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ABSTRACT

Gut microbes dictate critical features of host immunometabolism. Certain bacterial 
components and metabolites (termed postbiotics) mitigate cardiometabolic diseases 
whereas others potentiate pathological processes. In this review, we discuss key aspects 
related to the usefulness of bacterial-related molecules strategically positioned as promising 
treatment strategies for cardiometabolic diseases.
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INTRODUCTION

To this date, Akkermansia muciniphila is the only bacterial strain shown to impact markers 
of human cardiometabolic disease to a high degree of reliability and efficacy. Oral 
administration of A. muciniphila to human individuals with obesity/overweight improved 
insulin resistance and reduced circulating cholesterol.1,2 Similar results were reported using 
pre-clinical models of diet-induced obesity and genetic-induced dyslipidemia, whereby 
A. muciniphila improved blood glucose control,3,4 facilitated hepatic triglyceride clearance5 
and reduced atherogenesis.6 Findings from both pre-clinical models and human trials have 
pointed to pasteurization (i.e. exposure to mild heat) as an effective way to enhance the 
cardiometabolic benefits of A. muciniphila.2,3 Pasteurization render bacteria non-replicant 
while retaining the health benefits of certain probiotic strains.7 Because bioactivity 
is preserved, it is likely that pasteurization retain the molecular structure of bacterial 
components needed to elicit immune regulation. These findings are of great importance 
stressing the utility of bacterial metabolites, cell wall components and bacterial peptides—
referred to as postbiotics—as promising strategies to treat metabolic complications linked 
to overweight and obesity. Postbiotics, however, must not be confused with probiotics or 
prebiotics. Indeed, probiotics define bacteria that, when administered alive, confer health 
benefits to the host, whereas the latter term refers to dietary compounds that can favor 
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the expansion of beneficial bacteria in the gut. This article puts into perspective evidence 
relevant to the usefulness of certain postbiotics against cardiometabolic complications. The 
impact of short-chain fatty acids (SCFA)—arguably the most studied bacterial postbiotics—
on cardiometabolic diseases has been extensively examined elsewhere8,9 and is not addressed 
in this review.

MAIN TEXT

Host immunity bridges gut microbial components to host metabolic regulation.10 Activation 
of Toll-like receptor (TLR) 4 by bacterial lipopolysaccharides (LPS) is a classic example of 
this interaction. In the presence of obesity and poor dietary habits, gut microbial LPS can 
breach the gut barrier and elicit innate immune activation in key insulin-responsive organs, 
causing a mild and chronic raise in circulating LPS termed metabolic endotoxemia (ME).11 
This moderate, yet persistent, increase in circulating LPS appears to be an important feature 
of metabolic syndrome as ME is increasingly recognized in the constellation of risk factors 
involved in cardiovascular diseases (CVD) (Fig. 1).12,13 In agreement, pre-clinical mouse 
studies have shown that ME is sufficient to initiate and aggravate the low-grade inflammatory 
state linked to insulin resistance, dysglycemia11 and atherogenesis.6

While the cardiometabolic benefits of A. muciniphila are, at least in part, linked to its capacity 
to strengthen the gut barrier and lower ME,2-4,14 an isolated component from the cell wall 
of this bacterium (Amuc_1100) was shown to recapitulate the metabolic benefits reported 
after administration of pasteurized A. muciniphila to diet-induced obese mice.3 Amuc_1100, 
which appears to elicit immune activation via TLR2, increased high-density lipoprotein 
(HDL) cholesterol, improved insulin sensitivity and alleviated ME in diet-induced obese 
mice (Fig. 1).3 While more mechanistic pre-clinical studies and clinical trials are warranted, 
Amuc_1100 holds promise as a postbiotic from A. muciniphila that may curb several features 
of metabolic syndrome.

Peptidoglycan is a key constituent of the bacterial cell wall containing specific muropeptide 
sequences that are detected by nucleotide-binding oligomerization domain-containing 
(NOD) proteins. NOD1 recognizes meso-diaminopimelic (meso-DAP) acid-containing 
muropeptides, whereas NOD2 detects muramyl dipeptide (MDP)-containing peptidoglycan. 
We have demonstrated in murine models that acute activation of NOD1 causes whole-body 
and hepatic insulin resistance,15 whereas others have shown that genetic ablation of NOD1 
confers protection against diet-induced insulin resistance.16 Concordantly, microbiota-
derived muropeptides act on NOD1, but not NOD2, to augment systemic immunity.17,18 In 
contrast, NOD2 attenuates inflammation induced by other bacterial products and protects 
against inflammatory colitis19 insulin resistance20 and nonalcoholic fatty liver disease 
(NAFLD).21 This is, at least in part, linked to NOD2-dependent downstream processing 
of a wealth of host defense peptides (HDPs) improving gut barrier function.22,23 We have 
shown that intraperitoneally injected MDP can protect mice from LPS-induced dysglycemia, 
and that the MDP-based drug mifamurtide can improve glucose tolerance in mice with 
diet-induced obesity.24 Not surprisingly, the metabolic impact of NOD activation has 
cardiovascular implications. While NOD1 activation with the synthetic peptidoglycan FK565 
caused major site-specific inflammation in the aortic root,25 a recent study showed that 
depletion of NOD1/2 protected low-density lipoprotein (LDL) receptor knockout mice from 
developing atherosclerosis.26 Interestingly, both NOD1 and NOD2 signals intracellularly 
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Fig. 1. Bacterial postbiotics influence cardiometabolic disorders. Poor dietary habits (left) contribute to the impairment of gut barrier homeostasis, which 
favors the leakage of gut microbial LPS into circulation (metabolic endotoxemia). Conversely, healthy dietary habits (right) are linked to preserved gut barrier 
function. Metabolic endotoxemia is increasingly recognized in the constellation of risk factors involved in cardiometabolic diseases and insulin resistance. 
Dietary carnitine and choline (left) are metabolized into TMA through microbial activity in the gut. TMA is later converted into proatherogenic TMAO in the 
liver. Once in circulation, TMAO facilitates atherosclerotic plaque deposition by reducing RCT, increasing inflammation, upregulating scavenger receptors 
(CD36, SRA1) and promoting platelet hyperreactivity. TMAO further impairs cardiac function by stimulating oxidative stress (mitochondrial dysfunction, ROS), 
inflammation (NLRP3, NF-kB) and the profibrotic TGF-β1/Smad3 pathway. Consumption of certain probiotics and resveratrol (right) were shown to reduce serum 
levels of TMAO. Amuc_1100 (right), a cell wall component of A. muciniphila, was shown to recapitulate the beneficial metabolic effects of this bacterium in 
mice. Likewise, the interaction between NOD receptors and some peptidoglycans, key constituents of the bacterial cell wall, also influence host metabolism. 
Gut microbiota-derived meso-DAP acid-containing muropeptides act via NOD1 to increase inflammation and insulin resistance, whereas NOD-2 interaction with 
MDP-containing peptidoglycan resulted in protection against inflammation and insulin resistance. 
LPS, lipopolysaccharide; TMA, trimethylamine; TMAO, trimethylamine-N-oxide; RCT, reverse cholesterol transport; CD36, cluster of differentiation 36; SR-A1, 
scavenger receptor-A1; ROS, reactive oxygen species; NLRP3, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3; NF-κB, 
nuclear factor-κB; TGF-β1, transforming growth factor-β1; NOD, nucleotide-binding oligomerization domain-containing; DAP, diaminopimelic; MDP, muramyl 
dipeptide; TLR, toll-like receptor; HDL, high-density lipoprotein.



through receptor-interacting serine/threonine-protein kinase 2 (RIPK2). We have shown that 
nonhematopoietic—but not hematopoietic—RIPK2 mediates the glucose lowering and anti-
inflammatory effects of NOD2 activation, whereas LPS and NOD1 synergize in hematopoietic 
cells to promote insulin resistance.27 Together, these findings show that postbiotics that 
target NOD receptors are well-positioned as promising strategies to curb CVD (Fig. 1).

The intestinal microbiota metabolizes certain dietary trimethylamines, such as choline and 
L-carnitine, to produce trimethylamine (TMA). This microbial metabolite crosses the gut 
barrier and is later oxidized in the liver forming trimethylamine N-oxide (TMAO). Recent 
epidemiological studies linked TMAO to higher risk of major cardiovascular events.28,29 
Several pieces of evidence suggest that gut microbes are necessary to the detrimental effects 
of certain atherogenic dietary components. Wang et al. found that dietary supplementation 
with choline and TMAO upregulated both cluster of differentiation 36 (CD-36) and scavenger 
receptor type-1 (SR-A1) in macrophages while promoting atherosclerosis in a gut microbiota-
dependent manner.30 Likewise, mice fed with TMAO, carnitine, or choline exhibited reduced 
reverse cholesterol transport, which accelerated atherosclerosis only when the gut microbiota 
was intact.31 TMAO was further reported to directly promote platelet hyperreactivity by 
enhancing stimulus-dependent release of Ca2+ from intracellular stores, and to upregulate 
clot formation rate in vivo, contributing to elevated risk of thrombosis.32 The choline-related 
thrombosis potential was transferred to germ-free mice after fecal microbial transplantation, 
pointing to a causal role of the gut microbiota.32 The authors further revealed specific 
gut microbial taxa, such as the SCFA-producing bacteria Lachnospiraceae, Oscilospira and 
Ruminococcus, to inversely correlate with both TMAO and thrombosis potential.32

Inflammation is a keystone of cardiometabolic disease, and reports from different research 
groups support the pro-inflammatory potential of TMAO. In rodent models of heart failure, 
TMAO upregulated profibrotic atrial natriuretic peptide (ANP) and beta-myosin heavy chain 
(β-MHC),33 as well as nuclear factor-κB (NF-κB) and the transforming growth factor-β1 
(TGF-β1)/Smad3 pathway.34 Further, NF-κB and mitogen-activated protein (MAP) kinase 
were both shown to mediate the impact of TMAO on vascular inflammation.35 Moreover, 
TMAO activated nucleotide-binding oligomerization domain-like receptor family pyrin 
domain containing 3 (NLRP3) inflammasome and caspase-1 while increasing mitochondrial-
derived reactive oxygen species (ROS) in the aorta.36 In cardiomyocytes, TMAO-derived 
mitochondrial dysfunction led to impaired pyruvate and fatty acid oxidation.37

Gut microbial modulation might represent an important strategy to alleviate TMAO production 
and thereby attenuate CVD (Fig. 1). Individuals classified within an enterotype dominated by 
Prevotella displayed higher circulating levels of TMAO than subjects with an enterotype enriched 
in Bacteroides.31 In the same study, omnivorous subjects with enhanced plasma TMAO showed 
higher abundance of Peptostreptococcaceae and Clostridium and lower Lachnospira as compared 
to vegan/vegetarian individuals with low circulating TMAO concentration.31 Heianza and 
colleagues38 recently reported that continuous increase in circulating TMAO over a period of 
10 years was associated with higher risk of coronary heart disease, which was shown to be 
alleviated by healthy dietary patterns. Accordingly, consumption of the polyphenol resveratrol 
remodeled the gut microbiota in mice, including augmented Lactobacillus and Bifidobacterium 
abundances, thereby decreasing TMAO levels by mitigating commensal microbial TMA.39 
Similarly, four weeks of daily consumption of certain probiotic strains reduced serum TMAO in 
healthy adult males.40 Further, limiting TMA production with choline analogs was shown as a 
potential therapeutic strategy against atherosclerosis41 and heart failure.42
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CONCLUSION

Host-microbe interaction takes place through engagement of immune responses. Postbiotics, 
such as MDP and Amuc_1100, are promising candidates to promote cardiometabolic benefits 
via innate immune activation. Other bacteria derived molecules, such as certain LPS and 
TMAO, are pathognomonic to immunometabolic mechanisms worsening cardiovascular 
disease risk. TMAO is well-positioned as a biomarker and a possible treatment target to 
mitigate cardiometabolic complications.
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