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Abstract

Candidate phylum TM6 is a major bacterial lineage recognized through culture-independent rRNA surveys to be low
abundance members in a wide range of habitats; however, they are poorly characterized due to a lack of pure culture
representatives. Two recent genomic studies of TM6 bacteria revealed small genomes and limited gene repertoire,
consistent with known or inferred dependence on eukaryotic hosts for their metabolic needs. Here, we obtained addi-
tional near-complete genomes of TM6 populations from agricultural soil and upflow anaerobic sludge blanket reactor
metagenomes which, together with the two publicly available TM6 genomes, represent seven distinct family level lineages
in the TM6 phylum. Genome-based phylogenetic analysis confirms that TM6 is an independent phylum level lineage in
the bacterial domain, possibly affiliated with the Patescibacteria superphylum. All seven genomes are small (1.0–1.5 Mb)
and lack complete biosynthetic pathways for various essential cellular building blocks including amino acids, lipids, and
nucleotides. These and other features identified in the TM6 genomes such as a degenerated cell envelope, ATP/ADP
translocases for parasitizing host ATP pools, and protein motifs to facilitate eukaryotic host interactions indicate that
parasitism is widespread in this phylum. Phylogenetic analysis of ATP/ADP translocase genes suggests that the ancestral
TM6 lineage was also parasitic. We propose the name Dependentiae (phyl. nov.) to reflect dependence of TM6 bacteria
on host organisms.
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Introduction
Members of candidate phylum TM6 are widespread in the
environment based on 16S rRNA gene (16S) surveys. TM6 16S
sequences were first described in peat bogs (Rheims et al.
1996) and were subsequently found in diverse habitats such
as hypersaline microbial mats (Sørensen et al. 2005), sulfur
springs (Youssef et al. 2012), arsenic-rich sediments (Escudero
et al. 2013) and also in biofilms collected from showerheads
(Feazel et al. 2009), sinks (McLean et al. 2013), and drinking
water supply systems (Henne et al. 2012). Current knowledge
of the ecology and evolution of the TM6 phylum is limited to
16S sequences and two near-complete reference genomes.
The first genome, TM6SC1, was recovered from a “mini-
metagenome” of a presorted pool of cells collected from a
hospital sink biofilm (McLean et al. 2013). Based on the hab-
itat and similarities to other amoebal symbionts, the authors
suggested that TM6SC1 and the TM6 phylum may more
broadly be symbionts of amoeba (McLean et al. 2013).
Consistent with this hypothesis, the second genome was
recovered from a strain cocultured with Acanthamoeba,
which the authors named Babela massiliensis and initially
misclassified as a member of the Deltaproteobacteria
(Cohen et al. 2011). The authors identified numerous features
indicative of an obligate parasitic lifestyle including the

inability to grow without amoebal hosts, a limited set of bio-
synthetic capabilities, and substantial degradation of its cell
division machinery (Pagnier et al. 2015). A partial TM6 pop-
ulation genome (ACD64) was also recently reported as part of
a larger metagenomic analysis of an aquifer metagenome, but
was not discussed further in the context of that study
(Wrighton et al. 2014).

Here, we obtained four near-complete genomes and
one substantially complete genome from TM6 popula-
tions present in agricultural soil and a full-scale upflow
anaerobic sludge blanket (UASB) reactor (Soo et al. 2014;
Sekiguchi et al. 2015) through differential coverage bin-
ning (Imelfort et al. 2014). Differential coverage binning
groups together anonymous metagenomic fragments
(contigs) belonging to the same population based on
the similarity of their sequencing coverage across multi-
ple related metagenomes (Albertsen et al. 2013).
Together with the two publicly available near-complete
TM6 genomes, two class-level lineages are now repre-
sented in this phylum and concatenated gene analysis
indicates that TM6 may be affiliated with the recently
described Patescibacteria superphylum (Rinke et al.
2013). Shared characteristics of the TM6 genomes
which include small genome size, limited cell envelope
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and cellular building block biosynthetic capacity, ability
to parasitize external ATP pools, and presence of protein
repeat domains that facilitate interaction with eukary-
otes support a common parasitic lifestyle with eukary-
otic host organisms. We propose the name
Dependentiae (phyl. nov.) to reflect these phylum-level
characteristics.

Results and Discussion

Recovering TM6 Genomes from Metagenomic
Sequence Data

Two previously reported metagenomic data sets were mined
for TM6 genomes. The first data set was obtained from four
agricultural soil samples collected during a sugarcane field
trial (NCBI SRA accession numbers: SRS881276, SRS881281,
SRS881283, SRS881286; Yeoh et al. 2015) and the second from
four UASB reactor samples (Soo et al. 2014; Sekiguchi et al.
2015). The agricultural soil data set was de novo assembled for
the purposes of this study. Approximately a third of the soil
data set (152.3 Gb) assembled into contigs greater than
500 bp long with an N50 of 1,055. Differential coverage bin-
ning (Albertsen et al. 2013; Imelfort et al. 2014) was used to
obtain population genomes from the metagenomic assembly
and the completeness and contamination of the recovered
genomes was estimated by the presence/absence of 104 con-
served single copy marker genes (Dupont et al. 2012; Parks
et al. 2015). Six population genomes with greater than 65%
completeness and less than 10% contamination (Parks et al.
2015) were recovered from this assembly despite the com-
plexity of the resident soil microbial communities. Of these,
two near-complete genomes (490% complete) were identi-
fied (see section below) as belonging to candidate phylum
TM6 (SOIL31 and SOIL82; table 1). The assembly and binning
of the UASB data set have been previously reported (Soo et al.
2014; Sekiguchi et al. 2015) and resulted in 239 population
genomes, including two near-complete (UASB124 and
UASB340; table 1) and one substantially complete (470%
complete) TM6 genomes (UASB293; table 1). Including the
two public TM6 genomes (TM6SC1 and Babela massiliensis)
the GC content for this phylum ranges from 27.4% to 40.8%,
comparable to other phyla of similar phylogenetic radiation
(Lightfield et al., 2011), and the genomes are all uniformly
small by bacterial standards (1.0–1.5 Mb in size). Four of the
104 marker genes were not identified in any of the TM6
genomes (OBG GTPase, Dephospho-CoA kinase, leucyl-
tRNA synthetase, methionyl-tRNA formylytransferase;
supplementary table S1, Supplementary Material online), sug-
gesting that these genes are absent in the TM6 lineage.
Sequence composition integrity analysis of each genome
identified a small subset of contigs with atypical kmer signa-
tures (supplementary fig. S1, Supplementary Material online)
encoding mostly hypothetical genes (supplementary table S2,
Supplementary Material online). However, some of these
contigs were connected to other contigs with typical kmer
profiles and likely represent integrated foreign elements such
as viruses. T
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Phylogenetic Placement of Candidate Phylum
TM6 Genomes

The population genomes were placed into genome trees
comprising 2,350 reference genomes obtained from
Integrated Microbial Genomes (IMG) database release 4.1
(Markowitz et al. 2012) to establish their relationship to
one another and to other bacterial lineages. Two trees were
constructed; one using an alignment of 38 concatenated uni-
versal marker genes from Phylosift (Darling et al. 2014) with
an archaeal outgroup, and the other using 83 concatenated
bacterial marker genes (supplementary table S3,
Supplementary Material online; Soo et al. 2014) using
Candidatus Acetothermus autotrophicum, previously in-
ferred to be the most basal bacterial lineage (Takami et al.
2012), as the outgroup (fig. 1A). The seven TM6 genomes
were reproducibly resolved as a monophyletic group with
high bootstrap confidence (fig. 1A). In both trees, candidate
phylum TM6 was affiliated with the recently proposed
Patescibacteria superphylum with which it shares the features
of small genome size (approximately 1 Mb) and low GC con-
tent (approximately 35%; Rinke et al. 2013). However, this
relationship was only well supported in the 83 bacterial
marker gene-based tree (87% bootstrap support), and is in
contrast to the original placement of TM6SC1 and B. massi-
liensis, which branched with the Acidobacteria (McLean et al.
2013) and Deferribacteres (Pagnier et al. 2015), respectively.
Therefore, specific affiliations (if any) of TM6 to other bacte-
rial phyla remain an open question at this stage.

Within the TM6 phylum, two major monophyletic groups
could be resolved; one consisting of UASB124 and UASB340
and the other comprising B. massiliensis, TM6SC1, SOIL31,
SOIL82, and UASB293 (denoted in red and blue, respectively,
in fig. 1). To provide a broader phylogenetic context, we in-
ferred the position of five of the seven population genomes
based on partial 16S sequences identified in the bins (table 1),
relative to publicly available clone TM6 sequences (fig. 1B;
McDonald et al. 2012; Quast et al. 2013). We propose that
all seven genomes belong to a single class, Babeliae, and that a
separate class, F38, defined only by 16S sequences still lacks
genome representation (fig. 1B). Average amino acid identity
(AAI) values between pairs of TM6 genomes suggest that
each of these genomes likely represents at least individual
families (supplementary table S4, Supplementary Material
online; 45–65%, Konstantinidis and Tiedje, 2005). Within
the class Babeliae, we therefore propose that B. massiliensis,
TM6SC1, SOIL31, SOIL82, and UASB293 are members of the
order Babeliales and that UASB124 and UASB340 belong to
one or possibly two separate orders (fig. 1B).

Overview of Genome Functionality

The seven TM6 genomes contain an average of 1,126 pre-
dicted open-reading frames (ORFs; maximum 1,462, mini-
mum 955), of which approximately 60% had a predicted
function. Assigning ORFs to cluster of orthologous group
(COG) categories indicates that TM6 have significantly re-
duced functionality compared with the bacterial average in
15 of 22 categories (P < 0.05, Mann–Whitney test;

supplementary fig. S2, Supplementary Material online). We
compared the COG category profile of several endosymbiotic
(host-beneficial), intracellular parasitic (host-detrimental),
and free-living bacterial genera and found that the TM6
COG profile was most similar to that of parasitic intracellular
bacterial genera (supplementary fig. S3, Supplementary
Material online), such as Chlamydia, Wolbachia and
Rickettsia. Specifically, the proportion of amino acid, coen-
zyme transport and metabolism-related genes in the TM6
genomes, like other parasitic intracellular bacteria, was smaller
compared with endosymbiotic bacteria suggesting depen-
dence on an external source for these essential compounds.
In contrast, endosymbiotic bacteria generally have larger pro-
portions of these genes, which reflect a symbiotic lifestyle of
provisioning essential amino acid and coenzymes to their
hosts (Merhej et al. 2009). Next, we examined the reciprocal
best Basic Local Alignment Search Tool (BLAST) hits between
TM6 genomes to identify the core set of orthologs shared by
members of this phylum. Of 4,503 orthologous groups iden-
tified, 171 (3.8%) were common to all seven genomes, and a
further 184 (4.1%) were common to any six of the seven
genomes (supplementary table S5, Supplementary Material
online). These orthologs predominantly encode core func-
tions such as DNA/RNA synthesis and repair machinery, ri-
bosomal proteins, cell division proteins, tRNAs, ATP synthase
and also components for a type II secretion system and pos-
sibly a type IV pilus. Although the type IV pilus membrane
pore pilQ is absent in TM6, two copies of the homologous
type II secretion channel gene gspD were identified in all ge-
nomes (supplementary table S5, Supplementary Material
online). It is possible that one gspD copy has functionally
substituted pilQ in TM6 bacteria; however, this remains an
open question as no pilus structures were observed in elec-
tron micrographs of B. massiliensis (Pagnier et al. 2015). Type
IV pili help mediate interactions with other organisms includ-
ing human cells (Craig et al. 2004), plants and fungi (D€orr et al.
1998) and, if present, may assist TM6 bacteria to attach to
their host cells. Type IV pili genes are also found in represen-
tative genomes of the bacterial candidate phyla Parcubacteria
(OD1), Microgenomates (OP11), WWE3, and
Saccharibacteria (TM7) (Albertsen et al. 2013; Kantor et al.
2013; He et al. 2015) which may be phylogenetically related to
TM6 (fig. 1). It has been proposed that the type-IV pili in these
lineages mediate adhesion to larger host cells facilitating nu-
trient acquisition from the host cell (Luef et al. 2015).

Babela massiliensis and TM6SC1 have or are hypothesized
to have amoebal hosts, respectively (Cohen et al. 2011;
McLean et al. 2013; Pagnier et al. 2015), and a subset of
their proteomes contain domains that facilitate interaction
with eukaryotic hosts, similar to other amoeba-associated
bacteria such as Candidatus Amoebophilus (McLean et al.
2013; Pagnier et al. 2015). In our sequence data, the coverage
profile of an unbinned contig containing an 18S rRNA se-
quence identified as a ciliate protist (class Spirotrichea)
tracked the coverage profiles of SOIL31 and SOIL82 TM6
population genomes (supplementary fig. S4, Supplementary
Material online) suggesting a specific association between
these organisms. Spirotrich ciliates are known to harbor
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endosymbiotic bacteria (Boscaro et al. 2012), thus we specu-
late that in addition to amoebae, some TM6 lineages may
have ciliate hosts. We performed a principal component anal-
ysis (PCA) of the relative abundance of COGs identified in the
TM6 genomes to determine the distribution of accessory
functionalities within the TM6 phylum. A striking separation
of B. massiliensis from the other genomes was observed due
to a high number of ankyrin repeats (COG0666) in the
B. massiliensis genome compared with the other TM6 ge-
nomes, although all seven genomes contained these repeats
(supplementary fig. S5A, Supplementary Material online).
Ankyrin repeats are amino acid motifs that commonly

mediate protein–protein interactions of diverse cellular func-
tions (Mosavi et al. 2004). Such motifs are uncommon in
prokaryotes with the exception of a few facultative and ob-
ligate intracellular bacteria (Siozios et al. 2013), and are hypo-
thesized to mediate eukaryote–bacterial interactions (Pan
et al. 2008), which is consistent with the lifestyle of B. massi-
liensis as an intracellular parasite of amoebae (Cohen et al.
2011; Pagnier et al. 2015). Ankyrin repeat-containing proteins
were also identified in the partial ACD64 TM6 genome from
Wrighton et al. 2014 (data not shown), suggesting that this
organism can interact with eukaryotic hosts. The higher
number of ankyrin repeats in B. massiliensis compared with
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the other TM6 genomes suggests that B. massiliensis has the
highest potential to interact with the cellular machinery of its
host. When the ankyrin repeat family was removed from the
PCA analysis, a separation of taxa by phylogeny was observed
(supplementary fig. S5B, Supplementary Material online).

We also investigated the TM6 genomes for other protein
domains known to facilitate and regulate protein–protein
interactions in eukaryotes, including the WD40, F-box, leu-
cine-rich repeat, and tetratricopeptide repeat. These domains
were previously described in the genomes of TM6SC1
(McLean et al. 2013) and B. massiliensis (Pagnier et al.
2015), which the authors suggested allow TM6 bacteria to
interact with cellular processes of their amoebal hosts and to
modify the host intracellular environment, thereby facilitating
survival of the bacterium. We identified numerous instances
of genes containing these domains in all five additional SOIL
and UASB TM6 genomes (supplementary table S6,
Supplementary Material online).

Cell Envelope, Division and Morphology

The TM6 cell envelope is most likely Gram-negative based on
cell envelope marker profiles (fig. 2), and also because the
groEL gene sequences have an amino acid insertion charac-
teristic of Gram-negative bacteria (supplementary fig. S6,
Supplementary Material online; Gupta 1998). The five repre-
sentatives of order Babeliales (fig. 1) lack most of the genes
necessary to synthesize lipopolysaccharide (LPS), whereas the
other two TM6 representatives (UASB124 and UASB340)
likely are capable of producing LPS as part of their cell enve-
lope (fig. 2). This distribution suggests differential Gram-
negative cell envelope structures between the major TM6
lineages. However, even the most complete TM6 cell enve-
lope in UASB124 and UASB340 is most likely basic (fig. 3)
compared with typical Gram-negative bacteria due to a lack
of multiple modification genes (fig. 2). LPS typically consists of
three components: A core oligosaccharide (KDO), O antigen,
and lipid A that is usually modified posttranslationally
(Heinrichs et al. 1998). Both UASB124 and UASB340 lack
the O antigen ligase gene (waaL) and downstream modifica-
tion of the LPS molecule was variable between genomes
(fig. 2). For example, addition of acyl groups by lipid-A acyl-
transferases should only be possible in UASB340, whereas
both UASB124 and UASB340 have the potential to add hep-
tose units to KDO–lipid A through heptosyl transferase
encoded by waaC (Heinrichs et al. 1998). Taken together,
these findings suggest that the TM6 bacteria outer membrane
has undergone degeneration and part of its synthesis machin-
ery has been lost, particularly in the order Babeliales (fig. 1B).
Loss of LPS and bacterial outer membrane components is
hypothesized to be an adaptation to host-associated lifestyles
because LPS elicits immune responses from eukaryotic hosts
(Bennett et al. 2014).

The TM6 cell division machinery shows similar degenera-
tion, particularly in B. massiliensis which has only three of nine
key cell division genes (fig. 2). The TM6 cell division apparatus
is atypical particularly in B. massiliensis, resulting in dense,
amorphous bodies that separate into long bacillary forms as

part of its developmental cycle (Pagnier et al. 2015). We found
all genomes to lack ftsQ, ftsN, zapB and zipA and have varied
distribution of other cell division genes (fig. 2), indicating that
atypical cell division, such as that identified in B. massiliensis, is
likely common in TM6 bacteria.

We also investigated the TM6 genomes for the presence of
the mreBCD operon and the rodA and pbpA genes, which
have been shown to be necessary for rod shape morphology
in model organisms including Escherichia coli (Matsuzawa
et al. 1989; Wachi et al. 1989) and Bacillus subtilis
(Henriques et al. 1998; Jones et al. 2001; Leaver and
Errington 2005). With the exception of B. massiliensis, the
TM6 genomes encode the majority of shape-determining
proteins only consistently lacking the mreD subunit (fig. 2).
As a complete mreBCD complex is required for the formation
of rods in E. coli (Kruse et al. 2005), TM6 cells may be spherical,
although care should be taken in extrapolating results over
such broad phylogenetic distances. It is likely, however, that
B. massiliensis is not be able to form rods as it lacks all five
shape-determining genes, as well as most genes for peptido-
glycan synthesis. These findings suggest that, of the investi-
gated TM6 bacteria, B. massiliensis is the most advanced in its
adaptation to an intracellular lifestyle as exemplified by var-
ious host-associated intracellular bacteria that have under-
gone genome size and gene repertoire reduction
(McCutcheon and Moran 2012).

Carbon Metabolism and Energy Production

All TM6 bacteria studied lack a tricarboxylic acid (TCA) cycle
and electron transport chain, suggesting that they share a
fermentative metabolism with lactate as the only potential
fermentation end product (fig. 3). Superoxide dismutases and
thioredoxin reductase were identified in all genomes indicat-
ing oxidative stress tolerance. All genomes encode an ATP
synthase which in fermentative bacteria can function to
maintain the transmembrane proton gradient by hydrolyzing
ATP. A pyrophosphatase-driven proton pump is also present
in all genomes for this purpose (fig. 3). To obtain ATP, TM6
bacteria may rely on ADP/ATP translocases to exchange ADP
for their hosts’ ATP. These translocases, found in all studied
TM6 genomes, are considered a feature of obligate intracel-
lular parasites (Schmitz-Esser et al. 2004), thereby providing
further evidence for TM6 bacteria having an intracellular par-
asitic lifestyle. In addition to parasitizing their hosts’ energy
pool, TM6 bacteria may also rely on substrate level phosphor-
ylation of cellobiose to gain ATP. All seven TM6 genomes
encode b-glucosidase for hydrolyzing the b-glycosidic linkage
in cellobiose to produce glucose monomers, and ATP is then
generated from the conversion of glucose to pyruvate
through a combination of glycolytic and pentose phosphate
pathway (PPP) enzymes. In SOIL31, SOIL82, UASB124, and
UASB340, pyruvate can then be converted to lactate through
lactate dehydrogenase to regenerate NAD+. Pyruvate dehy-
drogenase and other downstream enzymes for synthesis of
other fermentation products from acetyl-coA, including ace-
tate, ethanol, butanediol, and propionate were absent. In this
regard, the carbon metabolism of TM6 bacteria resembles
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FIG. 2. Distribution of cell envelope, division, and shape-determining genes in the studied TM6 population genomes indicating degenerated Gram-
negative cell envelope and division apparatus. Reference bacteria were included for comparison of gene distributions: Bacillus subtilis and Streptomyces
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candidate phylum Parcubacteria (OD1) whereby glucose
is metabolized to pyruvate but genes for acetyl-coA syn-
thesis and utilization were also absent (Kantor et al. 2013).
In addition, like TM6 bacteria, Parcubacteria was hypo-
thesized to also use lactate fermentation to recover
NAD+.

Amino Acid, Nucleotide, Lipid and Cofactor
Biosynthesis

No complete pathways for amino acid, nucleotide, lipid or
cofactor biosynthesis were identified in any of the TM6

genomes (fig. 3). The absence of biosynthetic machinery for
essential cellular building blocks is consistent with a
host-associated lifestyle (Moran 2002). All seven TM6 bacteria
have limited capacity to synthesize amino acids and most
likely depend on uptake of oligopeptides and amino acids
from their surroundings through a small set of transporters
and permeases (fig. 3). They have some capacity to synthesize
a limited set of amino acids from precursors with B. massi-
liensis being the most versatile in this regard and TM6SC1,
SOIL82, and UASB340 only being able to interconvert serine
and glycine (fig. 3). All TM6 bacteria also appear to lack the

spermidine/putrescine 

nucleosides

amino acids

sulfate

oligopeptides

bicarbonate

multidrug and
toxin extrusion

organic solvents

branched chain amino acids

magnesium

cobalt

nickel

sodium

Sec-dependent secretion

polysaccharide, polyol
manganese

urea

zinc

iron

cellobiosecellobioseglucose

pyruvate

via glycolysis and 
pentose phosphate pathway

lactate
(SOIL31 & 82, 
UASB124 & 340 only)

oxaloacetate
(UASB124 & 340 only)

acetyl-coA

X
Tricarboxylic

acid cycle

ATP synthase

fatty acid

outer membrane

periplasmic space

plasma membrane

peptidoglycan
proteins

LPS
O antigen

core oligosaccharide
lipid A

LPS in UASB124 and UASB340 only

PPi-energized
proton pump

H
+

PPi 2Pi

type IV pili?

heavy metals

ADPATP
H

+
ATP

ADP ATP/ADP
translocase

S S

SH SH

e-
DsbD

NADPH

NADP
+ Thioredoxin

reductase
T

X

All: serine glycine
 SOIL31, UASB124 & 293: O-acetyl serine cysteine

 UASB124 & 293: aspartate asparagine
B. massiliensis: glutamate glutamatine

B. massiliensis: 2-oxoisovalerate valine
B. massiliensis: 2-oxoisocaproate leucine

B. massiliensis: 3-methyl-2-oxopentanoate isoleucine

All: serine glycine
 SOIL31, UASB124 & 293: O-acetyl serine cysteine

 UASB124 & 293: aspartate asparagine
B. massiliensis: glutamate glutamatine

B. massiliensis: 2-oxoisovalerate valine
B. massiliensis: 2-oxoisocaproate leucine

B. massiliensis: 3-methyl-2-oxopentanoate isoleucine

X
purines/pyrimidines

purines/pyrimidines 
mono-/di-/tri-phosphate

purines/pyrimidines

purines/pyrimidines 
mono-/di-/tri-phosphate

NADH NAD+

Oxidative stress
protection:
Superoxide
dismutase

β-glucosidase
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capacity for nucleoside biosynthesis. Purine (adenosine, gua-
nosine, and inosine) and pyrimidine (uridine, cytidine, and
thymidine) nucleosides are normally synthesized from
ribose-5-phosphate produced through the PPP; however, all
nucleoside biosynthesis genes downstream of ribose-5-
phosphate are absent in TM6 bacteria. As with amino acids,
these bacteria likely rely on nucleoside permeases and nucle-
otide transporters for the uptake of nucleosides from their
local environment. Once inside the cell, nucleoside kinases
and phosphatases are present to convert among mono-, di-,
and tri-phosphate forms of purines and pyrimidines (fig. 3).
TM6 bacteria lack genes for fatty acid biosynthesis and deg-
radation. In the absence of these capabilities, we speculate
that TM6 bacteria may exploit host-derived lipids, as sug-
gested for Buchnera aphidicola where synthesis of the cell
membrane is not possible without fatty acid biosynthesis
genes (Bennett et al. 2014). Mechanisms by which host-
associated bacteria obtain host lipids are mostly unknown.
Chlamydia trachomatis can acquire lipids from host lipid
droplets using Lda1 and IncA proteins (Kumar et al. 2006;
Cocchiaro et al. 2008), but no homologs were identified in the
TM6 genomes. The synthesis of cofactors is also not possible
in TM6 bacteria, with the possible exception of UASB293
which has genes for a portion of the vitamin B12 pathway
(from co-sirohydrochlorin to cobyrinate). A sodium/panto-
thenate symporter and a biotin transporter were only iden-
tified in UASB340. Taken together, these observations
indicate that TM6 bacteria depend on external sources,
most likely a host organism, for essential nutrients and
building blocks to survive.

Evolution and Ecology of Inferred Parasitic Lifestyle

Host-associated lifestyles are well known in bacteria and
are characteristic of multiple lineages such as the phylum
Chlamydiae, order Rickettsiales, and the genera Buchnera
and Wigglesworthia (Moran 2002; McCutcheon and
Moran 2012). Candidate phylum TM6 is striking in that
the entire phylum appears to be host associated, which
has only been observed in one other phylum, the
Chlamydiae, although genome representation from class
F38 is required to confirm this inference (fig. 1B). The
proposal of an amoeba-dependent lifestyle in TM6 bacte-
ria was first inferred based on genome features of TM6SC1
(McLean et al. 2013). This proposal was subsequently sup-
ported by the isolation of B. massiliensis in coculture with
Acanthamoeba castellanii confirming an obligate intracel-
lular parasitic lifestyle for a member of the TM6 phylum
(Pagnier et al. 2015). With the findings from McLean et al.
(2013), Pagnier et al. (2015), and genomes of five addi-
tional TM6 bacteria described in this study, we provide
further evidence that TM6 bacteria are intracellular par-
asites of eukaryotes based on several features in common
with known parasitic bacteria: 1) Small genome size; 2)
degenerated cell envelope; 3) lack of metabolic pathways
for energy production and synthesis of essential building
blocks including amino acids, coenzymes, nucleotides,
and fatty acids; 4) proteins containing domains for

interaction with cellular machinery of eukaryotic hosts;
and 5) ATP/ADP translocases for scavenging ATP from
host cells. As the TM6 and Chlamydiae phyla are not
sister to each other (fig. 1A), these similarities likely
arose from independent adaptations to parasitic lifestyles.
Parasitism is thought to have evolved once in the
Chlamydiae with the last common chlamydial ancestor
having a protist host (Horn 2008). This raises the question
as to whether the TM6 ancestor was also parasitic, or
whether parasitism evolved independently on multiple
occasions in this phylum. We inferred a phylogenetic
tree from an alignment of the ATP/ADP translocase
genes identified in the TM6, Chlamydiae, Rickettsiales,
and chloroplast genomes. Consistent with a previous
analysis, we found that the Chlamydiae translocases are
monophyletic supporting the position that the chlamyd-
ial ancestor was parasitic (Schmitz-Esser et al. 2004).
Similarly, the TM6 translocases are monophyletic (fig.
4A) indicating that at least the ancestor of the class
Babeliae (fig. 1) was also parasitic. Genome representation
from class F38 is necessary to determine whether these
findings extend to the TM6 phylum ancestor. TM6 trans-
locase genes were duplicated independently several times
particularly in the UASB124/340 lineage (fig. 4B). Such
duplications are also apparent in the Chlamydiae and
particularly in the Rickettsiales (Schmitz-Esser et al.
2004), some of which have been shown to increase the
substrate range of the enzyme to other nucleotides in-
cluding GTP, UTP, CTP, and ATP (Tjaden et al. 1999;
Audia and Winkler 2006). We note that several TM6
translocase paralogs have substitutions of essential
amino acid residues (fig. 4A) suggesting neofunctionaliza-
tion of these genes, possibly also to other substrates. We
did not identify any ATP/ADP translocases in the ACD64
genome (Wrighton et al. 2014); however, these may have
been missed since the genome is estimated to be only 42%
complete (table 1).

An open question is host-specificity of TM6 bacteria.
Recent studies indicate that B. massiliensis and TM6SC1
are intracellular parasites of amoebae (Cohen et al. 2011;
McLean et al. 2013; Pagnier et al. 2015), and we predict
that SOIL31 and SOIL82 are associated with ciliate hosts
based on co-occurrence analysis (supplementary fig. S4,
Supplementary Material online). Amoebae are thought to
act as reservoirs for pathogenic bacterial genera such as
Legionella and Chlamydia, and coevolution of the bacte-
rium with its amoebal host has led to evolution of mech-
anisms for survival in higher eukaryotes (Molmeret et al.
2005). One such mechanism is the accumulation of pro-
teins containing domains that enable interaction with
eukaryotic hosts, of which two proteins with ankyrin re-
peats in Legionella pneumophila have been shown to be
involved in modulating host GTPases (AnkX; Mukherjee
et al. 2011) and intracellular proliferation in amoebae and
macrophages (AnkB; Al-Khodor et al. 2008). As at least
some members of the TM6 phylum have amoebal hosts
and most possess numerous ankyrin repeats (supplemen-
tary table S6, Supplementary Material online), it is
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tempting to speculate that they may have the capacity
to invade macrophages. Further exploration of the
TM6 phylum through comparative genomics will
shed light on this possibility and on host-specificity in
general.

Based on genome features of TM6 bacteria, we propose
the following names for the TM6 phylum, class, order, and
family level lineage described in this study:

“Dependentiae phyl. nov.” L. fem. n. dependentia, depen-
dent, L. fem. pl. n. Dependentiae to reflect dependence of TM6
bacteria on host organisms.

“Babeliae class nov.,” N.L. fem. pl. n. Babeliae, -ae ending to
denote a class, the class-level lineage of genus Babela; derived
from Babela massiliensis, the first named representative of the
TM6 phylum (Pagnier et al. 2015).

“Babeliales ord. nov.,” N.L. fem. n. Babeliales, -ales ending to
denote an order, the order-level lineage of genus Babela.
Description is the same as the class Babeliae.

“Babeliaceae fam. nov.,” N.L. fem. n. Babeliaceae, -aceae
ending to denote a family, the family-level lineage of genus
Babela. Description is the same as the class Babeliae.

During review of this manuscript, 15 additional TM6 pop-
ulation genomes recovered from aquifer metagenomes
became publicly available (Brown et al. 2015). A preliminary
inspection of these genomes indicates that they represent
members of the class Babeliae and have features consistent
with parasitism including reduced genome size, ankyrin re-
peats, and ATP/ADP translocases, supporting our conclusions
concerning this phylum.

Materials and Methods

Source of TM6 Population Genomes

Two previously reported metagenomic data sets were used
for mining TM6 population genomes, one from a UASB re-
actor treating organic wastewater from a sugar manufactur-
ing factory (Soo et al. 2014) and the other from sugarcane
agricultural soil (Yeoh et al. 2015). Metagenomic assembly
and recovery of population genomes from the UASB reactor
metagenome are described in Soo et al. (2014) and Sekiguchi
et al. (2015). For the agricultural soil, a de novo metagenome
assembly was performed. Briefly, library adapter sequences
were first removed and overlapping read pairs merged
using SeqPrep (https://github.com/jstjohn/SeqPrep, last
accessed December 10, 2015) with default settings.
Nonoverlapping reads were then quality trimmed to a
Phred quality score threshold of 20 using Nesoni 0.128
(https://github.com/Victorian-Bioinformatics-Consortium/
nesoni, last accessed December 10, 2015). These sequences
were then coassembled using the de novo assembly algorithm
in CLC Genomics Workbench 6.5 (CLC bio). After assembly,
reads from the respective samples were mapped to the scaf-
folds using BWA-MEM in BWA 0.7.10 (Li and Durbin 2009).
Population genome binning using differential coverage
was performed using GroopM version 0.2 (Imelfort et al.
2014). Scaffolds greater than 5,000 bp were used as seed se-
quences for recruitment of scaffolds that were greater than
4,000 bp.

Inferring Taxonomic Assignment of Recovered
Population Genomes

Population genomes recovered from the UASB and soil
metagenomes were classified by placement in a concate-
nated marker gene tree. Amino acid sequences of 38
universal (Darling et al. 2014) and 83 bacterial phyloge-
netically informative marker genes (Soo et al. 2014) were
identified in the recovered population genomes, TM6SC1,
Babela massiliensis and finished genomes in the IMG data-
base (release 4.1; Markowitz et al. 2012). The amino acid
sequences of these marker genes were aligned using
HMMER version 3.1b1 (Eddy, 2011) and concatenated.
Ambiguous alignment positions were masked using
Gblocks version 0.91b (Talavera and Castresana 2007).
Trees were inferred using FastTree v2.1.7 with default set-
tings (JTT model, CAT approximation; Price et al. 2010)
and visualized using ARB (Ludwig et al. 2004). Support
values were determined using nonparametric
bootstrapping (Felsenstein 1985). The final figure was
edited in Inkscape version 0.48 for publication.
Population genomes robustly clustering with TM6SC1
and B. massiliensis were classified as representatives of
the TM6 phylum, and subsequently verified in some in-
stances by the presence of partial or complete 16S rRNA
gene sequences (see below).

Genome Completeness and Contamination Estimates

Completeness and contamination of the TM6 genomes were
estimated by the presence/absence of bacterial single-copy
marker genes as described in Rinke et al. (2013), Soo et al.
(2014), Wrighton et al. (2014), and Sekiguchi et al. (2015).
Completeness was reported as the percentage of 104 bacterial
single-copy genes (modified from Dupont et al. 2012) present
in each TM6 genome, whereas contamination was reported
as the percentage of single-copy genes found in multiple
copies indicating possible inclusion of genome sequences be-
longing to other populations (Albertsen et al. 2013; Soo et al.
2014; Sekiguchi et al. 2015). Of the 104 marker genes used,
four were absent in all TM6 genomes and were inferred to be
a lineage-specific loss. Completeness and contamination esti-
mates were hence adjusted to be based on the remaining 100
marker genes. All completeness and contamination analyses
were performed using CheckM version 1.0.0 (Parks et al.
2015).

In addition, GC content deviation and tetranucleotide fre-
quencies of the five SOIL and UASB TM6 population ge-
nomes were determined to identify putative contaminating
contigs that may lead to erroneous gene annotation and
metabolic inferences. Contig %GC and tetranucleotide fre-
quencies were plotted against contig size and compared
with %GC and tetranucleotide frequency deviation windows
calculated from IMG reference genomes. All TM6 contigs that
were not within these windows were examined for gene con-
tent (see Annotation and Metabolic Reconstruction section
for methods). These analyses were performed using RefineM
version 0.0.6 (https://github.com/dparks1134/RefineM, last
accessed December 10, 2015).
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Average AAIs

The average AAI between pairs of genomes was calculated
from orthologous genes identified through reciprocal best
BLAST hits as implemented in CompareM version 0.0.5
(https://github.com/dparks1134/CompareM, last accessed
December 10, 2015).

16S rRNA Gene Phylogeny

Representative phylum TM6 16S rRNA gene (16S) sequences
(41,200 nt) were exported from an ARB database of
Greengenes 16S sequences (May 2013 release) with Lane
masking, and then aligned de novo with 16S sequences iden-
tified in the TM6 population genomes using MUSCLE version
3.8.31 (Edgar 2004). Trees were inferred using FastTree v2.1.7
using default settings (JTT model, CAT approximation; Price
et al. 2010) and visualized using ARB (Ludwig et al. 2004).
Support values were determined using nonparametric boot-
strapping (Felsenstein 1985).

Annotation and Metabolic Reconstruction

ORFs in TM6 population genomes were identified using
Prodigal v2.60 and annotated using 1) PROKKA version
1.10 (Seemann 2014), 2) BLAST alignment against IMG fin-
ished genomes (Release 4.1) and Uniref90 (downloaded April
3, 2014), and 3) HMMER against Hidden Markov Models
(HMMs) in Pfam-A (27.0) (Finn et al. 2014) and TIGRFAM
(release 14) (Haft et al. 2003) databases. The genomes were
also submitted to the IMG Expert Review (ER) and Rapid
Annotation using Subsystem Technology (RAST) systems
for annotation. Metabolic pathways were visualized using
the Kyoto Encyclopedia of Genes and Genomes (KEGG;
Kanehisa et al. 2014) pathway maps based on annotations
provided by the KEGG Automatic Annotation Server (KAAS;
Moriya et al. 2007). Gene assignments to COGs were identi-
fied by IMG ER, and COG profiles were visualized using PCA
implemented in the vegan package for R version 3.0.2 (R Core
Team 2014). Mann–Whitney tests in R were used to statisti-
cally compare differences in COG categories between ge-
nomes. Orthologous groups of amino acid sequences were
identified using Proteinortho 5 (Lechner et al. 2011).
Orthologous groups consisting of genes present in at least
six of the seven genomes were considered to be core genes,
whereas groups with lower representation across the phylum
were considered to be accessory genes.

Protein domains that facilitate interaction with eukaryotic
hosts in the TM6 bacteria genomes were identified using an
HMMER search with the corresponding HMMs obtained
from Pfam (Finn et al. 2014). Matching ORFs with e values
less than 0.001 were then queried against the UNIREF90
(downloaded April 2014) database using BLAST to identify
their best BLAST hits.

ATP/ADP Translocase Gene Phylogeny

An ARB database containing chlamydial, rickettsial, and chlo-
roplast ATP/ADP translocase protein sequences was down-
loaded from http://www.microbial-ecology.net/download
(last accessed December 10, 2015) (Schmitz-Esser et al.

2004) and aligned de novo together with ATP/ADP translo-
cases identified in the TM6 genomes using MAFFT-linsi ver-
sion 6.864b (Katoh and Toh 2010). Functional conserved
amino acid residues were identified in the alignment by com-
parison to reference sequences. Phylogenetic trees were in-
ferred using FastTree v2.1.7 with default settings (JTT model,
CAT approximation; Price et al. 2010) and visualized using
ARB (Ludwig et al. 2004). Support values were determined
using nonparametric bootstrapping (Felsenstein 1985).

Supplementary Material
Supplementary figures S1–S6 and tables S1–S6 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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