
1

Briefings in Bioinformatics, 23(1), 2022, 1–19

https://doi.org/10.1093/bib/bbab411
Problem Solving Protocol

Dissecting and predicting different types of binding
sites in nucleic acids based on structural information

Zheng Jiang, Si-Rui Xiao and Rong Liu
Corresponding author: Rong Liu, Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University,
Wuhan, P. R. China. Tel.: +86-27-87280877; Fax: +86-27-87280877; E-mail: liurong116@mail.hzau.edu.cn

Abstract

The biological functions of DNA and RNA generally depend on their interactions with other molecules, such as small
ligands, proteins and nucleic acids. However, our knowledge of the nucleic acid binding sites for different interaction
partners is very limited, and identification of these critical binding regions is not a trivial work. Herein, we performed a
comprehensive comparison between binding and nonbinding sites and among different categories of binding sites in these
two nucleic acid classes. From the structural perspective, RNA may interact with ligands through forming binding pockets
and contact proteins and nucleic acids using protruding surfaces, while DNA may adopt regions closer to the middle of the
chain to make contacts with other molecules. Based on structural information, we established a feature-based ensemble
learning classifier to identify the binding sites by fully using the interplay among different machine learning algorithms,
feature spaces and sample spaces. Meanwhile, we designed a template-based classifier by exploiting structural
conservation. The complementarity between the two classifiers motivated us to build an integrative framework for
improving prediction performance. Moreover, we utilized a post-processing procedure based on the random walk algorithm
to further correct the integrative predictions. Our unified prediction framework yielded promising results for different
binding sites and outperformed existing methods.
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Introduction
Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are the
two main classes of nucleic acids (NAs), which are essential for
the continuity of life [1–3]. DNA is the genetic material in all
living organisms, while RNA is the key player in the making
of proteins under the direction of DNA. The biological func-
tions of DNA and RNA are generally dependent on their inter-
actions with other molecules, such as small ligands, proteins
and NAs. For instance, DNA and RNA molecules could serve
as potential drug targets for various diseases through interact-
ing with small molecules [4–7]. Protein–NA and NA–NA inter-
actions play indispensable roles in many biological processes,
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such as transcriptional regulation, protein synthesis and cell
development [8–11]. Identification of the binding sites in DNA
and RNA is the first step to understanding the mechanisms of
these different classes of interactions. Although a diversity of
experimental methods, including high-throughput sequencing
techniques (e.g. ChIP-seq, CLIP-seq and Hi-C) [12–15], X-ray crys-
tallography and nuclear magnetic resonance, have been com-
monly utilized to determine the NA-associated interactions and
binding regions, the process is still time-consuming and labor-
intensive. Accordingly, it is highly desirable to develop computa-
tional frameworks to analyze and predict binding nucleotides at
a large scale.
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Over the past decade, a series of computational studies have
explored the binding sites in DNA and RNA. For instance, inten-
sive efforts have been devoted to predicting the interaction sites
of DNA- and/or RNA-binding proteins based on high-throughput
sequencing data [16–19]. These algorithms mainly adopted the
features extracted from sequence fragments as the input of
machine learning or deep learning models to detect the binding
signatures in DNA or RNA sequences. However, this category
of prediction models is only suitable for specific proteins with
abundant experimental data. Moreover, these methods could
not explicitly indicate whether a given nucleotide is involved
in the binding activity. Based on the RNA tertiary structure,
Zeng et al. [20] proposed the Rsite algorithm that calculated
the distance from each nucleotide to other nucleotides and
considered nucleotides corresponding to the extreme points in
the distance curve as the functional sites. Furthermore, they
found that the tertiary structure-based distance was correlated
with the secondary structure-based distance and developed the
Rsite2 algorithm by replacing the former with the latter [21].
Nevertheless, their methods were validated using a very lim-
ited number of RNA structures and could generate many false
positives by considering all extreme points. Wang et al. [22]
established a network-based approach termed RBind that con-
verted RNA structures into nucleotide networks and used the
degree and closeness measures to find ligand- and protein-
binding nucleotides. Although RBind could achieve promising
precision values, the recall values may be very low due to the
high threshold of network features. Recently, Su et al. [23] devel-
oped the RNAsite algorithm based on the above two network
properties and several structural and evolutionary descriptors.
This approach clearly improved prediction accuracy, but can only
be used to predict ligand-binding regions. He et al. [24] built a web
server called HNADOCK to model RNA/DNA–RNA/DNA complex
structures using RNA structure prediction and double-iterative
knowledge-based scoring functions. Although this web server
could provide putative binding regions for paired NA structures,
it may have little applicability when facing individual structures.
Collectively, the aforementioned works significantly prompted
the development of NA binding site prediction, but the inherent
limitations should be overcome.

Despite the progress achieved, some fundamental issues
regarding the binding sites in NAs have yet to be investigated.
As mentioned above, RNA and DNA could interact with different
types of molecules (e.g. ligands, proteins and NAs). Regarding
each type of interaction, the discrepancies between binding
and nonbinding nucleotides remain largely unknown. It is
also unclear whether there are similarities and differences
among the binding sites of different interaction partners in
RNA/DNA and between the binding sites in RNA and DNA.
Over the past 30 years, in contrast, the different types of
binding sites in proteins have been characterized and compared
from multifaceted perspectives [25–28]. Therefore, it would
be interesting to further ask whether NAs and proteins use a
similar or different way to interact with their binding partners.
Additionally, although many efforts have been made to identify
binding residues in proteins [29–31], few works have explored
whether these methodologies could be directly extended to
the prediction of binding nucleotides in NAs. Further, it would
be worth investigating whether unified or specific prediction
models are needed for the two types of NAs and for their
different classes of binding sites, but little attention has been
given to this point. Because of the structural genomics efforts,
an increasing number of the complex structures including NAs
have been solved and deposited into the Protein Data Bank [32],

which provides the possibility to address the aforementioned
issues.

With these problems in mind, we attempted to perform a
comprehensive analysis and prediction of binding sites in RNA
and DNA. To characterize each nucleotide, we extracted a diver-
sity of descriptors from the sequence, structure and preference
aspects, some of which have been successfully applied to the
prediction of functional residues in our previous studies [33–
35]. Based on the well-collected datasets, we conducted a sys-
tematic comparison between binding and nonbinding sites in
RNA and DNA and among different categories of binding sites.
Unlike the existing algorithms that mainly depended on the
feature-based prediction, we proposed an integrative framework
that combined machine learning- and template-based models
to predict binding nucleotides, because the usefulness of the
hybrid strategy has also been shown in our algorithms for iden-
tifying binding residues [33–37]. Furthermore, we developed a
post-processing step based on random walks to correct the
predictions. The final prediction algorithm called NABS (Nucleic
Acid Binding Site) showed promising performance on differ-
ent classes of datasets and significantly outperformed existing
methods. The web server and related data are available at http://
liulab.hzau.edu.cn/NABS/.

Materials and methods
Data preparation

In this work, the molecules that interact with NAs (RNA/DNA)
were classified into three categories: ligands, proteins and NAs.
We therefore prepared a total of six datasets, including RNA–
ligand (RL), RNA–protein (RP), RNA–NA (RN), DNA–ligand (DL),
DNA–protein (DP) and DNA–NA (DN) interactions. The pipeline
for collecting these datasets is given below. First, we obtained
the complex structures including RNA/DNA using the advanced
search interface in the PDB database. Only the crystal structures
with a resolution better than 4 Å were reserved. The selected
threshold was also used by existing studies [38–40] and could
contribute to a greater number of structures for meaningful
analyses (Supplementary Figure S1 available online at http://bi
b.oxfordjournals.org/). Second, we deleted the entries meeting
any of the following criteria: (a) only backbone information was
provided in the PDB file; (b) the length of NA chains was less
than 20 nucleotides or more than 400 nucleotides and (c) the
NA structures had less than three binding nucleotides within
4.5 Å of interacting molecules. Third, we categorized the reserved
structures into six datasets according to the different types of
interacting partners. For each dataset, as suggested by previous
RNA-related studies [38–40], we utilized the cd-hit-est program
to reduce sequence redundancy at 80% sequence identity and
then performed additional filtering at 30% sequence identity
using the BLASTClust program [41, 42]. As shown in Supplemen-
tary Figure S2A–F available online at http://bib.oxfordjournals.o
rg/, the identities between pairs of NA chains in each dataset
were generally less than 60%, showing that the sequence redun-
dancy was effectively reduced. Finally, the RL, RP and RN datasets
comprised 74, 170 and 102 RNA structures, respectively, while the
DL, DP and DN datasets included 28, 336 and 33 DNA structures,
respectively. Note that metal ion-binding sites were excluded
from the ligand-binding datasets, because their binding prop-
erties may be different from those of nonmetal ligand-binding
regions. For instance, metal ions could make contacts with the
surface of RNA structures rather than the well-shaped pockets
preferred by nonmetal small molecules [23]. Additionally, the
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DN dataset only contained DNA–RNA complexes. Since many
DNA molecules have the double helix structure and the chains
are reversely complemented, we selected the chain with more
binding nucleotides as a representative. As shown in Supple-
mentary Figure S2G–I available online at http://bib.oxfordjourna
ls.org/, only one DNA chain in the double helix mainly formed
contacts with RNAs, while the two strands possessed compa-
rable numbers of binding nucleotides for ligands and proteins.
For each dataset, we used 70% of the structures as the training
set (i.e. RL-TR, RP-TR, RN-TR, DL-TR, DP-TR and DN-TR) and the
remaining 30% as the testing set (i.e. RL-TS, RP-TS, RN-TS, DL-TS,
DP-TS and DN-TS).

Furthermore, we prepared the other three independent sets
(i.e. RL-PS, RP-PS and RN-PS) composed of predicted RNA tertiary
structures, each of which corresponded to one chain from the
aforementioned testing sets of RNA. For each RNA sequence,
we used the RNAfold program to predict its secondary struc-
ture [43]. In conjunction with the RNA FRABASE resource, the
RNAComposer program was adopted to predict its tertiary struc-
ture using the corresponding sequence and secondary structure
information [44]. A summary of our datasets is provided in
Supplementary Figure S3 and Supplementary Table S1 available
online at http://bib.oxfordjournals.org/.

Overview of NABS algorithm

As shown in Figure 1, the NABS algorithm was divided into four
parts: a template-based module, a feature-based module, an
integrative module and a post-processing module. The template-
based method could retrieve the optimal reference structure
for the query RNA/DNA by structural alignment and identify
the binding nucleotides according to the predicted complex
structures. However, this method might lose its applicability as
the query could not find a reliable template or suffers from
intensive conformational changes upon binding. The feature-
based method was an ensemble prediction model by consider-
ing different machine learning algorithms, feature spaces and
sample spaces. In contrast, this predictor may still provide effec-
tive predictions in the above scenarios, thereby complementing
the limitations of our template method. Through the interplay
between these two methods, the predictions from the integrative
module were generated and could be further optimized. Due to
the spatial clustering of binding nucleotides, the random walk
with restart (RWR) algorithm was utilized to correct the results
based on nucleotide interaction networks. To predict each type
of binding site, the NABS algorithm was implemented based on
the corresponding dataset.

Feature extraction

To quantitatively depict each nucleotide, we extracted three
groups of descriptors: structural features, preference features
and sequence features. These features have been proven to be
effective in predicting functional sites in proteins, and most of
them could be newly applied to the identification of binding sites
in NAs.

Structural features

Relative solvent accessibility. Solvent accessibility refers to the
accessible surface area (ASA) of a molecule that is exposed to
a solvent. We calculated the ASA of each nucleotide in the NA
monomers by the NACCESS program with a probe diameter of

1.5 Å as suggested by existing studies [23, 40, 45]. Further, we
computed the relative solvent accessibility (RSA) that was the
ratio between the ASA of a given nucleotide and its maximum
ASA (i.e. A, G = 400 Å2 and C, U, T = 350 Å2). Sun et al. [40] proposed
these maximum values based on the assumption that purines
could be more exposed than pyrimidines, probably because the
former has two carbon rings while the latter has only one
[46, 47].

Depth and protrusion indices. Depth index (DPX) and protrusion
index (CX) are originally used to describe the local concavity and
convexity of proteins [48]. Here, we extended their applications
to NAs. The DPX of an atom was defined as the distance between
this atom and its nearest solvent accessible atom. The formula
is as follows:

DPXi =
{

min
∥∥ci − cj

∥∥ asai = 0, asaj > 0

0 asai > 0

where ci and cj denote the coordinates of atoms i and j, respec-
tively, while asai and asaj denote their solvent accessibilities.

The CX of an atom was defined as the ratio of the free volume
within the sphere centered on this atom to the volume occupied
by atoms. The formulas are as follows:

CXi = Vs − Vo

Vo

Vo = n × δ

where Vs denotes the volume of the sphere with a radius of 10 Å,
and Vo denotes the occupied volume. n is the number of atoms
in the sphere and δ is the average volume of atoms and was set
to 20.1 Å3. For each nucleotide, we calculated the average atomic
indices as its DPX and CX values.

Laplacian norm. Laplacian norm (LN) has been successfully
applied to the prediction of functional residues in our previous
studies and could thus be suitable for the study of nucleotides
[34, 49]. Note that when we prepared this manuscript, RNAsite
used this feature, which was also motivated by our earlier
works [23]. The LN measure of each nucleotide was defined
as the distance from this nucleotide to the weighted center
of its surrounding nucleotides, thereby representing its rel-
ative position in a geometric context. A high LN indicates
a convex location in the NA structure, whereas a low LN
implies a concave position. To generate this measure for
each nucleotide, we should calculate the Laplace operator as
follows:

Ωij (σ ) =

⎧⎪⎨
⎪⎩e−

∥∥∥ci−cj

∥∥∥2

σ2 if
∣∣i − j

∣∣ > 1

0 otherwise

where ci and cj represent the average coordinates of all atoms in
nucleotides i and j, respectively. The scale factor σ determines
the weights of surrounding nucleotides. A low scale factor rep-
resents that adjacent nucleotides are mainly used to construct
the geometric context, whereas a high value suggests that more
distant nucleotides are used. For each NA, we chose the 0, 1/4, 1/2,
3/4 and 1 quantiles of the distance distribution of all the paired
nucleotides as the scale factors. Finally, five weighted distances
were calculated for each nucleotide as below and then converted
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Figure 1. Schematic representation of NABS algorithm. (A) Feature-based prediction module. (B) Template-based prediction module. (C) Integrative prediction module.

(D) Post-processing module.

into z-scores.

LNi (σ ) =
∥∥∥∥∥∥ci −

∑|i−j|>1
j

[
cj × Ωij (σ )

]
∑|i−j|>1

j Ωij (σ )

∥∥∥∥∥∥

Network features. Each NA structure could be converted into an
interaction network, in which each node represents a nucleotide,
and each edge denotes that there exists a contact between a
pair of nucleotides. As suggested by Wang et al. [22], a contact
was generated if the distance between one heavy atom of a
nucleotide and that of the other nucleotide was less than 8 Å.
To characterize each nucleotide, we computed four network
measures, including degree, closeness, betweenness and clus-
tering coefficient [50]. The resulting features were converted into
z-scores.

Preference features

Nucleotide type preference. The binding propensities of amino
acids are commonly used features for predicting binding sites
in proteins [51]. Here, the numbers of binding and nonbinding
nucleotides of NAs involved in a given type of interaction were
counted and converted into proportions in terms of different
nucleotide types. The preference for a nucleotide type (i.e. the
binding propensity) was defined as the ratio between its propor-
tion among binding sites and its proportion among nonbinding
sites (Supplementary Figure S4 available online at http://bib.o
xfordjournals.org/). This feature shows the binding tendency of
different types of nucleotides.

Functional group preference. A nucleotide is composed of three
functional groups: a sugar, a nitrogenous base and a phosphate
group. The phosphate and sugar groups constitute the backbone
of NAs. The statistical analysis of functional groups has been
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used in the study of protein–RNA interactions [52], and here,
we extended this scheme to the other five interaction types.
We counted the numbers of different functional groups involved
in the binding process for each nucleotide type and calculated
their corresponding proportions. This feature shows the binding
preference of nucleotides at the level of functional groups.

Secondary structure preference. RNA secondary structures play
important roles in the interactions between RNA and other
molecules. For each RNA chain, the secondary structure state of a
nucleotide was assigned by running the DSSR program [53]. We
considered seven categories of secondary structures, including
non-loop single-stranded segment, stem, hairpin, bulge, internal
loop, multiple loop and pseudoknot. For each nucleotide type, we
computed the numbers of binding and nonbinding nucleotides
involved in different secondary structure states and converted
them into proportions. The proportion matrices are shown in
Supplementary Figure S5 available online at http://bib.oxfordjou
rnals.org/. The preference was the ratio between the correspond-
ing elements in the binding and nonbinding matrices. Because
the secondary structure of DNA is relatively simple, this feature
was not used to predict binding sites in DNA.

Spatial neighboring features

Aside from the native properties of the target nucleotide, its spa-
tial neighboring context could also provide useful information
for the identification of this nucleotide. Accordingly, we designed
a descriptor, termed the spatial neighboring feature, from the
structural and preference perspectives, which was defined as
follows:

SNFi =
∑

j∈D fj

| D |
where D represents the set of neighboring nucleotides physically
interacting with the target nucleotide and fj represents the struc-
tural or preference feature of nucleotide j generated in the above
process.

Sequence features

Nucleotide composition. Besides the spatial neighborhood, we
also considered the sequential neighborhood that was a lin-
ear window of consecutive nucleotides centered on the target
nucleotide. For each sequence fragment, the compositions of
four nucleotide types were calculated as follows:

Cr = nr

N
r ∈ {A, G, C, U, T}

where nr denotes the number of nucleotide r and N is the length
of the fragment.

Nucleotide transition. This feature is used to measure the pref-
erence for transitions from one nucleotide type to another type
in adjacent positions, which is an extension of the composition–
transition–distribution features for proteins [54, 55]. The formula
is as follows:

Trs = nrs + nsr

N − 1
r, s ∈ {A, G, C, U, T}

where nrs and nsr denote the numbers of dinucleotides rs and
sr, respectively. Therefore, each sequence fragment was repre-
sented by a 10-dimensional vector.

Nucleotide distribution. To describe the distribution of nucleotide
types in the sequential neighborhood, we calculated the total
number of nucleotides with a given type and recorded the
indices of the first, 50% and 100% of these nucleotides. Based on
the selected nucleotides, three descriptors for each nucleotide
type were computed as follows:

Dr = Index (rn)

N
r ∈ {A, G, C, U, T}

where rn denotes the nth nucleotide with type r and Index(rn)
is the index of rn in the fragment. Using the sequence ‘GAUUU-
CAAGAC’ as an example, the indices of the first, second (4∗50%)
and fourth (4∗100%) adenines are 2, 7 and 10, respectively, so
that the related descriptors are 0.18 (2/11), 0.64 (7/11) and 0.91
(10/11), respectively. As a result, each fragment was denoted by
12 (3∗4) distribution descriptors. For these sequence features, the
parameter N was determined based on Supplementary Figure S6
available online at http://bib.oxfordjournals.org/.

Feature-based prediction module

The feature-based prediction module was established on the
ensemble strategy by fully using the interplay among different
machine learning methods, sample spaces and feature spaces
(Figure 1A). Here, three machine learning algorithms, including
random forest (RF), extreme gradient boosting (XGB) and light
gradient boosting machine (LGBM), were used to construct base
classifiers. For our datasets, the ratio of binding nucleotides to
nonbinding nucleotides was generally imbalanced. For instance,
the ratio for the RL dataset was approximately 1:5.6, whereas
the ratio for the DP dataset was approximately 1.5:1. The class
imbalance problem could impact the performance of machine
learning methods. Herein, we used the random undersampling
scheme to solve this problem. For a given dataset, the sampling
procedure was performed 10 times for the class with a higher
proportion. In each iteration, all the low-proportion samples
along with the same number of high-proportion samples were
adopted. This process thus generated 10 different training sets.
Then, the sequential backward selection (SBS) was performed
on each training set to generate the optimal feature subset
using the RFECV package from Scikit-learn [56]. The SBS method
started with all features and iteratively eliminated the least
important feature so that the remaining features could improve
prediction performance to the greatest extent possible. Using
the RF, XGB and LGBM as classifiers, we achieved three optimal
feature subsets for each training set. Consequently, a total of
30 optimal feature subsets were generated for the 10 training
sets. We constructed different feature spaces by selecting the
features with the number of occurrences higher than a certain
threshold. Here, the thresholds were set to 0, 5, 10, 15, 20, 25 and
30, respectively, thereby generating seven feature spaces. When
the threshold was 0, the space included all features proposed
in this work. For each feature space, 10 RF classifiers, 10 XGB
classifiers and 10 LGBM classifiers were separately developed
based on the 10 training sets. Thus, a total of 210 (3∗10∗7)
classifiers were constructed for each dataset. Finally, for each
nucleotide, the average value of the outputs from these clas-
sifiers was considered the probability score of being a bind-
ing nucleotide (i.e. the probability estimated by our ensemble
classifier).
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Template-based prediction module

Considering that NAs sharing similar structures could adopt
conserved regions to interact with other molecules, we
designed a template-based model to predict binding nucleotides
(Figure 1B). To this end, we compared the query RNA/DNA with
structures from the template library (i.e. training sets) using
the structural alignment algorithm RNA-align [57]. The best
template together with its binding partner was selected in terms
of TM-score. We superimposed the query structure onto the
template structure using the rotation matrix generated by RNA-
align. Based on the predicted complex structure, one nucleotide
in the query was predicted to be a binding nucleotide with a
score of 1 if this nucleotide was within 4.5 Å of the interacting
partner (i.e. the distance constraint for defining real binding
nucleotides in the native structures), otherwise with a score
of 0.

Integrative prediction module

To utilize the complementarity between the feature- and
template-based modules, we used a piecewise function to
integrate their results (Figure 1C). If the query found a high-
quality template, the weighted output of these two classifiers
was considered the prediction score. Otherwise, the output of
the feature-based classifier was adopted. The scoring function
is as follows:

Iscore =
{

αFscore + (1 − α) Tscore if TM − score > cutoff

Fscore otherwise

where Fscore and Tscore are the probability scores from the
feature- and template-based classifiers, respectively. The
parameters α and cutoff were 0.70 and 0.35 for RNA and 0.70
and 0.40 for DNA, respectively. These parameters were selected
based on Supplementary Figure S7 available online at http://bi
b.oxfordjournals.org/.

Post-processing module

Here, we adopted the RWR algorithm to correct the integrative
prediction scores (Figure 1D) [58]. As mentioned above, the NA
structure can be denoted by a nucleotide network. Starting from
a node in the network, the walker has two choices at each step:
either moving to a direct neighbor with a probability of 1 − β

or going back to the source node with a probability of β. The
parameter β is the restart probability and was set to 0.4 in this
work. A weight matrix W is needed to determine the probabilities
of moving to different neighbors and was defined as follows:

wij =
⎧⎨
⎩

δ − distanceij

δ
if distanceij < δ

0 otherwise

where wij denotes the weight between nucleotides i and j, δ is
the distance cutoff for generating nucleotide networks (i.e. 8 Å)
and distanceij is the distance between nucleotides i and j. The
column-wise normalization was conducted on this matrix. Let
p0 be the initial probability vector (i.e. the integrative scores for
all nucleotides) and pt be the probability vector at step t. The RWR
algorithm can be formalized as follows:

pt+1 = (1 − β) ptW + βp0

In the following process, pt could be updated gradually until
|pt+1 − pt| < T, where T is a predefined threshold and was set to
10e−6. β and T were selected based on Supplementary Figure S8
available online at http://bib.oxfordjournals.org/.

Performance evaluation

To determine the prediction framework, we performed 5-fold
cross-validation (CV) on the training sets (i.e. 70% of the whole
datasets) of RNA and DNA. For each training set, the RNA/DNA
structures were randomly divided into five subgroups with a
roughly equal number of structures. Four subgroups were used
as the training set of our feature-based model and the template
library of our template-based model, while one subgroup was
used as the testing set. In addition, the independent test sets (i.e.
30% of the whole datasets) were used to further assess the gen-
eralization ability of our algorithm. Notably, when performing 5-
fold CV, the knowledge-based preference features were derived
from the four subgroups. For independent testing, these features
were dependent on the training samples. The area under the
curve (AUC) and Matthews correlation coefficient (MCC) were
used as the primary measures. Meanwhile, other metrics such
as recall, precision and accuracy (ACC) were also computed.
These measures were calculated for each NA chain and the
average results were reported for each dataset. We also evalu-
ated whether the difference in performance between a pair of
prediction models was significant or not. For a given dataset, we
randomly selected 50% of NA chains to calculate the average AUC
values. This procedure was repeated 10 times and the paired
results were applied to statistical tests. The paired t-test and
Wilcoxon signed-rank test were utilized to evaluate P-values.

Results
Analyses of preference features of binding sites in RNA

Based on all the structures collected in this work, the binding
preferences of RNA were analyzed in terms of nucleotide types,
functional groups and secondary structures, respectively. We
found that the RL dataset possessed the lowest proportion
of binding nucleotides among the three RNA-related datasets
owing to the small sizes of binding partners (i.e. ligands), while
the binding proportions were comparable for the RP and RN
datasets (Figure 2A–C). For ligand-binding sites, the percentage
of guanine (G) was relatively higher than the measures for
the remaining nucleotide types, while a lower percentage
of uracil (U) was revealed for protein- and NA-binding sites.
According to the propensity scores, the RL dataset displayed
the strongest binding preference for G, while U and C achieved
the highest measures in the RP and RN datasets, respectively
(Figure 2D–F). Regarding the functional groups, the binding
nucleotides preferred to adopt nucleobases to contact ligands
and NAs (Figure 2G–I). The similar tendency was observed in
the study of RL complexes conducted by Kligun and Mandel-
Gutfreund [59]. For the RP dataset, in contrast, the proportion
of phosphate groups was remarkably elevated, probably due
to the fact that the positively charged residues in proteins can
interact with the negatively charged phosphate groups in NAs
[60]. In Supplementary Figure S9 available online at http://bib.o
xfordjournals.org/, from the physicochemical viewpoint [61], our
analysis indicated that the four types of nucleotides tended to
use their functional groups to make contacts with the sidechains
of positively charged polar amino acids (e.g. R and K). Moreover,
we found that RNAs may not only prefer to adopt major

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


Different types of binding sites in nucleic acids 7

Figure 2. Analyses of preference features of binding sites in RNA. (A–C) Proportions of binding and nonbinding sites. (D–F) Binding preferences for nucleotide types.

(G–I) Binding preferences for functional groups. (J–L) Binding preferences for secondary structure states. The ss-non-loop in (J-L) denotes the non-loop single-stranded

segment.

grooves to interact with arginines but also frequently use non-
loop single-stranded regions and stems to contact positively
charged residues. As illustrated in Figure 2J–L, the most favorable
secondary structures of ligand-binding regions were multiple
loops followed by other unpaired elements. Existing studies
have reported that ligand-binding sites were enriched in loops
having noncanonical pairs [62]. For the other two datasets,
RNA preferentially used single-stranded segments to contact
proteins and NAs. This preference was especially obvious for
the latter, probably because the RN dataset contained a group of
RNAs without a stem-loop structure (e.g. RNAs involved in the
RNA–DNA helices).

Analyses of structural features of binding sites in RNA

We then systematically compared the binding and nonbinding
sites in RNA-related datasets based on structural properties. As
shown in Figure 3A–C, the positive samples in the RL dataset
had lower RSA and CX measures compared to the negative
samples. Conversely, the positive samples in the RP and RN
datasets possessed higher RSA and CX values. These indicated
that RNA may use hydrophobic and concave locations to con-
tact small ligands but could utilize exposed and locally convex
regions to interact with proteins and NAs. For the LN features
of nucleotides from local to global scales, RNA binding sites
for ligands achieved lower values than nonbinding sites, while

those for proteins obtained higher values (Figure 3D–H), further
suggesting their preferences for relatively concave and convex
regions in RNA structures, respectively. In Figure 3I–L, ligand-
binding sites achieved greater values for the network centrality
measures (i.e. degree, closeness and betweenness), which was in
agreement with the observation from Su et al.’s work [23]. The
opposite tendency was revealed for the degree and closeness
measures of protein- and NA-binding sites. These suggested
that the binding regions associated with ligands (e.g. binding
pockets) were more likely to be close to the center of RNA
structures, whereas the protruding surfaces that were far from
the center could be recognized by proteins and NAs. Notably, the
betweenness of positive samples in the RN dataset was higher
than that of negative samples, probably because the binding
nucleotides in the RNA–DNA helices played an indispensable
role as a bridge in the corresponding nucleotide networks. Fur-
thermore, we examined the above features for different types
of RNAs. For the local structural features (i.e. RSA, DPX and CX),
the preferences of various RNA groups were generally consistent
with those of the whole dataset (Supplementary Figures S10–S12
available online at http://bib.oxfordjournals.org/). Nevertheless,
some groups showed specific preferences for Laplacian fea-
tures and network features. For instance, the opposite trend was
observed for messenger RNAs and viral RNAs in the RP dataset
when the results derived from all structures were adopted as the
reference. Collectively, RNA may interact with ligands through
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Figure 3. Analyses of structural features of binding sites in RNA. (A–C) Local structural descriptors. (D–H) Laplacian descriptors. (I–L) Network descriptors. The statistical

significance is evaluated using the Wilcoxon rank sum test. ∗∗∗P < 0.001, ∗∗ 0.001 ≤ P < 0.01, ∗ 0.01 ≤ P < 0.05 and ns: P ≥ 0.05.

forming binding pockets and contact proteins and NAs using
convex surfaces. Our previous works and other studies reported
the similar binding locations in proteins [33, 35, 63]. Accordingly,
RNAs and proteins might adopt a similar way to interact with
their binding partners. Compared to RNAs, however, proteins
could be more likely to select the locations that are closer to
the center of molecular structures or topological networks when
they are involved in interactions with NAs [33, 35].

Performance evaluation on RNA-related training sets

Based on the above features, we constructed a group of classi-
fiers using the three machine learning methods (i.e. RF, XGB and
LGBM) combined with random undersampling and evaluated
their performance by conducting 5-fold CV on training sets. As
shown in Table 1, when we used all features and performed
the resampling process 10 times, the classifiers achieved AUCs
of approximately 0.68, 0.66 and 0.74 for ligand-, protein- and

NA-binding sites, respectively. Notably, none of these machine
learning algorithms consistently showed the best performance
on the three datasets. The support vector machine was also
tested in this work, but the performance was generally worse
than that of bagging- and boosting-based algorithms (Supple-
mentary Table S2 available online at http://bib.oxfordjournals.o
rg/). The correlations among different features are presented
in Supplementary Figure S13 available online at http://bib.o
xfordjournals.org/. Furthermore, we examined the prediction
ability of different groups of features in a similar way. From
Supplementary Table S3 available online at http://bib.oxfordjou
rnals.org/, we observed that the structural features performed
significantly better than the sequence and preference proper-
ties. When the spatial neighboring features were added into the
structure- and preference-based models, the performance was
improved, especially for the latter. The results of structure-based
classifiers were even more favorable than the performance of the
classifiers based on all features, demonstrating that redundant
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Table 1. Performance of different classifiers on RNA-related training sets

Classifier RL-TR RP-TR RN-TR

MCC AUC MCC AUC MCC AUC

NABS-RF 0.189 0.686 0.213 0.669 0.277 0.757
NABS-XGB 0.180 0.677 0.201 0.658 0.272 0.737
NABS-LGBM 0.196 0.682 0.222 0.673 0.261 0.740
NABS-FEA 0.257 0.701 0.228 0.676 0.270 0.757
NABS-TEM 0.221 NA 0.179 NA 0.193 NA
NABS-INT 0.294 0.727 0.234 0.698 0.314 0.753
NABS 0.300 0.736 0.235 0.702 0.318 0.760

NABS-RF, NABS-XGB and NABS-LGBM denote the RF-, XGB- and LGBM-based classifiers based on all features and 10 sample spaces. NABS-FEA denotes the feature-
based ensemble learning classifier, and NABS-TEM denotes the template-based classifier. NABS-INT denotes the integrative classifier by combining NABS-FEA and
NABS-TEM, and NABS denotes the final classifier by incorporating a post-processing procedure into NABS-INT. The annotations for different classifiers in this table
are identical to those in the following tables.

information affected the performance. Herein, we conducted the
feature selection procedure as suggested in the Methods section.
As expected, the structure-related features were most frequently
observed in the 30 optimal feature subsets (Supplementary
Figure S14 available online at http://bib.oxfordjournals.org/).
By the number of occurrences, we built seven feature spaces
and assessed their performance (Supplementary Table S4
available online at http://bib.oxfordjournals.org/). Compared to
the original feature space (i.e. all features), the other six subsets
generated better results. Finally, we established 210 classifiers by
exploiting the diversity of machine learning algorithms, feature
spaces and sample spaces and adopted the average of their out-
puts as the prediction score. The correlation analysis for the out-
puts of the 210 classifiers is shown in Supplementary Figure S15
available online at http://bib.oxfordjournals.org/. Our ensemble
classifiers yielded AUCs of 0.701, 0.676 and 0.757 for the training
sets, which were comparable to the optimal performance shown
in Supplementary Table S4 available online at http://bib.o
xfordjournals.org/. Furthermore, the ensemble strategy could
enhance the robustness of our machine learning module.

Aside from the machine leaning-based module, we also
applied the template-based module to the training sets by using
RNA-align as the structural alignment engine. For each query,
the best template was reserved. As shown in Supplementary
Figure S16 available online at http://bib.oxfordjournals.org/,
most structures in the three RNA-related datasets can obtain
a template with a TM-score greater than 0.25. Especially,
the RNA chains binding to proteins were more likely to
find structures with higher similarities (e.g. TM-score >0.55)
compared with those interacting with ligands and NAs, maybe
because the current RP dataset was more complete than the
other two datasets. Moreover, the sequence identities between
the template and query structures were typically in the range of
10–50%. Based on the predicted complex structure, we generated
the putative binding nucleotides in each query RNA using the
distance constraint. As shown in Table 1, the template based-
module achieved MCCs of 0.221, 0.179 and 0.193 for the RL-TR,
RP-TR and RN-TR dataset, respectively. The performance was not
as good as the results from the feature-based module. In terms
of the quality of templates, moreover, the template method can
achieve more favorable results for the structures having higher
TM-scores (Supplementary Table S5 available online at http://bi
b.oxfordjournals.org/).

After obtaining the predictions from the feature- and
template-based modules, we used an integrative way to elevate
accuracy based on their complementary relationship. For each
dataset, we separated the RNA structures into two groups as

shown in Supplementary Table S6 available online at http://bi
b.oxfordjournals.org/. When the query structures retrieved a
template with a TM-score greater than 0.35, the feature- and
template-based classifiers can achieve comparable measures.
Moreover, if the integrative strategy was applied to these
subgroups, the AUCs for the RL and RP datasets and the MCC
for the RN dataset were clearly improved. If the queries cannot
find a good template (e.g. TM-score <0.35), the prediction ability
of template methods degenerated significantly, especially for
ligand- and protein-binding nucleotides, while the machine
learning classifiers still provided effective predictions for these
structures. Because we used the interplay of individual modules
for RNA structures having reliable templates and disregarded
the predictions of template-based models for RNA structures
without good templates, the measures for the whole datasets
were reasonably improved (Table 1).

Finally, we applied the RWR algorithm to further correct the
integrative prediction scores. As shown in Table 1, through the
post-processing procedure, the AUCs for the three training sets
were increased from 0.727, 0.698 and 0.753 to 0.736, 0.702 and
0.760, respectively. The final MCC values were generally lower,
probably because of the class imbalance in the datasets (Supple-
mentary Table S1 available online at http://bib.oxfordjournals.o
rg/). Supplementary Figure S17A–C available online at http://bi
b.oxfordjournals.org/ illustrates that the changes in prediction
scores were not so large but were enough to have a certain
influence on the overall performance. The corrected predictions
slightly increased the number of false negatives but remarkably
decreased the number of false positives (Supplementary Fig-
ure S17D available online at http://bib.oxfordjournals.org/). This
suggested that the isolated binding predictions were effectively
removed by RWR, therefore causing a moderate improvement in
performance. Based on the final predictions, we further exhib-
ited that NABS might have preferences for binding nucleotides
in different secondary structure states (Supplementary Table
S7 available online at http://bib.oxfordjournals.org/) and for dif-
ferent categories of RNAs (Supplementary Figure S18 available
online at http://bib.oxfordjournals.org/), suggesting that the dif-
ficult samples (e.g. the bulge group in the RN dataset and the
ribosomal RNAs in the RL dataset) should be given more concern
in the future. Moreover, we investigated the overlapping binding
sites among the three training sets. A certain number of RNAs
could use the same binding regions to contact proteins and
NAs, and our classifiers can identify the majority of overlap-
ping nucleotides (Supplementary Figure S19 available online at
http://bib.oxfordjournals.org/). In addition to 5-fold CV, the leave-
one-chain-out validation and 10-fold CV were also utilized to
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Table 2. Performance of different classifiers on RNA-related testing sets

Classifier RL-TS RP-TS RN-TS

MCC AUC MCC AUC MCC AUC

NABS-RF 0.227 0.717 0.227 0.690 0.263 0.754
NABS-XGB 0.240 0.693 0.232 0.690 0.279 0.747
NABS-LGBM 0.225 0.680 0.240 0.698 0.302 0.745
NABS-FEA 0.264 0.703 0.236 0.696 0.319 0.756
NABS-TEM 0.194 NA 0.249 NA 0.231 NA
NABS-INT 0.296 0.713 0.307 0.734 0.311 0.749
NABS 0.280 0.724 0.304 0.748 0.331 0.752

evaluate our classifiers (Supplementary Table S8 available online
at http://bib.oxfordjournals.org/). The measures were relatively
better than those of 5-fold CV, probably because more structures
were included in the training set and template library.

Performance evaluation on RNA-related testing sets

We further evaluated different classifiers using the testing sets
(Table 2). Compared with the results for 5-fold CV, the perfor-
mance of the feature-based classifiers based on various machine
learning methods and ensemble learning was comparable or
better. In contrast, the template method exhibited more remark-
able fluctuations in performance. Through combining the indi-
vidual modules, the superior performance was obtained for the
RL-TS and RP-TS datasets. By the post-correction process, the
AUCs for the three datasets were 0.724, 0.748 and 0.752, respec-
tively. The P-values of statistical significance tests are shown in
Supplementary Table S9 available online at http://bib.oxfordjou
rnals.org/. Moreover, the independent testing procedure was
repeated 100 times by selecting different testing structures. The
average performance and standard deviations suggested that
our models may avoid the problem of overfitting (Supplemen-
tary Figure S20 available online at http://bib.oxfordjournals.org/).
According to Supplementary Figure S1 available online at http://
bib.oxfordjournals.org/, in addition, we used the structures with
a resolution better than 3 Å as training sets and the remain-
ing structures as testing sets. The results were comparable to
those derived from 5-fold CV, suggesting that our method could
effectively identify the binding nucleotides in relatively low-
resolution structures (Supplementary Table S10 available online
at http://bib.oxfordjournals.org/). We also performed cross-site-
type predictions on the three testing sets. As shown in Supple-
mentary Table S11 available online at http://bib.oxfordjournals.o
rg/, only the performance across the protein- and NA-binding
sets was better than expected by chance, indicating that the
specific classifiers tended to produce the different predicted
sites for RNAs.

If the proposed method was only suitable for experimentally
determined structures, the application scope of NABS would
be severely restricted. Accordingly, we generated the predicted
structure for each RNA chain in the testing sets. As shown in
Table 3, the performance of all classifiers decreased signifi-
cantly compared with the results in Table 2. NABS achieved
AUCs of approximately 0.61 for these datasets. This may be
due to the discrepancies between the native and predicted
structures, which can be measured by the root-mean-square
deviation (RMSD). Meanwhile, we calculated the difference
in the structural features between the native and predicted
structures. The RMSD was highly correlated with the difference
resulting from structural features (Supplementary Figure S21A–C

available online at http://bib.oxfordjournals.org/), implying
that the structural deviation resulted in the alterations in
features and thus induced negative impacts on the feature-
based prediction. Moreover, we compared the template quality
between the paired structures. A smaller number of predicted
structures achieved a reliable template (Supplementary Figure
S21D–I available online at http://bib.oxfordjournals.org/), there-
fore leading to the difficulty in the template-based prediction.
Additionally, we set a series of thresholds in terms of RMSD.
Supplementary Table S12 available online at http://bib.oxfordjou
rnals.org/ shows that the performance of NABS was gradually
improved by decreasing the cutoff value, suggesting that our
algorithm could be applied to the predicted RNA structures with
high confidence (e.g. RMSD <15 Å).

Comparison with other RNA binding site prediction
methods

In this section, we compared NABS with other algorithms,
including Rsite, Rsite2, RBind and RNAsite [20–23]. Rsite and
Rsite2 predicted functional sites in RNA based on the tertiary
structure- and secondary structure-derived distance features,
respectively. RBind adopted the degree and closeness measures
to detect ligand- and protein-binding nucleotides, while RNAsite
(published very recently) combined the above two network
features with several structural and sequence attributes to
identify ligand-binding sites. Besides the datasets prepared in
this work, the native and predicted structures collected by RBind
were also used for assessment. For the first three competing
algorithms (i.e. Rsite, Rsite2 and RBind), we adopted their
standalone programs to generate prediction results. Figure 4A–I
displays the head-to-head comparison between NABS and
these methods in terms of the MCC values of RNA chains from
different datasets. The vast majority of the dots were scattered in
the lower triangles, suggesting that our method obtained better
results for most structures. Figure 4M–O reveals the average
MCC value of each dataset using different methods. For both the
native and predicted structures, NABS obviously outperformed
the three methods, among which only RBind showed certain
prediction ability for ligand-binding sites. Moreover, both
NABS and RBind performed more favorably on the ligand-
binding datasets of RBind, probably because most of these RNA
structures have the canonical binding pockets to accommodate
small molecules and the binding sites could thus be easily
identified [23]. Although Wang et al. suggested that RBind could
achieve promising precision measures [22], their method missed
many real binding sites and therefore obtained lower recall and
MCC measures (Supplementary Table S13 available online at
http://bib.oxfordjournals.org/). To compare NABS with RNAsite,
we implemented this algorithm based on the above datasets.
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Table 3. Performance of different classifiers on predicted RNA structures

Classifier RL-PS RP-PS RN-PS

MCC AUC MCC AUC MCC AUC

NABS-RF 0.142 0.607 0.062 0.565 0.098 0.604
NABS-XGB 0.143 0.621 0.092 0.573 0.094 0.588
NABS-LGBM 0.113 0.603 0.062 0.589 0.092 0.602
NABS-FEA 0.124 0.617 0.074 0.577 0.074 0.591
NABS-TEM 0.033 NA 0.061 NA 0.043 NA
NABS-INT 0.124 0.616 0.105 0.595 0.089 0.611
NABS 0.156 0.617 0.134 0.601 0.098 0.607

As shown in Figure 4J–O, RNAsite could be adopted to predict
protein- and NA-binding sites as well as ligand-binding sites
in RNA. Although several identical features were shared by
NABS and RNAsite, our algorithm obtained generally superior
performance on various datasets. In addition, we compared
these two methods using the three datasets of RNAsite. Note
that because the structural similarities were reduced in these
datasets, our template method was not used in this scenario.
Even so, NABS still achieved higher AUCs and comparable MCCs
(Supplementary Table S14 available online at http://bib.oxfo
rdjournals.org/). P-values of statistical significance tests are
shown in Supplementary Tables S15 and S16 available online
at http://bib.oxfordjournals.org/. Finally, we compared NABS
with a sequence-based predictor called RBPbinding, which was
trained by CLIP data to predict protein-binding regions [64]. NABS
showed more favorable performance than RBPbinding on the RP-
TS dataset (Supplementary Table S17 available online at http://
bib.oxfordjournals.org/). The advantages of our algorithm could
be due to the following reasons: (a) we extracted multifaceted
structural features (including local and global descriptors)
in conjunction with sequence and propensity features to
characterize nucleotides; (b) we built a robust feature-based
module based on ensemble learning and then combined this
module with a template-based module to elevate performance
and (c) we designed an effective post-processing procedure to
correct the prediction results (especially false positives) through
the RWR algorithm.

Analyses of preference and structural features of
binding sites in DNA

To compare DNA and RNA, we performed the same analyses
for the binding sites in DNA. As shown in Figure 5A–C, the
binding proportion was lowest in the DL dataset, and there were
comparable proportions in the other two datasets, which was
consistent with the results from RNA-related datasets. However,
the percentages of protein- and NA-binding nucleotides were
greater than the percentage of nonbinding nucleotides, which
was contrary to the observations for RNA. In Figure 5D–F, the
ligand- and NA-binding nucleotides showed a strong prefer-
ence for G and T, respectively, whereas the difference between
the preferred nucleotide types (i.e. G and T) was very small in
the DP dataset. According to Figure 5G–I, the functional group
preferences of DNA were similar to those of RNA, but a sig-
nificantly higher percentage of nucleobases together with an
extremely low proportion of phosphate groups was observed for
NA-binding sites. This implied that the contacts between DNA
and other NA chains were dominated by base-pairing interac-
tions. Regarding the DP dataset, the increase in the percentage
of phosphate groups might also be due to their electrostatic

interactions with positively charged amino acids (Supplemen-
tary Figure S9 available online at http://bib.oxfordjournals.org/).

We also compared the structural properties between binding
and nonbinding sites in the DL, DP and DN datasets. As shown
in Figure 6A–C, compared to RNA-related datasets, these three
datasets did not demonstrate very significant differences in sol-
vent accessibilities and geometric attributes, probably because
DNA exists mainly as base-paired helices and most nucleotides
thus possess similar local features. From Figure 6D–H, we can
find that the three datasets shared an identical pattern. Namely,
the LN measures of positive samples were generally smaller than
those of negative samples. This phenomenon was also observed
in the RL dataset. Unlike RNA, DNA may rarely have binding
pockets due to its helical conformation. We therefore proposed
that the positions in DNA bound by other molecules (i.e. ligands,
proteins and NAs) would be adjacent to the middle of DNA
chains. As illustrated in Figure 6I–L, the closeness and between-
ness values were higher for the three categories of binding sites.
The results further supported that the middle regions of DNA
played important roles in interacting with different partners. It
should be noted that DNA chains solved in PDB structures were
generally incomplete, so we performed an additional analysis
using the DP dataset. In Supplementary Figure S22 available
online at http://bib.oxfordjournals.org/, the differences in struc-
tural features were consistent for the groups with different chain
lengths, implying that the longer DNAs could exhibit similar
properties. Compared with RNAs that provide binding pockets
for ligands and protruding surfaces for proteins and NAs, we sug-
gested that DNAs adopt structurally different ways to interact
with other molecules.

Performance evaluation on DNA-related datasets

Furthermore, we applied the proposed algorithm to identify
binding nucleotides in DNA. As shown in Table 4 and Supple-
mentary Table S6 available online at http://bib.oxfordjournals.o
rg/, the utilities of different modules were generally observed
by performing 5-fold CV on training sets, and NABS achieved
AUCs of 0.661, 0.764 and 0.811 for ligand-, protein- and NA-
binding sites, respectively. DNA-related datasets showed more
remarkable discrepancies in prediction results than RNA-related
datasets (AUCs: 0.70–0.76). The relatively worse measure for
the DL-TR dataset could mainly result from the feature-based
predictions. First, compared with the other types of binding
sites in RNA and DNA (Figures 3 and 6), the ligand-binding
regions in DNA did not show preferences for some structural
properties, especially the local descriptors (e.g. RSA, CX, DPX
and degree), when using nonbinding nucleotides as the ref-
erence. Second, the sequence features could play important
roles in increasing the performance discrepancies for DNA. In
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Figure 4. Comparison between NABS and other methods based on MCC measures. (A–C) Rsite versus NABS. (D–F) Rsite2 versus NABS. (G–I) RBind versus NABS. (J–L)

RNAsite versus NABS. (M–O) Average MCC measures of all structures in various datasets based on different methods. In (A–L), each dot represents an RNA structure.

TR, TS and PS denote the training, testing and predicted structures prepared in this work. RB and RB-PS denote the native and predicted structures prepared by RBind.

Supplementary Figure S6 available online at http://bib.oxfordjou
rnals.org/, based on the optimal sequential neighborhood, the
AUC for DL-TR was 0.550, while the measures for DP-TR and DN-
TR were 0.668 and 0.695, respectively, which were even greater
than the AUC of NABS for DL-TR. Supplementary Figure S14
available online at http://bib.oxfordjournals.org/ also displays
that sequence descriptors were generally preferred by protein-

and NA-binding sites in the feature selection process. In con-
trast, the contributions of sequence features were not so signif-
icant for RNA-related datasets (AUCs: 0.52–0.60). On the other
hand, we found that the template method achieved surpris-
ing performance with an MCC of 0.702 for NA-binding sites,
which contributed greatly to the final result of NABS for DN-TR.
This implied that a number of DNA chains had highly similar

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
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Figure 5. Analyses of preference features of binding sites in DNA. (A–C) Proportions of binding and nonbinding sites. (D–F) Binding preferences for nucleotide types.

(G–I) Binding preferences for functional groups.

structures in this dataset. Herein, we extracted the header infor-
mation of PDB files and categorized DNA chains into different
groups based on their functions. As revealed in Supplementary
Figure S23 available online at http://bib.oxfordjournals.org/, by
the number of DNA chains, the top two groups were associated
with hydrolysis and transcription, respectively. We observed
that the chains in each group were indeed similar by checking
their structures with PyMOL. Supplementary Figure S23 available
online at http://bib.oxfordjournals.org/ shows that the results of
chains in specific functional groups were generally superior to
those of functionally isolated chains. Moreover, we investigated
the sharing binding sites among the training sets. We found that
13 (12) DNAs adopted the same regions to interact with proteins
and NAs (ligands). The majority of overlapping nucleotides can
also be identified by our predictors (Supplementary Figure S19
available online at http://bib.oxfordjournals.org/).

Besides, the three DNA-related testing sets were used to
evaluate the performance of NABS. As shown in Table 5 and
Supplementary Figure S20 available online at http://bib.oxfo
rdjournals.org/, compared to the results for training sets, the
performance of feature- and template-based classifiers was
moderately reduced. Using the hybrid strategy and the post-
processing procedure, the final model yielded AUCs of 0.640,
0.753 and 0.822 for the DL-TS, DP-TS and DN-TS datasets,
respectively. P-values of statistical significance tests are shown
in Supplementary Table S9 available online at http://bib.oxfo
rdjournals.org/. We also performed cross-site-type predictions
on the testing sets. The cross predictions were largely effective
(Supplementary Table S11 available online at http://bib.oxfo
rdjournals.org/), probably because DNAs could use a similar way
to contact the three types of interacting partners. Accordingly,
the different classifiers may provide the same predicted sites

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 6. Analyses of structural features of binding sites in DNA. (A–C) Local structural descriptors. (D–H) Laplacian descriptors. (I–L) Network descriptors. The statistical

significance is evaluated using the Wilcoxon rank sum test. ∗∗∗P < 0.001, ∗∗ 0.001 ≤ P < 0.01, ∗ 0.01 ≤ P < 0.05 and ns: P ≥ 0.05.

Table 4. Performance of different classifiers on DNA-related training sets

Classifier DL-TR DP-TR DN-TR

MCC AUC MCC AUC MCC AUC

NABS-RF 0.131 0.602 0.342 0.744 0.494 0.798
NABS-XGB 0.100 0.609 0.337 0.744 0.421 0.760
NABS-LGBM 0.063 0.582 0.332 0.746 0.467 0.785
NABS-FEA 0.159 0.652 0.335 0.750 0.478 0.786
NABS-TEM 0.122 NA 0.263 NA 0.702 NA
NABS-INT 0.163 0.655 0.381 0.761 0.519 0.815
NABS 0.208 0.661 0.380 0.764 0.549 0.811

for DNAs. Finally, we compare our algorithm with two genomic
sequence-based methods, namely DeepSNR and D-AEDNet,
which can identify transcription factor binding sites at the
base-pair level using deep learning techniques [65, 66]. Among

the eight proteins used in these two studies, four proteins
were involved in protein–DNA complexes in which 33 DNA
chains could be used for comparison (Supplementary Table S17
available online at http://bib.oxfordjournals.org/). Our method

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
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Table 5. Performance of different classifiers on DNA-related testing sets

Classifier DL-TS DP-TS DN-TS

MCC AUC MCC AUC MCC AUC

NABS-RF 0.147 0.633 0.305 0.725 0.488 0.772
NABS-XGB 0.106 0.620 0.301 0.712 0.493 0.785
NABS-LGBM 0.123 0.619 0.297 0.716 0.498 0.813
NABS-FEA 0.128 0.622 0.313 0.724 0.500 0.806
NABS-TEM 0.046 NA 0.211 NA 0.522 NA
NABS-INT 0.158 0.633 0.341 0.747 0.552 0.829
NABS 0.200 0.640 0.336 0.753 0.571 0.822

generally outperformed both DeepSNR and D-AEDNet, indicat-
ing the superiority of NABS over the existing sequence-based
methods. Altogether, our methodology could be applicable to
the binding sites in DNA, and the advantages of various modules
were also helpful in improving performance.

Case studies

Since the above analyses and predictions were performed at the
macroscopic level, we chose several representative structures to
further validate the reliability of our results. Figure 7A displays
that the 2′-deoxyguanosine riboswitch adopts a binding pocket
to accommodate the ligand (PDB ID: 3SKI) [67]. The feature-
based classifier accurately predicted most binding nucleotides
aside from two positions but generated many false positives
(Figure 7B). In contrast, the template-based model did not
achieve any false positives but missed four binding nucleotides.
Through the model integration and post-correction, NABS
successfully predicted 9 out of 11 binding nucleotides together
with two false positives. Figure 7C shows that a small regulatory
RNA RydC interacts with a bacterial Hfq protein using the
protruding region of its 3′-end poly-U tail (PDB ID: 4V2S) [68].
This complex can bind to target messenger RNAs for sRNA-based
regulation. The third example is the structure of the CRISPR RNA
and target RNA duplex, in which nucleotides contact each other
by base-pairing interactions (Figure 7E, PDB ID: 5XWP) [69]. As
revealed in Figure 7D and F, similar to the classifier for the first
example, the feature-based method yielded a greater number
of false positives, while the template method obtained higher
precision measures together with lower recall measures. The
following two steps remarkably decreased the number of false
positives but maintained the number of true positives. The AUCs
of these two examples were 0.96 and 0.99, respectively.

We also selected three DNA structures in this section. The
first DNA molecule that was extracted from the human topoiso-
merase I-DNA covalent complex can be targeted by anticancer
drugs (Figure 7G, PDB ID: 1SEU) [70]. It is clear that this chain
uses its middle part to contact the small molecule. As shown in
Figure 7H, although this query obtained a template with a high
TM-score, the predicted complex did not provide useful infor-
mation for ligand-binding regions (there were no true positives).
The integrative predictions thus depended on the outputs of
our feature method. After performing the RWR algorithm, the
false positives remain unchanged. This was probably because
these positions were assigned to the very high binding scores
by both the feature and template modules. The second example
is the homing endonuclease I-CreI in complex with its specific
DNA sequence (Figure 7I, PDB ID: 6FB5) [71]. The central region
of the target DNA is essential for the indirect readout of this
interaction. From the aspect of true positives, the feature-

and template-based models favorably complemented each
other, which led to the increase in the number of correctly
predicted binding nucleotides when using the integrative
module (Figure 7J). The post-processing procedure converted the
remaining two false negatives into true positives but yielded an
additional false negative. Figure 7K reveals that the DNA chain
from an elongation complex binds to a 10-mer RNA sequence
(PDB ID: 4BY1) [72]. As shown in Figure 7L, the false negative
offered by the template method was eliminated through the
integrative strategy, while one of the false positives resulting
from the feature method was deleted by the post-correction
step. As a result, NABS yielded an AUC of 0.99 for this structure.
Furthermore, we visualized the other six structures whose AUCs
were similar to the overall performance on the testing datasets
(Supplementary Figure S24 available online at http://bib.oxfo
rdjournals.org/). Collectively, these examples not only confirmed
the reasonability of our results but also showed the merits and
weaknesses of various modules in our algorithm.

Discussion
The existing works have performed comprehensive investiga-
tions and established a variety of prediction methods for binding
sites in proteins, but the corresponding study on NAs is still
in its infancy. To address this problem, we first constructed six
datasets that comprised RNA or DNA structures in complex with
different classes of binding partners (i.e. ligands, proteins or
NAs). For each interaction type, we compared binding regions
in NAs with nonbinding regions based on binding preferences
and structural features. Protein- and NA-binding sites in both
RNA and DNA were remarkably larger than ligand-binding sites.
NA molecules tended to adopt nucleobases to interact with
small ligands and other NAs and preferentially used a greater
proportion of phosphate groups to contact proteins. Moreover,
RNA was more likely to use unpaired nucleotides to contact
other molecules from the secondary structure aspect. According
to structural analyses, RNA could interact with ligands through
forming binding pockets and contact proteins and NAs using
protruding surfaces, while DNA may adopt regions closer to the
middle of the chain to make contacts with other molecules. In
conjunction with the existing knowledge about protein binding
sites, we suggested that RNAs and proteins could use structurally
similar strategies to interact with other molecules, but DNAs
may choose a different way probably due to their low structural
complexity. The results demonstrated the differences between
NA binding sites and nonbinding sites and among the various
types of NA binding regions.

Based on the above biological insights, we constructed a
feature-based ensemble learning classifier that made full use

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab411#supplementary-data
http://bib.oxfordjournals.org/
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Figure 7. Tertiary structures and prediction results of representative RNAs and DNAs. (A–F) Three representative RNAs. (G–L) Three representative DNAs. For each

example, the tertiary structure is shown in the left figure, and the prediction results are shown in the right figure. NABS-FEA denotes the feature-based ensemble

learning classifier, and NABS-TEM denotes the template-based classifier. NABS-INT denotes the integrative classifier by combining NABS-FEA and NABS-TEM, and

NABS denotes the final classifier by incorporating a post-processing procedure into NABS-INT.

of the interplay among different machine learning methods,
feature spaces and sample spaces. This module was suitable for
the structures in diversified datasets. The feature importance
analysis demonstrated that the structural features were essen-
tial for the prediction of binding sites in RNA, while the sequence
context, as well as structural information, played important roles
in the identification of binding sites in DNA. As an alternative,
a template-based classifier was also established by exploiting
homology information. This classifier performed favorably on
RNA and DNA chains having high-quality templates but lost
its prediction ability when reliable templates were unavailable.
For RNA-related datasets, at least half of the structures can
obtain a good template, while less than one quarter of the
structures from DNA-related datasets can find such a reference.

For the whole datasets, the feature-based classifier showed more
favorable performance than the template-based classifier. Uti-
lizing the complementarity between these two classifiers, an
integrative approach was established to elevate the accuracy.
Further, we designed a post-correction process by performing
the RWR algorithm on nucleotide interaction networks, which
effectively deleted false positives derived from the integrative
model. The promising results for various datasets suggested
that our unified framework could be used to predict different
types of binding nucleotides. In particular, NABS can be applied
to predicted RNA structures as well as their native structures
provided that the modeling results were acceptable. Finally, we
implemented NABS as a user-friendly web server, which could
yield putative binding nucleotides for different partners within
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several minutes (Supplementary Figure S25 available online at
http://bib.oxfordjournals.org/).

Despite the progress achieved here, some problems are worth
further studies in the future. First, the major binding strategies
proposed for the two categories of NAs were summarized based
on the statistical analyses of available structures. Inevitably,
there are some exceptional cases and the recognition of binding
sites in these structures would be more challenging. Therefore,
more attention should be given to these cases. Second, although
most features adopted in this work can be effectively used to
identify binding sites in NAs, the quantitative representation of
nucleotides could be further improved. For instance, for RNA
or DNA chains in the helical structures, all nucleotides may be
involved in base-pairing interactions and have highly similar
local structural features (e.g. RSA, DPX and CX). We thus need
to design finer local descriptors (e.g. the angle between adja-
cent nucleotides) to uncover the inherent difference between
binding and nonbinding sites in this scenario. For the sequence
context, furthermore, we only used the composition–transition–
distribution features. In fact, we also checked the sequence-
derived structural features provided by existing software (e.g.
SPOT-RNA, RNAsnap, DNAshape and DynaSeq) [38, 73–75], but no
remarkable improvement was observed (Supplementary Table
S18 available online at http://bib.oxfordjournals.org/). Currently,
some existing programs could readily yield diversified sequence
descriptors [76, 77], which could be further selected to achieve
better performance. Third, we used conventional machine learn-
ing algorithms to implement feature-based classifiers due to rel-
atively small datasets. Recently, deep learning frameworks have
been commonly applied to the recognition of protein functional
residues [78, 79] and the prediction of structural properties for
RNA [38, 74], so these methodologies could be used to predict
binding nucleotides in NAs when more structures become avail-
able. Fourth, the current template-based model used RNA-align
as the search engine and only depended on the results from the
best template. We could test other RNA structure alignment tools
(e.g. RMalign, STAR3D and Rclick) and integrate these programs
to improve the selection of optimal reference structures [80–
82]. Moreover, combining the results from multiple templates
could be valuable to the increase in prediction accuracy. Fifth, the
subgroups of nucleotides in RNA based on secondary structures
and the subgroups of RNAs and DNAs based on functions had
varying degrees of accuracy so that we could establish specific
predictors for these subgroups to improve performance. Sixth,
this study and previous works have predicted the binding sites
in different types of biomacromolecules (e.g. DNA, RNA and
proteins). In the future, novel algorithms could be developed to
identify the physical contacts between biomacromolecules, such
as residue–nucleotide contacts across protein–NA interfaces and
nucleotide–nucleotide contacts across NA–NA interfaces, which
could provide useful insights into the determination of complex
structures. Altogether, this work not only offers an overview of
specific characteristics of different binding sites in DNA and RNA
but also provides an effective and efficient tool to predict these
critical regions, which may help deepen our understanding of
the mechanisms underlying the interactions between NAs and
other molecules.

Key Points
• We characterize the binding sites of small ligands,

proteins and nucleic acids in RNA and DNA from
multifaceted viewpoints.

• We conduct a systematic comparison between binding
and nonbinding sites in RNA and DNA and among
different categories of binding sites.

• We develop an algorithm that combines feature- and
template-based strategies to predict different cate-
gories of binding sites in RNA and DNA.
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