Moreover, the maximum decomposition
temperatures did not change with increasing the curing temperatures, indicating the decomposition
of poly(FAEN-Bz) was dominated by the intimate structures, and increasing the crosslinking degree
cannot intensively improve the thermal stability of poly(FAEN-Bz) in this cured condition.
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Table 2. Thermal properties of poly(FAEN-Bz) cured at various temperatures.

Sample Td5%(◦C) Td10%(◦C) Char Yield (%)

200 ◦C-4 h 346.62 399.68 57.63
220 ◦C-2 h 363.96 405.42 61.01
240 ◦C-2 h 390.33 427.45 60.35
260 ◦C-2 h 396.39 429.89 62.49
280 ◦C-2 h 407.45 449.80 63.57

Considering the polymerization mechanisms and the intimate structures of poly(FAEN-Bz),
the thermal decomposition processes can be concluded as follows (shown in Scheme 3): firstly,
the Mannich bridge was broken and the long molecular structures of poly(FAEN-Bz) turn into aromatic
ester nitrile segments, which possessed outstanding thermal stability (Scheme 3a) [9]. At the elevated
temperatures, the segments began to collapse along with the fracture of chemical bonds (Scheme 3b) [27].
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To further verify the thermal stability of poly(FAEN-Bz), the integral program integral
decomposition temperature (IPDT) was used and described in Equation (3) [45].

IPDT = A∗K∗ × (Tf − Ti) + Ti (3)

where A was the area ratio of the total experiment curve defined by the total TGA thermogram curve.
Ti was the initial temperature and Tf was the final temperature. In this study, Ti and Tf were 50 and
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800 ◦C, respectively. A and K can be calculated by Equations (2) and (3). The values of S1, S2 and
S3 are determined by Figure 10.

A∗ =
S1 + S2

S1 + S2 + S3
(4)

K∗ =
S1 + S2

S1
(5)
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The IPDT values of poly(FAEN-Bz) cured at various temperatures were presented in Table 3.
It was obvious that the thermal stability increased with increasing the curing temperatures. The IPDT
showed an upward trend until 2203 ◦C, which can be attributed to the complete polymerization of
oxazine rings and the high thermal stability of the aromatic ester molecular segments. Rich aromatic
nucleus and heterocyclic rings were in favor of enhancing the inherent thermal stability of the polymers.

Table 3. Thermal parameters deduced from the TGA and DTG curves for different polymers.

Sample A K Ta (◦C) IPDT (◦C)

160 ◦C-2h 0.878171 3.617279 524.2125 1765.3587
180 ◦C-2 h 0.897651 3.447845 534.7318 1721.2800
200 ◦C-4 h 0.907719 3.577650 540.1685 1803.6515
220 ◦C-2 h 0.927938 4.222930 551.0865 2166.0530
240 ◦C-2 h 0.930787 3.939219 552.6251 2029.9504
260 ◦C-2 h 0.930760 4.100989 552.6103 2111.1993
280 ◦C-2 h 0.938981 4.247229 557.0496 2203.5560

3.5. Phase Morphology of the Poly(FAEN-Bz) Polymer

SEM images of poly(FAEN-Bz) heat-treated at 260 ◦C and 280 ◦C were presented in Figure 11a,b,
respectively. The images showed the evolution of the phase morphology as the curing temperature
increased. After being treated at 260 ◦C, the ring-opening polymerization of oxazine rings resulted to a
compared homogeneous phase (Figure 11a). It was obvious that slight phase inversion coexistence in
sight and spherical nodules are visible. When the curing temperature was 280 ◦C, the ring-opening
polymerization of oxazine rings can be almost accomplished, which can be confirmed with the
results of DSC and TGA. Thus, the image in Figure 11b showed a well homogeneous phase, which
was mainly made of Mannich bridge and aromatic ester nitrile segments in an orderly arrangement.
Figure 11c,d showed the fracture images of poly(FAEN-Bz) after being extracted with Soxhlet extraction,
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and 1-methyl-2-pyrrolidinone (NMP) was used as extracting solvent. The incomplete crosslinked resin
would be dissolved and the remainder can be used to evaluate the crosslinking degrees. In Figure 11c,
the extracted fracture image showed a homogeneous phase and many pinholes appeared, which
can be attributed to the dissolution of uncured molecular that was restricted in the crosslinking
network. However, in Figure 11d, no obvious changes can be observed in compared with that shown
in Figure 11b. It can be assigned to the almost accomplished polymerization of oxazine rings in
the polymer. According to the extracted results, curing degrees of poly(FAEN-Bz) cured at 260 and
280 ◦C were calculated, and the degrees were 85.0% and 96.3%, respectively, indicating relatively high
crosslinking degrees.
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SAXS was applied to investigate the phase morphology of FAEN-Bz cured at 260 ◦C for 2 h and
280 ◦C for 2 h and the results were shown in Figure 12. Figure 12a,b were corresponded to the FAEN-Bz
cured at 260 and 280 ◦C/2 h, respectively. As shown in Figure 1, no characteristic diffraction peaks
were observed [46]. This indicated that the homogeneous phase of cured FAEN-Bz.
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3.6. Surface Wettability of Poly(FAEN-Bz)

The surface charge and its wettability determine the surface properties and subsequently the
dielectric properties. Contact angle measurements of wettability are essential evaluation of surface
charge. As was well known, polymer surfaces with a high content of –CH3, –CH=CH2 groups form
hydrophobic surfaces (8a ≥ 80◦), while –COOH, –NH2 groups form moderately hydrophobic surfaces
(8a = 48–62◦) and -OH groups form hydrophilic surfaces (8a ≤ 35◦) [47]. In this work, smooth and clean
samples were prepared and then water was dripped on the solid surface to evaluate the contact angles,
shown in Figure 13. The surface energy was calculated by Fowkes method and ZHU method, as shown
in Table 4. All of the values of contact angle were ranging from 76.9◦ to 87.4◦, indicating the moderately
hydrophilic surfaces of poly(FAEN-Bz). With increasing the curing temperatures, the values of contact
angle increased, which indicated that the hydrophilic characterization enhanced and the hydrophobic
characterization increased. It can be attributed to the fact that with the ring-opening of oxazine rings,
the formation of H-bonds between intramolecular and intermolecular chains increased. This trends
were well consistent with the published literatures [41,42].

Polymers 2019, 4, x FOR PEER REVIEW  16 of 20 

 

The surface charge and its wettability determine the surface properties and subsequently the 
dielectric properties. Contact angle measurements of wettability are essential evaluation of surface 
charge. As was well known, polymer surfaces with a high content of –CH3, –CH=CH2 groups form 
hydrophobic surfaces (ɵa ≥ 80°), while –COOH, –NH2 groups form moderately hydrophobic surfaces 
(ɵa = 48–62°) and -OH groups form hydrophilic surfaces (ɵa ≤ 35°) [47]. In this work, smooth and clean 
samples were prepared and then water was dripped on the solid surface to evaluate the contact 
angles, shown in Figure 13. The surface energy was calculated by Fowkes method and ZHU method, 
as shown in Table 4. All of the values of contact angle were ranging from 76.9° to 87.4°, indicating the 
moderately hydrophilic surfaces of poly(FAEN-Bz). With increasing the curing temperatures, the 
values of contact angle increased, which indicated that the hydrophilic characterization enhanced 
and the hydrophobic characterization increased. It can be attributed to the fact that with the ring-
opening of oxazine rings, the formation of H-bonds between intramolecular and intermolecular 
chains increased. This trends were well consistent with the published literatures [41,42]. 

 
Figure 13. Contact angle images of poly(FAEN-Bz) cured at various temperatures: (a) 240 °C-2h; (b) 
260 °C-2 h and (c) 280 °C-2 h. 

Table 4. Contact angle and surface energy of poly(FAEN-Bz). 

Sample Liquid 
medium 

Surface 
tension of 

liquid phase 
media 

[(mN/m)] 

Contact 
angle (º)  Calculation 

method 
Solid surface energy 

[(J/m2)] 

240 °C water 72.800003 76.9±0.8  Fowkes method 0.02738  
260 °C water 72.800003 81.7±0.3  Fowkes method 0.02383  
280 °C water 72.800003 87.4±2.3  Fowkes method 0.01989  
240 °C water 72.800003 76.9±0.8  ZHU method 0.05906  
260 °C water 72.800003 81.7±0.3  ZHU method 0.05646  
280 °C water 72.800003 87.4±2.3  ZHU method 0.05310  

3.7. Dielectric Properties of Poly(FAEN-Bz) Cured at Various Temperatures 

The variations of dielectric constant and dielectric loss with regard to frequency for poly(FAEN-
Bz) cured at various temperatures were presented in Figure 14. Dielectric properties for polymers are 
mainly influenced by relaxation mechanisms and dielectric polarization in bulk of the composites 
[48]. It can be observed from Figure 14a that dielectric constant was frequency dependent for 
poly(FAEN-Bz) polymers and decreased with increasing the frequency. It’s reported that dielectric 
constant would continuously decrease at high frequency due to the fact that orientable dipolar groups 
and relaxation of molecular chains could not keep pace with that of the alternating field. However, 
with increasing the cured temperatures, dielectric constant of poly(FAEN-Bz) slightly increased. 
Figure 14a showed that poly(FAEN-Bz) cured at 280 °C possessed the highest dielectric constants 
(~5.0), which can be assigned to the polar hydroxyl existed in the matrix resin. The increasing of 
dielectric constant can be attributed to the two facts: 1) with the curing temperature went on the 
intramolecular H-bonds would turn into intermolecular H-bonds to increase the surface energy thus 
to increase the dielectric constants; 2) the H-bonds could be destroyed under high temperature to 

Figure 13. Contact angle images of poly(FAEN-Bz) cured at various temperatures: (a) 240 ◦C-2h;
(b) 260 ◦C-2 h and (c) 280 ◦C-2 h.

Table 4. Contact angle and surface energy of poly(FAEN-Bz).

Sample Liquid
Medium

Surface Tension of Liquid
Phase Media [(mN/m)]

Contact
Angle (◦)

Calculation
Method

Solid Surface
Energy [(J/m2)]

240 ◦C water 72.800003 76.9 ± 0.8 Fowkes method 0.02738
260 ◦C water 72.800003 81.7 ± 0.3 Fowkes method 0.02383
280 ◦C water 72.800003 87.4 ± 2.3 Fowkes method 0.01989
240 ◦C water 72.800003 76.9 ± 0.8 ZHU method 0.05906
260 ◦C water 72.800003 81.7 ± 0.3 ZHU method 0.05646
280 ◦C water 72.800003 87.4 ± 2.3 ZHU method 0.05310

3.7. Dielectric Properties of Poly(FAEN-Bz) Cured at Various Temperatures

The variations of dielectric constant and dielectric loss with regard to frequency for poly(FAEN-Bz)
cured at various temperatures were presented in Figure 14. Dielectric properties for polymers are
mainly influenced by relaxation mechanisms and dielectric polarization in bulk of the composites [48].
It can be observed from Figure 14a that dielectric constant was frequency dependent for poly(FAEN-Bz)
polymers and decreased with increasing the frequency. It’s reported that dielectric constant would
continuously decrease at high frequency due to the fact that orientable dipolar groups and relaxation of
molecular chains could not keep pace with that of the alternating field. However, with increasing the
cured temperatures, dielectric constant of poly(FAEN-Bz) slightly increased. Figure 14a showed that
poly(FAEN-Bz) cured at 280 ◦C possessed the highest dielectric constants (~5.0), which can be assigned
to the polar hydroxyl existed in the matrix resin. The increasing of dielectric constant can be attributed
to the two facts: (1) with the curing temperature went on the intramolecular H-bonds would turn
into intermolecular H-bonds to increase the surface energy thus to increase the dielectric constants;
(2) the H-bonds could be destroyed under high temperature to form free –OH to increase the dielectric
constants [40,41]. In Figure 14b, low dielectric loss was presented and it’s obvious that dielectric
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loss was a frequency-independence parameter for poly(FAEN-Bz) cured at 240 and 260 ◦C, while for
poly(FAEN-Bz) cured at 280 ◦C, the dielectric loss was frequency dependent. For poly(FAEN-Bz) with
polar hydroxyl, conduction loss and relaxation loss contributed most to the low dielectric loss, with
respect to frequency. In high frequency of 500 Hz–1 MHz, an increasing of dielectric loss appeared,
that can be attributed to the significant relaxation polarization loss generated from orientable dipoles
in molecular groups attached perpendicular to longitudinal polymer chains. Then, at higher frequency,
the conduction loss dominated dielectric loss for polymers, showing a slight decrease in curves
shown in Figure 14b. In sum, dielectric properties of poly(FAEN-Bz) can be tuned by controlling the
crosslinking degrees.
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4. Conclusions

A self-polymerization benzoxazine resin with aromatic ester nitrile segments was successfully
synthesized by solution reaction. Structures were verified by 1H-NMR, FTIR and in situ FTIR
spectroscopy. Curing kinetics of the molecular was discussed with macromolecular gel method and
DSC analysis. Various activation energy of the molecular were obtained. Combining the structural
transformation shown in FTIR spectra, the curing behaviors and polymerization processes were
proposed. Then, fracture surface images, SAXS and crosslinking degrees of the polymers were used
to confirm the polymerization processes. Surface wettability and dielectric properties of various
polymers were also investigated to confirm the polymerization processes and results indicated that
ring-opening polymerization of oxazine rings dominated the polymerization and H-bonds existed in
inter/intramolecular. Also, thermal decomposition of the polymers were also investigated and results
indicated that the polymers processed outstanding thermal stability. In summary, controllable dielectric
properties with good thermal stability, which can be tuned by controlling the curing temperatures and
time, poly(FAEN-Bz) was believed to be candidates for application of printed circuit substrate materials.
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