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Mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) are a promising cell source for the repair of
skeletal disorders. Recently, neural crest cells (NCCs) were reported to be effective for inducing mesenchymal progenitors, which
have potential to differentiate into osteochondral lineages. Our aim was to investigate the feasibility of MSC-like cells originated
from iPSCs via NCCs for osteochondral repair. Initially, MSC-like cells derived from iPSC-NCCs (iNCCs) were generated and
characterized in vitro. These iNCC-derived MSC-like cells (iNCMSCs) exhibited a homogenous population and potential for
osteochondral differentiation. No upregulation of pluripotent markers was detected during culture. Second, we implanted
iNCMSC-derived tissue-engineered constructs into rat osteochondral defects without any preinduction for specific
differentiation lineages. The implanted cells remained alive at the implanted site, whereas they failed to repair the defects, with
only scarce development of osteochondral tissue in vivo. With regard to tumorigenesis, the implanted cells gradually
disappeared and no malignant cells were detected throughout the 2-month follow-up. While this study did not show that
iNCMSCs have efficacy for repair of osteochondral defects when implanted under undifferentiated conditions, iNCMSCs
exhibited good chondrogenic potential in vitro under appropriate conditions. With further optimization, iNCMSCs may be a
new source for tissue engineering of cartilage.

1. Introduction

Cartilage injuries usually donotheal spontaneously; therefore,
various cell therapies using chondrocytes or mesenchymal
stemcells (MSCs)havebeen investigated toovercome the clin-
ically poor outcomes [1]. Among them, chondrocyte-based
therapies have been extensively examined since the initial

reports of successful autologous chondrocyte implantation
(ACI). However, there are potential concerns regarding the
limited availability of chondrocytes due to the limited size of
harvested intact cartilage, and dedifferentiation of the chon-
drocytic phenotype associatedwith in vitromonolayer expan-
sion. In this regard,MSCs derived frombonemarrow, adipose
tissue, and other connective tissues are promising alternatives
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for cartilage repair because of their expandability and chon-
drogenic potential. However, these cell sources also likely have
some limitations, including limited cell proliferative capacity
and loss of cell viability during long-term culture [2]. More-
over, the quality of MSCs varies widely among donors
[3–5]; therefore, MSC therapies are not always available
to all the patients.

Pluripotent stem cells (PSCs), such as embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs),
could be alternative sources for various cell therapies includ-
ing cartilage repair. PSCs exhibit infinite growth and differ-
entiation and can be obtained with minimally [6] or less
invasive procedures [7]; however, the safety for clinical usage
of PSCs and their derivatives has not been fully elucidated
[8]. Also, the instability of the phenotype associated with
differentiation protocols remains to be resolved.

Previous studies reported methods to produce MSC-like
cells from human PSCs for targeting bone and/or cartilage
repair [9–15]. The generation of intermediate, MSC-like cells
between PSCs and terminally differentiated cells could be a
promising strategy for the purification of osteogenic/chon-
drogenic progenitors and the elimination of residual PSCs.
In many of the early studies, MSC-like cells were directly
induced from PSCs by serum-containing medium without
any signal control. Outgrowth cells from PSC colony or
embryoid body cultured with such medium were collected
based on their proliferative potential, and those cells have
been known to satisfy the criteria of in vitro MSC [11, 12, 14,
16–21]. There have been some studies outlining how to pre-
pare the PSCs prior to the induction of MSCs, when to switch
to MSC medium from PSC medium, and how to expand
those induced cells. However, such MSC-like cells, induced
by only serum-containing medium, have decreased differ-
entiation potential, particularly toward the chondrogenic
lineage [15, 19, 22–29]. Therefore, adequate signal control,
mimicking embryonic development, is considered a neces-
sity to create useful cells for cartilage repair.

Recently, neural crest cells (NCCs) have been reported as
an effective pathway to induce mesenchymal progenitors, as
the resulting cells appear to have high potential for differen-
tiation into osteocytes and chondrocytes [30–33]. NCCs are
known to give rise to many cranial tissues including bone
and cartilage [34–36], but NCC-derived cells have been
detected in the bone marrow of limb tubular bones [37–39].
These cells obtained proliferative and multipotent differenti-
ation properties after in vitro culture; therefore, the neural
crest is considered as one of the origins of MSCs [39–42].

For the study of PSCs, simple and efficient methods to
generate NCCs from iPSCs (iNCCs) have already been estab-
lished by several groups [30–32, 43–46]. The activation of
canonical Wnt signaling and the prevention of TGFβ signal-
ing are common approaches in obtaining a highly enriched
population of CD271(+)-iNCCs.Most remarkably and benefi-
cially, iNCCs can be expanded for long term under conditions
of bFGF supplementation and TGFβ inhibition; moreover,
frozen stocks can be made [30, 31, 43], which could be a great
advantage for future clinical use. iNCCs have the potential to
differentiate into peripheral neurons, glia, pigment cells,
corneal endothelial cells, and other cell types [44, 45], but

not directly to osteocytes or chondrocytes. Therefore, it is
likely necessary to first switch to the mesenchymal lineage,
as shown in previous reports [12, 21, 47–49].

Although it is known that PSC-derived NCCs have
osteogenic and chondrogenic potential in vitro after mesen-
chymal induction [30, 32, 33, 43, 50, 51], there have been
no further published research regarding the use of iNCC-
derived MSC-like cells (iNCMSCs) for bone or cartilage
repair in vivo. Thus, the purpose of the present study was
to generate and characterize MSC-like cells from iNCCs
and, subsequently, to investigate their capacity to repair
cartilage and bone in vivo using an athymic nude rat osteo-
chondral defect model.

2. Materials and Methods

2.1. Cell Culture. Human NCCs derived from 414C2-iPSCs
(iNCCs) were a kind gift from Dr. M. Ikeya and were main-
tained as described previously [30]. In brief, iNCCs were
cultured on fibronectin (Millipore, Bedford, CA, USA)
coated dishes and maintained with chemically defined
medium (CDM), which contains Iscove’s modified Dulbec-
co’s medium/Ham’s F-12 1 : 1, 1× chemically defined lipid
concentrate (Gibco, Grand Island, NY, USA), 15μg/mL
apo-transferrin (Sigma-Aldrich, St. Louis, MO, USA),
450mM monothioglycerol (Sigma-Aldrich), 5mg/mL puri-
fied BSA (Sigma-Aldrich), 7μg/mL insulin (WAKO, Osaka,
Japan), 10μM SB431542 (SB) (Selleck Chemicals, Houston,
Texas, USA), 20 ng/mL EGF (R&D Systems, Minnesota,
USA), 20ng/mL bFGF (Wako), and penicillin/streptomycin
(Invitrogen, Carlsbad, CA, USA). iNCCs were passaged with
Accutase (Gibco) and replated at 1× 104 cells/cm2. The
medium was replaced every 2-3 days.

For MSC induction from iNCCs, the CDM was replaced
with MSC medium, which contained alpha-MEM (aMEM)
(Nakarai Tesque, Tokyo, Japan), 10% fetal bovine serum
(FBS) (Sigma-Aldrich), 5 ng/mL bFGF, and 1% antibiotic
antimycotic (Sigma-Aldrich). The next day, cells were
harvested with 0.25% Trypsin-EDTA (Gibco) and replated
onto tissue culture dishes (Corning, NY, USA) at a density
of 1–3× 103 cells/cm2. The MSC medium was changed twice
a week, and cells were passaged with 0.25% Trypasin-EDTA
at 80–90% confluency. All cells were incubated at 37°C with
5% CO2. The culture conditions for other cells are described
in the Supplementary Methods available online at https://doi.
org/10.1155/2017/1960965.

Senescence-associated β-galactosidase staining was
performed using a Cellular Senescence detection kit (Cell
Biolabs, San Diego, California, USA). Population dou-
bling level (PDL) was calculated using the formula
PDL= log(N/N0)/log2, where N0 is the plated cell num-
ber and N is the harvested cell number at the time of
passage. Cumulative PDL was the total PDL=Σ(PDL)n,
where n is the passage number [52]. Population doubling
time (PDT) was calculated using the formula PDT=culture
period (hours)/PDL [53].

Human bone marrow-derived MSC were obtained
from LONZA (catalog number PT-2501, lot number
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0000451491) and used for assays after three passages
with the same MSC medium as described above.

2.2. Fluorescence-Activated Cell Sorting (FACS). FACS was
performed using BD FACSVerse™ flow cytometer (BD Bio-
science, New Jersey, USA) according to the manufacturer’s
protocol. iNCCs and iNCMSCs were dissociated into
single cells as described above. Cells were resuspended in
0.1%BSA-PBS and incubated for 30min at room temperature
with fluorescence-conjugated antibodies. The antibodies
used for FACS are listed in Supplementary Table S1. Appro-
priate antibodies were used as a negative control. The cells
were washed with 0.1%BSA-PBS twice and then suspended
in 0.5mL of 0.1%BSA-PBS for analysis with a BD FACSVerse
(BD Biosciences). Data retrieved from the sorting was ana-
lyzed with BD FACSuite Software (BD Bioscience).

2.3. Differentiation of iNCMSCs. Cells from passages 2-3 were
used for the following in vitro differentiation assays for chon-
drogenesis, osteogenesis, and adipogenesis.

2.3.1. Induction of Chondrogenesis. To obtain cell aggregated
pellets, 2 × 105 cells were centrifuged in a 96-deep well poly-
propylene plates and cultured with 10% FBS-aMEM. The
next day, the medium was changed to a chondrogenic
medium that consisted of high-glucose DMEM containing
110μg/mL sodium pyruvate (Gibco) supplemented with
0.2mM ascorbate-2-phosphate (Sigma-Aldrich), 40 μg/mL
L-proline (Wako), 100 nM dexamethasone (Sigma-Aldrich),
1% ITS+Premix (Corning: 6.25μg/mL insulin, 6.25 μg/mL
transferrin, 6.25 μg/mL selenious acid, 1.25 μg/mL bovine
serum albumin, and 5.35 μg/mL linoleic acid), 10 ng/mL
transforming growth factor-β3 (TGFβ3) (Peprotech, Rocky
Hill, New Jersey, USA), and 50ng/mL bone morphogenic
protein 2 (BMP2) (Medtronic, Dublin, Ireland). The pellets
were maintained with 0.5mL of chondrogenic culture
medium in a humid atmosphere of 5% CO2 at 37°C. The
medium was replaced twice per week.

Total sulfated glycosaminoglycan (sGAG) was mea-
sured using a Blyscan Assay Kit (Biocolor, Westbury,
NY, USA) based on 1,9-dimethylmethylene blue binding
against a standard curve of chondroitin-6-sulfate according
to the manufacturer’s protocol.

2.3.2. Induction of Osteogenesis. iNCMSCs were seeded at a
density of 5× 104/cm2 and cultured in osteogenesis differen-
tiation medium (Gibco). Cells cultured in 10%FBS-aMEM
served as a control. Differentiation was confirmed by
assessing alkaline phosphatase (ALP) activity and calcium
deposition. For analysis, cells were rinsed twice with PBS,
fixed with 4% paraformaldehyde (PFA) for 10 minutes,
and washed with water. Alkaline phosphatase (ALP) activ-
ity was detected using the BCIP/NBT Color Development
Substrate (Promega, Wisconsin, USA), according to the
manufacturer’s instruction. Calcium deposition was detected
by 1% alizarin red S solution (pH 6.4) (Muto Pure Chemicals,
Tokyo, Japan) for 10 minutes at room temperature and
then washed thoroughly with water. For von Kossa stain-
ing, culture wells were stained with 5% silver nitrate
(Wako) under ambient light for 1 hour and then fixed
with 5% sodium thiosulfate (Wako) for 5min to remove
nonreacted silver.

2.3.3. Induction of Adipogenesis. iNCMSCs were seeded at a
density of 1× 105/cm2 and cultured in 10%FBS-aMEM until
over confluent. Subsequently, the cells were cultured in adi-
pogenesis differentiation medium (Gibco) for 72 hours,
followed by incubation in adipogenic maintenance medium
(10%FBS-aMEM, 10μg/mL insulin) for 72 hours. Adipogen-
esis was induced by cycles of induction/maintenance [54].
Cells cultured in 10%FBS-aMEM served as a control. To
detect the formation of lipid vacuoles, cells were fixed with
4% PFA, washed, and stained with oil red O solution (0.5%
oil red O (Sigma-Aldrich) in 60% isopropanol) for 15
minutes. The stained dye was eluted with 100% isopropanol,
and the absorbance was measured at 520nm.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

P1 P3 P5 P7 P9

2‐
dC

t (
Ta

rg
et

/G
A

PD
H

)

p16

(e)

Figure 1: Transition to iNCMSCs from iNCCs and their expandability. (a) Schematic protocol for generation of iNCMSCs from iNCCs. (b)
Cell morphology of iNCCs and iNCMSCs during expansion culture. Passage number and expanded days are presented in their inboxes. (c)
Growth curve of iNCMSCs over two months (N= three lines). Each symbol represents each passage. PDT was calculated during first seven
weeks (mean± SD for three lines). (d) Senescence-associated β-galactosidase staining of iNCMSCs at passages 3 and 8. (e) Upregulation of
p16 mRNA expression during expansion culture (means± SD for three lines). Scale bars = 100μm (b, d). Abbreviations: CDM: Chemical
defined medium; SB: SB431452; PDL: Population doubling level; PDT: Population doubling time; iNCCs: Induced neural crest cells;
iPSCs: Induced pluripotent stem cells; iNCMSCs: iNCC-derived mesenchymal stem cells.
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Figure 2: Depletion of pluripotent markers in iNCMSCs. (a, b) FACS analysis of PSC-specific surface antigen and gene expression analysis of
PSC-specific transcript factors in iPSCs, iNCCs, and iNCMSCs. 409B2-iPSCs were used for positive control of each assays. Abbreviations:
PSCs: Pluripotent stem cells; iNCCs: Induced neural crest cells; iPSCs: Induced pluripotent stem cells; iNCMSCs: iNCC-derived
mesenchymal stem cells.
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2.4. Development of the Tissue-Engineered Constructs (TEC).
In order to prepare an in vitro engineered tissue, which is fea-
sible for implantation, the cells from passage 2 were plated in
tissue culture vessels at a density of 4.0× 105 cells/cm2 as pre-
viously reported [55, 56] and cultured in 10%FBS-aMEM.
After 7 days of overconfluent culture, a complex of cultured
cells and the ECM synthesized by the cells was detached from
the substratum by applying shear stress through using gentle
pipetting. The detached monolayer complex was left in sus-
pension to form a three-dimensional structure by active tis-
sue contraction.

2.5. Implantation of TEC to Osteochondral Defects. Animal
experiments were performed according to a protocol
approved by the Animal Care and Use Committee of The
University of Osaka. Twelve-week-old male euthymic nude
rats (F344 NJcl-rnu/rnu; CLEA Japan, Fujinomiya, Japan)
were anesthetized by an intraperitoneal injection of a mix-
ture of 0.3mg/kg of medetomidine, 4.0mg/kg of midazolam,
and 5.0mg/kg of butorphanol. For both knees, the femoral
trochlear grooves were exposed via a medial parapatellar
incision with lateral patellar dislocation. A longitudinal,
full-thickness osteochondral defect (1.2mm wide, 3-4mm
long, and 1mm deep) was made in each knee by manual

drilling, taking care to avoid overheating during the drilling
procedure. The TEC that were developed in 24-well plates
were implanted into the defects, and then patellar disloca-
tion was reduced. The joint capsule and the skin were
sutured in separate layers. After surgery, rats were allowed
to be active without any fixation device or immobilization.
Animals were euthanized with CO2 inhalation at 4 weeks
or 8 weeks postoperation. The repaired tissues were scored
for macroscopic appearance, based on the following tissue
color-grading scheme: 1= depression (tissue void), 2 = red/
grey, 3 = beige, 4 = red-white, and 5=white, homogeneous
tissue [57].

2.6. Histology and Histochemistry. The samples were fixed in
4% PFA and embedded in paraffin wax, which was followed
by dehydration with serial ethanol and clearance with xylene.
For evaluation of the osteochondral tissues, the dissected
femoral ends were decalcified with 10% ethylenediaminetet-
raacetic acid (pH 7.4) before paraffin embedding. The
specimens were cut into 5μm thick sections and used for
Safranin O-fast green-iron hematoxylin (Saf-O) staining or
immunohistochemistry. The information regarding the anti-
bodies and reaction conditions is listed in Supplemental
Table S2. The immune complexes, antigen-first antibody,
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Figure 3: Neural crest markers and mesenchymal stem cell markers. (a) FACS analysis of NC and MSC surface markers in iNCC and
iNCMSC (P0, P1, and P2). The date are representative of four lines. Human bone marrow derived MSCs were used for assay control. (b)
Gene expression of NC and MSC markers during expansion of iNCMSCs. (mean± SD for four lines). Abbreviations: iNCCs: Induced
neural crest cells; iPSCs: Induced pluripotent stem cells; iNCMSCs: Induced neural crest derived mesenchymal stem cells; hBM-MSCs:
Human bone marrow-derived MSCs.
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were detected by Histofine Simple Stain MAX PO (Nichirei
Biosciences, Tokyo, Japan) and Simple Stain DAB Solution
(Nichirei). Most slides were counterstained with hematoxy-
lin, and some slides were additionally stained with alcian blue
(pH 1.0) (Muto Pure Chemicals) [58].

The histological sections of repaired tissues stained
with Saf-O were used for evaluation using the modified
O’Driscoll score for cartilage and subchondral bone
repair [59].

2.7. RNA and qRT-PCR. Total RNA was extracted with a
RNeasy Mini Kit (QIAGEN, Valencia, CA, USA) for
expanded cells and RNeasy Fibrous Tissue Mini Kit

(QIAGEN) for chondrogenic pellets. RNase-Free DNase Set
(QIAGEN) was used to remove genomic DNA. Total RNA
was reverse transcribed into first-strand complementary
DNA (cDNA) using Super Script VILO (Life Technologies,
Maryland, USA) and random primers, according to the man-
ufacturer’s protocol. Quantitative RT-PCR was performed
using Taqman assays (Applied Biosystems, California,
USA), Taqman Fast Advanced Master Mix (Applied
Biosystems), and StepOne Plus (Applied Biosystems). The
information of Taqman assays is listed in Supplementary
Table S3. Target transcriptional levels were normalized to
the level of glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) expression. The expression levels of each target
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Figure 4: Chondrogenesis of iNCMSCs. The representative data from three lines is shown. (a) Safranin-O staining of chondrogenic pellet
stimulated with TGFβ3 and BMP2 at day 28. High magnification image is shown in the right panel with the same frame. (b, c)
Immunostaining for COL2 and SOX9 of chondrogenic pellet at day 28. (d) The pellet size of chondrogenic pellets during culture.
(e) Deposition of sulfated glycosaminoglycan in chondrogenic pellets during culture. (f) The alteration of chondrogenesis-related
gene expression. (g) mRNA expression levels for type 10 collagen in long-term culture and immunostaining for type 10 collagen at
day 28 in chondrogenic pellets. (h) Saf-O images of chondrogenic pellet culture with TGFβ3 (10 ng/mL) and various concentrations
of BMP2 (0–500 ng/mL) for 28 days. (i) Saf-O images of chondrogenic pellet cultures in TB media with addition of variable serum
concentrations for 28 days. Scale bars = 500μm (a, h, i) and 100μm (b, c, and high-magnified images of a, h, i). Data are expressed
as mean± SD for three pellet replicates (d–g). Abbreviations: Saf-O: Safranin-O staining; COL2: Type 2 collagen; sGAG: Sulfated
glycosaminoglycan; COL10: Type 10 collagen.
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genes were represented by the Δct value (target Ct−GAPDH
Ct) or calculated value (2−Δct) [60, 61].

3. Results

3.1. Induction and Characterization of MSCs from iNCCs
(iNCMSCs). Provided iNCCs were generated from 414C2-
iPSCs through sorting of CD271high cells after 7 days cultiva-
tion with chemically defined medium supplemented with
10μM SB431542 (SB) and 1μM CHIR99021 [30] and main-
tained with chemically defined medium supplemented with
SB, EGF, and bFGF on fibronectin-coated dish [30]. To
derive MSCs from iNCCs, iNCC medium was switched to
10%FBS-aMEM supplemented with 5ng/mL bFGF.
Twenty-four hours later, the cells were passaged with trypsin
and subcultured on general cell culture dish (Figure 1(a)).
More than six lines of iNCMSCs were generated from
414C2-iNCCs at different timing. Once switched to MSC
medium, all lines quickly changed their cell morphology to
fibroblast-like spindle cells and displayed homogenous popu-
lation within a few weeks (Figure 1(b)). The growth was rapid
in the first seven weeks: population doubling time (PDT) was
approximately 36 hours, and iNCMSCs had high mitotic
potential over thirty times (Figure 1(c)), which is comparable
to conventional human MSCs [53, 62]. Over eight weeks of
culture, their growth slowed down and morphologically
enlarged and flat cells were increased in abundance
(Figures 1(b) and 1(c)). Such cells showed positive staining
for senescence-associated β-GAL staining (Figure 1(d)),
and moreover, the mRNA expression for p16, which is a
marker of cell senescence, was upregulated with increasing
passage number (Figure 1(e)). Abnormal propagation and/
or spheroid formation, as is observed with tumor cells, was
not detected.

With regard to the pluripotency, iNCMSCs rarely
expressed the pluripotent stem cell- (PSC-) specific surface
antigens (TRA-1-60 and rBC2LCN) based on FACS analy-
sis (Figure 2(a)), and the PSC-specific transcript factors

(Oct4, Nanog, Sox2, and Lin28a) were quickly downregu-
lated to nearly undetectable level during MSC induction
(Figure 2(b)).

CD271, which is a neural crest marker, was also rap-
idly lost in response to exposure to the MSC media
(Figures 3(a) and 3(b)), and MSC markers such as
CD44, CD73, and CD105 also converged to similar
expression patterns in passaged iNCMSCs, to levels similar
to those for human bone marrow-derived MSCs (hBMMSCs)
(Figure 3(a)). The cells retained their cell surface antigen
profile until passage 8 (Supplementary Figure S1A). CD34
and CD45, which are hematopoietic stem cell markers,
were not detected, similar to findings observed with
hBMMSCs (Figure 3(a) and Supplementary Figure S1B).
Unexpectedly, the expression of CD90, which is a general
MSC marker, was lost with increasing passage number;
however, iNCMSCs cultured without bFGF consistently
expressed CD90 (Supplementary Figure S2). The mRNA
levels for neural crest markers (TFAP2A, CD271, Sox10,
Pax3, and nestin) were also downregulated immediately
upon MSC induction (Figure 3(b)).

These results suggest that MSC-like cells can be rapidly
and homogeneously obtained from neural crest cells during
an initial few passages, without detectable contamination by
malignant cells or remnant neural crest cells.

3.2. Differentiation Potential of iNCMSCs toward
Chondrocytes, Osteocytes, and Adipocytes. To investigate the
differentiation potential of iNCMSCs for further use
in vivo, their abilities to differentiate towards the chondro-
genic, osteogenic, and adipogenic lineages were assessed
using standard methods known from a number of MSC
studies [27, 32, 54, 63].

To assess their chondrogenic potential, iNCMSCs were
subjected to a 3D pellet culture system using TGFβ3 and
BMP2. Although stimulation with only TGFβ3 or BMP2
individually did not induce chondrogenesis, the pellets
cultured with TGFβ3 and BMP2 (TB) underwent
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Figure 5: Osteo- and adipogenesis of iNCMSCs. The representative data for three lines is shown. (a) ALP staining at day 7 and calcium
staining (alizarin red S and von Kossa staining) at day 14 of iNCMSCs cultured in osteogenic medium in 24-well plates. (b) Osteogenesis-
related gene expression at days 3, 7, and 14. (c) Oil red staining of iNCMSCs cultured in adipogenesis medium at days 9 and 21. (d)
Measurement of oil red positive droplets. (e) Adipogenesis-related gene expression at day 9, 15, and 21. Data are expressed as mean± SD
for three well replicate per group (b, d, e). Scale bars = 100μm (a, c). Abbreviations: ALP: Alkaline phosphatase; G.M.: Growth medium.
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chondrogenesis, as indicated by strong stained with
Safranin-O (Figure 4(a)). Furthermore, the pellets con-
tained type 2 collagen and most cells expressed SOX9
(Figures 4(b) and 4(c)). The size of the pellet continued
to increase in parallel with sulfated glycosaminoglycan
(sGAG) deposition (Figures 4(d) and 4(e)). In the assess-
ment of mRNA levels, those for the SOX trio (SOX5,
SOX6, and SOX9), transcriptional regulators of chondro-
genesis were upregulated by day 3 and reached a peak
by day 14. Similarly, those for COL2A1 and ACAN, major
matrices of hyaline cartilage were upregulated by day 7
and continued to rise until day 28. In contrast, an upreg-
ulation of mRNA levels for COL1A2 was not observed
during the culture period (Figure 4(f)). These results sug-
gest that iNCMSCs have potential for chondrogenesis and
formation of hyaline-like cartilage tissue. In addition, over
the 3-week induction period, exposure to the TB media
led to upregulated expression of mRNA for COL10, a
marker of hypertrophic chondrocytes, which implied that
the endochondral ossification pathway was also activated
(Figure 4(g)). Notably, chondrogenesis induction of
iNCMSCs could only be induced with an adequate dose of
cytokines (Figure 4(h)), and only a small amount of contam-
ination of serum appeared to severely inhibit their chondro-
genesis commitment, unlike conventional MSC [64–68]. On
the other hand, iNCCs did not aggregate spontaneously in
direct chondrogenic pellet culture (data not shown); findings
consist with a previous report [31]. Such evidence indicates
that transition to a mesenchymal lineage is required for these

cells prior to giving rise to cartilage-like differentiation by
some stimulation factors.

Osteogenesis and adipogenesis were confirmed with a
commercially available differentiation media. As shown in
Figure 5(a), iNCMSCs cultured in the osteogenesis differenti-
ation media exhibited high ALP activity compared with those
that were maintained in growth medium. Moreover, calcium
deposition was confirmed by alizarin red and von Kossa
staining. Osteocyte-specific genes such as RUNX2, osteopon-
tin, and osterix were also upregulated through osteogenesis
induction (Figure 5(b)).

To induce adipogenesis, iNCMSCs were stimulated with
adipogenesis differentiation media. As the results show, the
formation of fatty droplets was confirmed (Figures 5(c)
and 5(d)), and adipogenesis-specific genes such as those
encoding aP2, LPL, and adiponectin were upregulated
only in induced cells (Figure 5(e)). However, their adi-
pogenic potential was somewhat inferior to that resulting
from differentiation of adult bone marrow-derived MSCs
(Supplementary Figure S3).

These results suggested that iNCMSCs have the potential
for tri-lineage differentiation, which is known as a property
of MSCs. Notably, chondrogenesis and osteogenesis were
sufficiently induced, findings which support their potential
use for osteochondral repair.

3.3. Development of Engineered Tissue from iNCMSCs. There
are various approaches to cartilage repair using MSCs.
Some studies have simply used undifferentiated MSCs

COL1
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COL2

HE

COL1

COL2

(a) (b)

COL2 Saf‐O

(c) (d) (e) (f)

Figure 6: In vitro development of tissue-engineered tissue from iNCMSCs. (a–c)ses gross appearance of iNCMSC-TEC developed in 35mm
dishes at day 7. Thin monolayer cell sheet was formed in the culture bottom surface after 7 days of high-density culture (a), and once
artificially detached (black arrows), a thick sheet-like construct (iNCMSC-TEC) developed through active tissue contraction within a few
minutes (b). HE staining and immunostaining for COL1 and COL2 of transverse section are shown in their corresponding right panels.
Scale bars = 50 μm. The iNCMSC-TEC exhibited sufficient strength to handle with forceps (c). (d) Ex vivo implantation of iNCMSC-TEC
into osteochondral defects of cadaver rats. iNCMSC-TEC readily filled the defect created in the femoral groove (white arrows). Scale
bars = 1mm. (e, f) Chondrogenic potential of iNCMSC-TEC. COL2 immunostaining (e) and Safranin-O staining (f) of iNCMSC-TEC
cultured in chondrogenic medium for 1 month. Scale bars = 500μm. Abbreviations: HE: Hematoxylin and eosin staining; COL1: Type 1
collagen; COL2: Type 2 collagen; Saf-O: Safranin-O.
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[12, 14, 69, 70], while other studies have induced such
cells to commit to the chondrocyte lineage prior to
implantation [71–75]. Initially, the feasibility of using
iNCMSCs, without prior chondrogenic commitment to
repair osteochondral defects in an immunocompromised
rat model, was assessed.

To implant iNCMSCs into osteochondral defects, a
scaffold-free tissue-engineered construct- (TEC-) mediated
method was adopted [55, 76–80]. This approach enabled
the engraftment of numerous stem cells, and the feasibility
to repair rodent osteochondral defects has been demon-
strated [80]. By seeding and maintaining the cells at a high
density, iNCMSCs developed a thin sheet-like structure that
adhered to the bottom of the culture vessel (Figure 6(a)).
Once detached from the culture vessel by exerting shear
stress at the cell/substratum interface, the cell sheet con-
tracted spontaneously and exhibited a thick sheet-like struc-
ture (Figure 6(b)). Such iNCMSC-derived constructs
(iNCMSC-TEC) could be derived within one week, and they
were of sufficient strength to be handled with forceps
(Figure 6(c)); therefore, they were readily implanted into
osteochondral defects created in the femoral groove of
cadaver rat knees (Figure 6(d)). iNCMSC-TEC were initially
a fibrous tissue rich in type 1 collagen, but they evolved to
be a cartilaginous-like tissue consisting of type 2 collagen
following stimulation with TB in vitro. Such findings sug-
gest that the cells in the iNCMSC-TEC retained their
chondrogenic potential after the tissue engineering process
(Figures 6(e) and 6(f)).

3.4. Implantation of iNCMSC-TEC into Osteochondral
Defects. For the implantation trials, in addition to the

untreated group, a group of hBMMSC-derived TEC
(hBM-TEC) were included as a positive control to
compare the efficacy of cell therapy. The hBMMSCs and
hBM-TEC were cultured under the same conditions, and
their MSC characteristics were confirmed by same proto-
cols (Figure 3(a) and Supplementary Figure S3).

In the untreated group, the spontaneous repair of
subchondral bone defects was apparent; however, the repair
tissue was mainly composed of fibrous- or fibrocartilage-
like tissues rich in type 1 collagen and which lacked staining
for Safranin-O and type 2 collagen (Figures 7(a) and 7(b) and
Supplementary Figure S4A). In the hBM-TEC group, macro-
scopic assessment showed that the defect was filled with
white tissue. Histologically, this repair tissue stained strongly
for Safranin-O and type 2 collagen, similar to hyaline carti-
lage (Figures 7(c) and 7(d) and Supplementary Figure S4B).
The defects were fully filled with a hyaline-like cartilaginous
tissue when assessed at 1-month postimplantation. Over
time, subchondral bone formation proceeded further, which
resulted in the upper migration of the osteochondral junction
by 2 months postimplantation (Figure 7(d)).

In the iNCMSC-TEC group, macroscopically, the
defects were filled with transparent tissue at 1 month
(Figure 7(e))s and partially filled with a white tissue at 2
months (Figure 7(f)). Histologically, the repair tissue was
mostly composed of a fibrous tissue rich in type 1 collagen
and which lacked staining for Safranin-O and type 2 collagen
(Figures 7(e) and 7(f) and Supplementary Figure S4C).
Notably, many implanted cells positive for human vimentin
remained in the implantation site without specific differenti-
ation toward the osteochondral lineage, and these appeared
to inhibit the repair of subchondral bone (Figures 7(g) and
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Figure 7: In vivo transplantation of TEC to rat osteochondral defects. (a–f) Macroappearance and Safranin-O staining (Saf-O) for each
group at 1 month and 2 months. Inset boxes in the upper panels are magnified in lower panels with the same frame. Representative
data are shown (N = 5 knees for the empty group, N = 6 knees for the hBM-TEC group, and N = 7 knees for the iNCMSC-TEC group
at each endpoint). Histological assessments were conducted at two different points as shown in the macroimages (“P” represents
“proximal section” and “D” presents “distal section”). Scale bars = 1mm (macroimage), 500μm (upper panels of Saf-O), and 200 μm
(lower panels of Saf-O). (g, h) Human vimentin immunostaining of the iNCMSC-TEC group at 1 month and 2 months. Scale
bars = 500μm. (i) Macroscopic score based on their gross appearance [57]. Averaged score with standard deviation is shown.
∗P < 0 05 by the Steel-Dwass test. (j) Histological grading by the O’Driscoll scoring system based on Saf-O staining using two
specimens (“P” and “D”) per each knee. Data are expressed as the mean± SD for each group. ∗P < 0 05 by the Steel-Dwass test. (k)
The quantitation of transplanted iNCMSCs remaining at the implantation site was calculated from their hVimentin-DAB positive
area. Data are shown as box-and-whisker plots and dot plots. Abbreviations: TEC: Tissue-engineered construct; hBM: Human bone
marrow mesenchymal stem cell; iNCMSC: Induced neural crest-derived mesenchymal stem cells.
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7(h)). Moreover, fibrous tissues, which were highly stained
for COL1 immunostaining, were detected in such specimens
(Supplementary Figure S4C black arrow). Based on the
results of both the macroscopic and histological grading of
repair tissue, the iNCMSC-TEC group exhibited the worst
repair quality of the three groups assessed (Figures 7(i) and
7(j)). With regard to their potential residual tumorigenic
capacity, the iNCMSCs did not detectably proliferate abnor-
mally in vivo for the duration of the two-month follow-up
(Figure 7(k)). Human vimentin positive cells were detected
in 7 out of 7 knees and 10 out of 14 specimens tested at 1
month and in 5 out of 7 knees and 6 out of 14 specimens at
2 months. In addition, Ki-67, a proliferation marker used
for the detection of malignant cells, was not detected in
any specimens throughout the experiment (Supplementary
Figure S5). Based on the combined staining for human vimen-
tin and sGAG, it was concluded that implanted hBMMSCs dif-
ferentiated toward the osteochondral lineage and formed
abundant cartilaginous and bony tissue in response to the
in vivo environment (Figure 8(a)). On the other hand, most
of iNCMSCs were still detected in the repair tissue without
showing any overt signs of differentiation toward the osteo-
chondral lineages. However, a few iNCMSCs were detected
in the area of the remodeled subchondral bone, and they
appeared to exhibit a similar cell shape to the surrounding
osteocytes (Figure 8(b)).

4. Discussion

In the present study, MSC-like cells were reproducibly
generated from iNCCs (iNCMSCs) using a relatively simple
protocol and characterized for their properties with a focus
on the efficiency of MSC generation, their nontumorigenic
phenotype, their in vitro differentiation capacities, and on
their ability to repair osteochondral defects in vivo. It
was determined that iNCMSCs and iNCMSC-TEC
generated with passage 2 cells exhibited a capacity for

chondrogenesis in vitro; nevertheless, they did not spontane-
ously undergo chondrogenesis in the in vivo environment
after implantation into osteochondral defects, unlike the par-
allel studies using a human bone marrow-derived MSC-TEC.
Our in vitro experiments showed that an effective dose of
BMP2 was critical to promote chondrogenesis of iNCMSCs
and the presence of serum very sensitively inhibited their
chondrogenesis (see Figures 4(h) and 4(i)). Considering the
fact that creation of an osteochondral defect is accompanied
by a certain amount of bleeding, it would be reasonable to
conclude that the alteration of biological environment by
such bleeding, such as related to growth factor concentration
and addition of serum-derived factors, could have negatively
affected osteochondral differentiation of iNCMSCs at the site
of the lesion.

With regard to the tumorigenesis of iNCMSC, no
abnormal proliferation of iNCMSCs in vivo was observed
for the two months following implantation, suggesting no
involvement of residual malignant cells in the implanted
TEC. The in vitro experiments showed that iNCMSCs
exhibited high expandability in vitro for an initial 6-7
weeks, and then growth stopped by 8–10 weeks. During
the culture duration, no evidence for the contamination
of the MSC populations with residual PSCs or the emer-
gence of malignant cells was observed. These observations
are consistent with previous studies on the tumorigenesis
of fetal or PSC-derived neural crest cells [81, 82]. Taken
together, these findings suggest that iNCMSCs are safe
and comparable to conventional MSCs in this regard.

Although, we could not confirm the in vivo realization of
the in vitro potential of iNCMSCs to affect the repair of
osteochondral lesions when implanted in an undifferentiated
state, it is reasonable to consider generating a hyaline carti-
laginous tissue ex vivo with cells differentiated towards
chondrogenesis before implantation as the next step in the
realization of this potential for tissue repair. Currently,
direct differentiation toward chondrocytes from PSCs via
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Figure 8: Vimentin and alcian blue staining of in vivo implanted TEC. (a, b) hVimentin/alcian blue staining for the hBM-TEC and iNCMSC-
TEC groups at 1 month and 2 months. Right panels are magnification images of inset boxes of the left panels. Scale bars = 500μm and 50μm
(high-magnified images). Abbreviations: TEC: Tissue-engineered construct; hBM: Human bone marrow-derived mesenchymal stem cells;
iNCMSC: Induced neural crest-derived mesenchymal stem cells.
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mesodermal origin is being widely studied in efforts to
generate cartilaginous tissue ex vivo [74, 83, 84]. However,
such protocols require multiple serial procedures involving
several different mediums and coating vessels. Due to the
lack of a purification step, the risks for contamination by
tumorigenic pluripotent cells [73, 85] and heterogenity
with regard to the presence of cells of different lineage
cells are a concern with such protocols. On the other
hand, in mesodermal development, paraxial mesoderms,
which are sorted by PDGFRa(+)/KDR(−) cells from PSCs
[22, 86–90], could be promising progeny to generate hya-
line cartilage. These paraxial mesoderm-like cells show the
best chondrogenic potential in comparison with other
mesodermal progeny, but such cells do not emerge with
high probability (10–50% based on FACS analysis). In
addition, there are no current methods to maintain and/
or expand them at any intermediate stages. In this regard,
the CD271high-iNCCs used in this study can be obtained
with high efficacy (70–90% based on FACS analysis) [30,
32, 43] and purified homogeneously after further mainte-
nance culture, even without cell sorting [31]. Moreover,
the present study showed that homogeneous mesenchymal
progenitors could be simply induced from iNCCs without
the need for additional cell sorting (see Figures 1 and 3).
Based on the above discussion, and the characteristics of
iNCMSC generation and safety, they could be a reliable
cell source for the creation of ex vivo cartilaginous tissues.

However, for the effective implementation of this
strategy, one would need to address several issues.
Firstly, in the in vitro differentiation experiments, iNCMSCs
exhibited features of hypertrophic chondrogenesis with
type 10 collagen upregulation following exposure to the
chondrogenic differentiation media. Secondly, the resultant
chondrogenic pellets following exposure to the chondro-
genic differentiation medium contained fibrous or necrotic
tissue in their center. In order to overcome such limitations,
some modifications to the current protocols will be required,
not only for induction of chondrogenesis but also for the
transition and maintenance of the MSC-like cells. In the
current studies, a serum containing media was used for the
induction and maintenance of the MSC-like cells from
iNCCs. However, this approach may affect the phenotype
of the MSCs regarding features which are different from
developmental mesenchymal cells [39–42]. In other studies
focusing on the generation of chondrogenic progeny via
neural crest cells, Umeda et al. used TGFβ stimulation for
72 hours prior to aggregate culture of iNCCs and succeeded
in the formation of homogeneous hyaline cartilage-like
tissues [31]. These authors reported that after further expan-
sion of the cells in such TGFβ containing medium, or in a
serum medium, they lost their chondrogenic potential
rapidly. However, in the present studies, the iNCCs retained
this property until passage 3 after MSC induction with a
serum medium. Thus, the initial steps and further mainte-
nance of the iNCC-derived cells could drastically affect
their phenotype. This was shown in the present study
regarding alterations in CD90 expression with bFGF
supplementation (see Figure 3(a) and Supplementary
Figure S2). With further optimization of the protocols to

induce mesenchymal progenitors and promote their chon-
drogenic capacity, iNCMSCs could be an attractive cell
source for applications in regenerative therapy to repair
osteochondral lesions.

5. Conclusion

The studies reported here demonstrate that a homogenous
population of human MSC-like cells could be readily gener-
ated from iPSCs via the neural crest lineage. In vitro, these
cells exhibited a capacity for chondrogenesis and osteogene-
sis that was comparable to human bone marrow-derived
MSCs. However, the iNCMSC failed to realize the in vitro
determined potential as they failed to affect regenerative
repair of osteochondral defects in vivo. Furthermore, no
residual tumorigenic responses were detected following
implantation into osteochondral defects in vivo throughout
a 2-month follow-up period. Based on the relative safety
associated with the observed cell homogeneity and their high
proliferative and osteochondral differentiation capacity,
these iPS-derived MSCs could be an attractive source of cells
for regenerative therapy applications for osteochondral
repair. However, optimization of a local delivery system, as
well as enhanced culture protocols for mesenchymal transi-
tion and differentiation, will be required to fulfill their poten-
tial for future therapeutic use in vivo.
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