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Abstract: An antimicrobial polyacrylic silver salt (freshly prepared, stored for one year and model-
aged) was studied by physical–chemical techniques for nanoparticle detection. In all cases, this
salt represents a composite of radical-enriched macromolecules and silver(0) nanoparticles. As
time passed, the initial small spherical nanoparticles were converted into larger non-spherical silver
nanoparticles. The initial highly water-soluble antimicrobial solid nanocomposite almost loses its
solubility in water and cannot be used as an antimicrobial agent. Unlike insoluble solid silver poly-
acrylate, its freshly prepared aqueous solution retains a liquid-phase consistency after one year as well
as pronounced antimicrobial properties. The mechanism of these spontaneous and model-simulated
processes was proposed. These results have attracted attention for officinal biomedicinal silver salts
as complex radical-enriched nanocomposite substances; they also indicate contrasting effects of silver
polymeric salt storing in solid and solution forms that dramatically influence antimicrobial activity.

Keywords: polyacrylic salt; silver; nanoparticles; polymer nanocomposite; plasmon–polariton-
stimulated coalescence; antimicrobial activity

1. Introduction

Bioactive polymeric metal derivatives attract special attention due to their ability to
simulate many biological phenomena, act as contrast agents in MRI and their clinical use, in-
cluding macromolecular complexes of radioactive metals, etc. [1–4]. The structural formula
is the fundamental constant of drugs that determinates the complex of their pharmacologi-
cal properties. At the same time, some works evidence that complex compounds of noble
metals (as they are stated by the manufacturer) consist of metal nanoparticles by almost a
half, i.e., such metal complexes do not correspond to their official structural formula (see,
for example in Ref. [5]). The authors [5] explain this fact by the potential instability of the
palladium compound in question, which leads to the formation of metallic nanoparticles.

Biomedical silver salts including their polymeric species are intensively studied and
are used as promising multipurpose drugs (especially as antimicrobials) [6–11]. In par-
ticular, the incomplete silver salt of polyacrylic acid (PAAg) is currently proposed as a
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highly effective substance that exhibits a wide spectrum of biological activities [12–15],
the main of them being antimicrobial [12,13]. Owing to a valuable combination of these
properties, PAAg has advantages over the iron salt of polyacrylic acid—commercial medi-
cal substance Feracryl (also known as Ferasep, Haemolok, Sepgard, Sicastat, Supraheal,
etc.) [16]. Recently, in biomedical studies of PAAg, there has been a rise in interest in PAAg
antimicrobial properties [17]. The variety of PAAg bioactivity has broadened rapidly, for
example, specific antitumor effects have recently been found [14,15]. At the same time,
due to the well-known photosensitivity of silver salts, PAAg may be expected to be in-
volved in the photo-initiated cascade reaction affording silver metal nanophases. Changes
in polymers and polymer salts over time can be observed in their physical or chemical
characteristics. The reasons for the changes may be, among other things, the result of
interactions with the environment, for example, when oxidation leads to chain breakage.
Sometimes, several age-related phenomena can act simultaneously. In general, the topic of
polymer aging is vast, and its comprehensive review will require the cooperation of a large
group of experts and can be an incredibly voluminous material [18]. In the framework of
this article, the physical–chemical effects of PAAg aging under the influence of weathering,
so-called “natural aging”, were investigated. This refers to changes in the polymer with age
under the influence of several factors, primarily light radiation and ordinary temperature,
including the change in the state of the metal in the polymer salt and under the influence
of these factors. According to the literature data, studies of polymer nanocomposites have
demonstrated a huge effect of the presence of nanoparticles on the process of physical
aging [19]. However, due to the lack of consistency of work and the inconsistency of some
results, the effect of inorganic nanoparticles on the aging of the polymer matrix is still
difficult to predict.

Under usual daylight exposure, both colorless aqueous solutions and solid films of
PAAg become weakly colored, with the color gradually turning brown. This phenomenon
is likely explained by the specific optical absorption-plasmon resonance (PR) of the formed
silver nanoparticles [20]. This assumption can be a subject of special study, since actual
detailed phenomena of nanosilver formation could be a powerful tool for the further
directional improvement of PAAg consumer features, because nanosilver exhibits unique
physical–chemical and biological properties (see, for example in Refs. [6,9,20–28]). This
information can also serve as a key to the comprehension of biomedical effects as well as to
the storing behavior for PAAg and similar biomedical silver salts.

2. Results
2.1. Structure Features of Freshly Synthesized PAAg

Freshly prepared PAAg is a fine white powder. It has been found that at room
temperature and daylight exposure, the colorless aqueous solution of freshly synthesized
PAAg for even one hour turns pink, then yellow, and finally deep brown. The UV–Vis
spectrum of this solution shows the appearance of optical absorption in the short-wave
region (maximum at 270 nm) and a symmetric intensive band in the long-wave region
(maximum at 409 nm); see Figure 1, black solid line 1.

The electron paramagnetic resonance (EPR) spectrum of PAAg films, freshly prepared
in the dark, contains a wide (∆H about 500 G) asymmetric signal with an effective g-factor
of about 2.19–2.21, which is imposed on a narrow (∆H = 8.5 G) weak singlet of Lorentzian
shape with g = 2.0038 (Figure 2, line 1), while the starting reagents for PAAg synthesis
(silver nitrate and polyacrylic acid) give no signals under these conditions. Even under
daylight exposure for a few minutes, the almost colorless PAAg film and its water solution
turn pink and then darken. The intensity of the broad EPR signal of solid PAAg is slightly
decreased, and its shape is changed (Figure 2).
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The electron paramagnetic resonance (EPR) spectrum of PAAg films, freshly pre-
pared in the dark, contains a wide (ΔH about 500 G) asymmetric signal with an effective 
g-factor of about 2.19–2.21, which is imposed on a narrow (ΔH = 8.5 G) weak singlet of 
Lorentzian shape with g = 2.0038 (Figure 2, line 1), while the starting reagents for PAAg 
synthesis (silver nitrate and polyacrylic acid) give no signals under these conditions. Even 
under daylight exposure for a few minutes, the almost colorless PAAg film and its water 
solution turn pink and then darken. The intensity of the broad EPR signal of solid PAAg 
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High-contrasted electrons beam spherical nanoparticles with a multimodal size dis-
tribution (from 2 to 9 nm range, average diameter of 3 ± 1 nm) are visually determined
in the freshly synthesized PAAg by transmission electron microscopy (TEM); see Figure 3.
According to the TEM data, the nanoparticles are spatially separated by the organic matrix
at distances equal to, or larger than, their diameter. Thus, structurally, PAAg comprises
a multitude of silver nanoparticles of various sizes uniformly distributed in a polymer
matrix, where each particle is surrounded by a polymer shell. Similar silver nanostructures,
having rather similar morphology and sizes of nanoparticles, are described in the following
works [29–32]; however, the obtained PAAg is promisingly different from them in their
high solubility in water.
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Using the dynamic light scattering method (DLS), the scattering species of a single type 
were registered in water–salt solutions, the hydrodynamic size of which Rh decreased 
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Figure 3. TEM image of the freshly synthesized PAAg film and size distributions of nanoparticles.

Using the static light scattering method (SLS), the values of the weight average molec-
ular weight Mw = 750,000 g/mol and second virial coefficient A2 = 2.6 × 10−4 cm3mol/g2

were obtained. The positive A2 indicates good thermodynamic quality of the test solution.
Using the dynamic light scattering method (DLS), the scattering species of a single type
were registered in water–salt solutions, the hydrodynamic size of which Rh decreased
from 20 nm at 0.022 g/cm3 to 16 nm at 0.009 g/cm3 due to a decrease in intermolecular
interactions upon dilution (Figure 4).
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The value of Rh agrees with the obtained value of Mw, which together with a certain
thermodynamic parameter A2, makes it possible to conclude the molecular dispersity of
the polymer in solution. It is useful to compare Rh0 = 10 nm, which is Rh extrapolated to
c = 0 with a radius of gyration at Rg0 = 24 nm obtained from the SLS data. As is known,
the ratio ρ = Rg0/Rh0 is a characteristic value for the conformation of a dissolved particle.
For the sample under study, ρ = 2.4, which is close to the ρ = 2.2 theoretically calculated for
polydisperse Gaussian coils in a good solution [33]. Thus, the PAAg macromolecules in the
0.15 M NaCl solution conform to the freely swollen Gaussian coils.

2.2. Solid Film PAAg Stored for One Year

When exposed to light at room temperature for one year, the PAAg film becomes
almost black, and its watersolubility dramatically decreases. In addition, the UV–Vis
spectrum of the water extracts of partially soluble PAAg film strongly changes. Thus, the
optical absorption band at 200–320 nm (Figure 1, dashed line 2) significantly broadens. The
PR signal of the silver nanoparticles, such as that of their classical form, almost disappears
and is transformed into a broad absorption band with two implicit maxima (370 and
580 nm), gradually dropping a long-wave component up to 900 nm (Figure 1, dashed
line 2).

In the EPR spectrum of the PAAg film, which was stored for one year, a broad signal
(Figure 2, line 2) was detected. This signal is similar to that of freshly prepared PAAg
(Figure 2, line 1), but it has a different shape and higher intensity. The EPR spectrum of
the PAAg film stored for one year also contains an additional narrow signal, which is ap-
proximately twice as broad (15 G) as compared to the signal of freshly prepared polyacrylic
silver salt (Figure 2, line 1). TEM images of PAAg stored for one year demonstrate a lack of
initially observed small (1–10 nm) spherical silver nanoparticles and the presence of new
strongly elongated nanoparticles with significantly larger size (transverse section is about
100 nm; Figure 5).

Furthermore, the process of growth and enlargement of new nanoparticles is clearly
visible: it represents pole-oriented “attraction” of the initial small spherical nanoparticles
on the terminal poles of the more elongated nanoparticles (Figure 5).

2.3. Stimulated Aging of Solid PAAg

Physical–chemical aging of a polymer and especially the polymer salt is sometimes
accelerated if the temperature is increased. Equilibrium is displaced at a higher temperature,
and the material may not finish in the same state as would have been achieved by a longer
aging period at a lower temperature [18]. If an elevated temperature is applied to a polymer
in the presence of an aggressive chemical agent (often oxygen), then this may give rise to
chemical reactions that may occur only very slowly, or not at all, at ambient temperature.
This is a well-studied aspect of polymer science with discussed processes during thermal
aging and polymer testing procedures, for example, in the review of thermal oxidation of
polymers by Professor Pospíšil and co-authors [34]. It has importance even if the polymer
or its salt is not destined to be exposed to elevated temperatures during its service life. In
a majority of cases, the main cause of property deterioration is photo-oxidation, which is
initiated by UV irradiation [18,35], and, as a consequence, a number of photo-aging studies
have been carried out to determine the weatherability of the polymers. Accelerated testing
can be obtained by using UV intensities higher than those normally encountered in service.

The simulated aging processes of the solid PAAg film (photo-and thermo-induced
stimulations) were monitored by the EPR technique to elucidate the reason for silver
nanoparticles formation and their further evolution. The EPR monitoring of the sample
carried out with even heating up to 200 ◦C has shown that this thermo-stimulated process
is accompanied by the narrowing (from 448 to 255 G) of a broad asymmetric signal of
Dysonian form that is converted into a symmetrical singlet of a Lorentzian shape. After
the sample cools to room temperature, the signal is broadened again (up to 495 G), but the
symmetric Lorentzian shape remains. During heating, a narrow symmetric signal with a
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g-factor of 2.0038 and width of 8 G also broadens and remains after cooling (Figure 2, lines
3 and 4).
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Figure 5. TEM images of the strongly coupled metallic nanostructures in one-year-stored PAAg;
images (a–d) belong to the same sample in different scales or magnification of the image in
different areas.

Under UV irradiation (1 h) of the silver polyacrylate samples, the intensities of the
narrow EPR signal also increase, and new additional narrow lines appear. Moreover, the
broad signal is not significantly changed (Figure 6). Detection of the narrow EPR signal
in the range of the magnetic field sweep 200 G (Figure 6, inset, left) under microwave
saturation (p = 0.25–5.00 mW) and simulation have shown that it represents a superposition
of four signals, three singlets, I1 (∆H = 7.50 G; g = 2.0041), I2 (∆H = 1.55 G; g = 2.0005), I3
(∆H = 12.0 G; g = 2.0043), and one triplet, 1:2:1 (two outermost components marked with
asterisk* are apart of 48.6 G) with g = 2.0044.
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2.4. Aqueous PAAg Solution Stored for One Year

Noteworthy is the aqueous solution PAAgthat is also stored for one year. It is telling
that in this case, the solution continues to maintain its homogeneity.

The optical properties of the aqueous PAAg solution after a year of storage also
change noticeably. Its color becomes dark gray instead of brown for the aqueous solution
of freshly obtained PAAg, and the solution opalescence begins to visibly appear. The
optical absorption spectrum also changes and looks like “something average” between the
spectrum of freshly obtained PAAg and the spectrum of aqueous drawing of the PAAg
film stored for one year (Figure 1). Thus, the short-wave shoulder with a maximum at
294 nm is significantly increased (relative to the PR metal nanoparticles) compared to the
freshly obtained PAAg, however, not so much as in the case of the PAAg film stored for one
year. The PR itself is shifted to the long-wavelength region and has a maximum at 455 nm;
however, two shoulders are also observed: shortwave at 348 nm and longwave at 560 nm.

The film formed from this solution has retained its magnetic properties (Figure 2, line
5), although both the wide and narrow signals are slightly broadened as ∆H = 600 G and
9.1 G, respectively. Changes in the characteristics of the EPR signals can be related to the
size and shape of the magnetic nanoparticles of the nanocomposite formed, as evidenced
by the data of the TEM (Figure 3). Different images of silver nanoparticles are also observed
by TEM for an aqueous solution of PAAg stored for one year (compared to the stored
solid PAAg films); see Figure 7. In this case, enlarged spherical or slightly elongated
(ellipsoidal) silver nanoparticles are predominantly observed instead of very elongated
large silver nanoparticles.
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After storing an aqueous solution of PAAg for a year, a slight increase in the size of the
light-scattering particles was observed at the same concentration as in a freshly prepared
solution (Figure 8), which indicates conformational–structural rearrangements of both
macromolecules and enlarged silver nanoparticles.
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2.5. Antimicrobial Activity of PAAg

PAAg has pronounced antimicrobial and fungicidal activity and is promising for
applications in medical practice. Results of activity (minimum inhibitory concentration
(MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration
(MFC)) of the freshly synthesized PAAg water solution and the aged PAAg water solution
are presented in Figure 9, Tables 1 and 2. However, PAAg stored for one year in solid state
is unsuitable for testing antimicrobial activity by conventional methods due to its practical
insolubility in water.
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Figure 9. (a) MIC of PAAg for K. pneumoniae ATCC 700603 (EBSL); MBC and MFC of the water
solutions freshly synthesized PAAg (I) and aged PAAg (II) for (b) E. coli ATCC 25922 and (c) C. albicans
ATCC 90028, respectively.

According to microbiological studies, the freshly synthesized PAAg (Ag—8.73%) had
high antimicrobial activity against various strains of Gram-negative and Gram-positive
bacteria, as well as Candida albicans (C. albicans) ATCC 90028, while Gram-negative microor-
ganisms were more sensitive than Gram-positive ones. The PAAg was characterized by MIC
values for Gram-negative flora in the range from 31.25 to 62.5 µg/mL and for Gram-positive
flora from 62.5 to 250 µg/mL. The MBC for Gram-negative microorganisms ranged from
31.25 to 125 µg/mL, and for Gram-positive microorganisms from 125 to 250 µg/mL. The
highest MIC and MBC values for the PAAg were shown against the Gram-positive test strain
Enterococcus faecalis (E. faecalis) ATCC 29212 and amounted to 250 µg/mL (MIC/MBC).
The most sensitive were test cultures of microorganisms Escherichia coli (E. coli) ATCC
25922 (MIC—31.25 µg/mL, MBC—31.25 µg/mL) and Pseudomonas aeruginos (P. aeruginos)
ATCC 27853 (MIC—31.25 µg/mL, MBC—31.25 µg/mL). For the reference Staphylococcus
aureus (S. aureus) ATCC 25213, MBC had the same values as MIC and was 125 µg/mL.
For Klebsiella pneumoniae (K. pneumoniae) ATCC 700603 and S. aureus ATCC 25923, MIC
and MBC were 62.5 and 125 µg/mL, respectively. In addition, antifungal activity of the
PAAg was also detected; thus, for C. albicans, MFC and MIC were determined at the same
concentration of 125 µg/mL (Table 1).

Antimicrobial activity of the aged PAAg against test strains E. coli ATCC 25922,
P. aeruginosa ATCC 27853, K. pneumoniae ATCC 700603, S. aureus ATCC 25213 E. faecalis
ATCC 29212 remained unchanged (Table 2, Figure 9); for S. aureus, MIC increased from
62.5 to 125 µg/mL, MBC from 125 to 250 µg/mL; for C. albicans ATCC 90028, only MFC
increased from 125 to 250 µg/mL (Table 2, Figure 9c).



Int. J. Mol. Sci. 2022, 23, 10963 10 of 22

Table 1. Antimicrobial activity of freshly synthesized PAAg.

Microorganisms
MIC and MBC/MFC, µg/mL

500 250 125 62.5 31.25 15.6 7.8 3.9 1.9 0.95

E. coli
ATCC 25922 −−/−− −−/−− −−/−− −−/−− −−/−− + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

P. aeruginosa
ATCC 27853 −−/−− −−/−− −−/−− −−/−− −−/−− + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

K. pneumoniae
ATCC 700603

(EBSL)
−−/−− −−/−− −−/−− −−/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

S. aureus
ATCC 25923 −−/−− −−/−− −−/−− −−/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

S. aureus
ATCC 25213 −−/−− −−/−− −−/−− + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

E. faecalis
ATCC 29212 −−/−− −−/−− + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

C. albicans
ATCC 90028 −−/−− −−/−− −−/−− + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

Note: (−) Absence of test-strains growth; (+) presence of growth of test strains.
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Table 2. Antimicrobial activity of one-year-stored PAAg water solution.

Microorganisms
MIC and MBC/MFC, µg/mL

500 250 125 62.5 31.25 15.6 7.8 3.9 1.9 0.95

E. coli
ATCC 25922 −−/−− −−/−− −−/−− −−/−− −−/−− + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

P. aeruginosa
ATCC 27853 −−/−− −−/−− −−/−− −−/−− −−/−− + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

K. pneumoniae
ATCC 700603

(EBSL)
−−/−− −−/−− −−/−− −−/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

S. aureus
ATCC 25923 −−/−− −−/−− −−/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

S. aureus
ATCC 25213 −−/−− −−/−− −−/−− + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

E. faecalis
ATCC 29212 −−/−− −−/−− + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

C. albicans
ATCC 90028 −−/−− −−/−− −−/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ + + +/+ +

Note: (−) Absence of test-strains growth; (+) presence of growth of test strains.
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3. Discussion

Obviously, short-wave broadened band (200–320 nm) in the optical absorption spec-
trum of freshly synthesized PAAg can be attributed to some superimposed and overlapping
narrow bands corresponding to the carboxylic groups of the polymer [36], as well as to
individual small Ag0 atomic clusters [37–40]. These potentially unstable silver clusters
grow and coalesce to form the primary metal nanoparticles (Figure 10a). The latter begin
intensively absorbing the light in the longer-wave region (symmetric band with a maximum
at 409 nm) due to a specific optical phenomenon, the PR of already electroconductive silver
nanoparticles (Figure 1) [20].
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This indicates that the facile one-electron redox interconversion occurs in silver poly-
acrylate to form the primary silver metal nanophase. Thus, the reduction of Ag+ cations to
Ag0 atoms interrelated to the oxidation of carboxyl anion groups in the macromolecules,
giving the corresponding polyacrylate radical centers as the more likely cause of the decar-
boxylation processes (Figure 10a).

As seen from Figure 10a, short-wave broadened optical absorption (max 270 nm) can
be caused by the contribution of light-absorbed (in this spectral region) radical centers at
the transformed macromolecules of polyacrylic acid [41,42], as well as by γ-butyrolactone
cycles [43]. The latter can be formed due to intramolecular recombination of the neighboring
hetero-radical centers (Figure 10b). In this case, the polymer system must not lose its
solubility in principle. Contrarily, in the case of alternative intermolecular recombination
of radicals, an insoluble 3D polymer network should be formed.
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In the EPR spectrum of freshly synthetized polyacrylic silver salt, a broad line can
be attributed to the conduction electron spin resonance (CESR) of Ag0 nanoparticles
formed [44–46]. As a rule, it considerably broadens at room temperature due to very
rapid electron relaxation processes. The narrower line could be due to the complicated
signals from overlapping (due to the proximity of the EPR individual parameters) both
paramagnetic small nanoparticles of silver [29,47–49] and redox-generated carboxylate
radicals in the polymer as well as radical products of its decarboxylation (Figure 10a) [50].
These assumptions on the formation of metal nanoparticles in the silver polymer salts are
completely supported by TEM data: the images clearly show polydisperse silver nanopar-
ticles of 1–10 nm in size. Polymodal distribution of the silver nanoparticles confirms the
parallel processes in the solid PAAg, i.e., permanent nucleation of nanophases and a growth
of the nanonuclei formed. We cannot also exclude the probable coalescence of the nanopar-
ticles already formed that result in sharp discrete enlargement of new nanoparticles. Being
stored at daylight and room temperature for one year, the PAAg film becomes almost black,
and its solubility dramatically decreases. This evidences the further deep qualitative and
quantitative transformations, even in the solid phase of the silver polyacrylate. Thus, the
enlarged absorption band at 200–320 nm (Figure 1, dashed line 2) suggests the accumulation
of light-absorbed (in this spectral region) radical centers and γ-butyrolactone cycles on
macromolecules of the polymeric matrix [41–43]; see Figure 10, but not for the small silver
atomic clusters, which should grow (aggregate) into larger metal nanoparticles in time. As
it was described above, a significant reduction in solubility of the solid substance in one
year can be explained by major intermolecular (and minor intramolecular) recombination
of the radical centers to afford a cross-linked 3D polymer network.

The strong transformation of the initial PR absorption to diffuse long-wave broadening
to 900 nm with two PR modes (Figure 1) is obviously the effect of subsequent growth of
nanoparticle associates that becomes larger over time. In this case, the tertiary strongly
coupled metallic nanostructures (its optical absorption is diffuse long-wave broadening
to 900 nm) [51] may be generated from secondary enlarged elongated metal nanoparticles
(its optical absorption is a complex consisting of transverse at 370 nm and longitudinal
at 580 nm PR modes) obtained from primary small spherical nanoparticles (initial PR
absorption at 409 nm).

An essential peculiarity of the EPR spectra of the PAAg substance after one year of
aging is the increased intensity of the narrow line, likely due to overlapping of the signals
from the polymer radical centers formed, i.e., carboxylate radicals (Figure 10a) [52], and the
products of their further decarboxylation [50]. This fact additionally supports the above
inference on the accumulation of polymeric radicals in the substance during one year. The
contribution of these radicals to short-wave optical absorption with a maximum at 270 nm
also sharply increases (Figure 1).

The main conclusions on the nanosilver evolution derived from the analysis of optical
absorption and EPR spectra are fully confirmed by the TEM data of the PAAg film, which
was stored for one year. For example, the TEM images demonstrate almost a lack of
small (1–10 nm) spherical silver nanoparticles initially observed and the presence of new
strongly elongated nanoparticles with greatly enlarged size (only transverse is about
100 nm, Figure 5). All the images evidence the strongly coupled metallic nanostructures
(rods, wires, etc.). The elongation of novel larger nanoparticles with a high concentration of
initial small spherical silver nanoparticles near the poles suggests the enlargement of the
latter due to plasmon–polariton stimulation of this process. It is well known that under
the action of an electric field of background, thermal or visible quanta, electrically neutral
silver nanoparticles redistribute their electrons and transform into the stimulated dipole
(Figure 11a). This polarization generates a strong dipole–dipole attractive force between
neighboring nanoparticles, which leads to their drift toward each other to give a new
doubled nanoparticle.
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For this new non-spherical ellipsoid-rod, upon any further plasmon–polariton po-
larization, redistribution of electrical field intensity is always higher on the poles with a
lower radius (effect of electric field intensity on edges). Consequently, the predominant
direction of further plasmon–polariton-stimulated drift of the nanoparticles along the most
electrically favorable poles, i.e., along the line of the coalescent nanoparticles enlargement,
is clearly observed even on the initial coalescent nanoparticle (Figure 11b). The growth
anisotropy of elongated nanoparticles in the solid phase is strongly enhanced by the absence
of the rotational degree of freedom of the macromolecules and the associated nanoparticles,
i.e., constant orientation of the elongated nanoparticles to the light flux and, consequently,
to the vector of the electric field of the incident quanta, which will constantly produce
the same direction of nanoparticle growth. Meanwhile, the counter motion of the electric
dipole nanoparticles is also further enhanced by the “electric capacitor’s effect” of the
oppositely charged nanoparticles separated by a nanometer layer of a dielectric, which is an
organic polymer. In this case, like in any electric capacitor, the induced “electric capacitor
state” can persist for a long time. An electromotive force capable of bringing together
oppositely charged nanoparticles can act on the nanoparticles for the same time. This drift
likely results in the formation of new enlarged nanoparticles. In addition, a drift of the
remaining initial small spherical nanoparticles toward the poles of the enlarged nanopar-
ticles is observed (Figure 5). This accumulation of initial small spherical nanoparticles at
the poles of newly large elongated nanoparticles indicates the discussed mechanism of
plasmon–polariton-stimulated coalescence, which is realized, not completely excluding
the probable oxidative etching and Ostwald ripening mechanisms of the nanoparticles’
shape evolution.
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Taking into account the dependence of signal width and the shift of g-factor on
nanoparticle sizes [44,53,54], the broad line (about 500 G) of all PAAg samples (freshly
synthesized, one year stored, as well as artificially exposed to photo-and thermo-aging) can
be attributed to both the CESR of Ag0 nanoparticles [55] and to ferromagnetic properties of
the silver nanoclusters [40,55,56]. According to Kawabata’s theory (see Ref. [57]), the size
of the small particles is estimated by the relationship:

∆H =
1.78 × 1011 × (∆g)2 × d2 × ρ

VF × M
, (1)

where the metal density ρ, the Fermi velocity VF, the peak-to-peak linewidth ∆H and the
metal atomic mass M are known, while values of ∆g, which is the difference between the g
value of the metal considered and the free-electron g-factor (2.0023), have been found by
the experiments [58,59]. Thus, the particle diameters d of the stabilized silver-containing
nanoparticles were estimated to be 10 nm (for a broad line) and about 1 nm (for a narrow
line). The EPR method detects only paramagnetic nanoparticles. If the calculated results
of the nanoparticles’ sizes by the Kawabata’s theory are considered to be correct, then the
nanoparticles with other sizes are diamagnetic (it is well known that large-scaled metal
silver is diamagnetic).

The analysis of superposition of the narrow EPR signals I1, I2, I3 and triplet (Figure 6,
model experiments on stimulated aging of PAAg samples) shows that the latter triplet signal
seems to be attributed to the carboxylate radicals
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the decarboxylation reaction of polyacrylic acid [50]. Signal I1 can be referred to the small
Ag0 silver nanoparticles of about 1–2 nm [48,62,63]. The singlet I2 (∆H = 1.55 G; g = 2.0005)
relates to acyl radicals from the polyacrylic matrix [64,65]. Moreover, the comparison of
the changes in the EPR spectra upon heating and UV irradiation clearly shows that the
narrow signals (g = 2.0038) in Figure 2, and I1 (g = 2.0043) on inset (Figure 6) are close for
both processes and correspond to the nature of the narrow weak signal in the spectrum of
the freshly prepared silver polyacrylate (g = 2.0038). Thus, such EPR singlet signal in all
three cases can be attributed to the silver nanoparticles.

Thus, all radicals detected by the EPR technique can be divided into the products

of the polyacrylate matrix oxidation (

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 21 
 

 

be attributed to both the CESR of Ag0 nanoparticles [55] and to ferromagnetic properties 
of the silver nanoclusters [40,55,56]. According to Kawabata’s theory (see Ref. [57]), the 
size of the small particles is estimated by the relationship: 

,
22)(111078.1

M
F
V

dg
H

×

××Δ××
=Δ ρ

 (1)

where the metal density ρ, the Fermi velocity VF, the peak-to-peak linewidth ΔH and the 
metal atomic mass M are known, while values of Δg, which is the difference between the 
g value of the metal considered and the free-electron g-factor (2.0023), have been found by 
the experiments [58,59]. Thus, the particle diameters d of the stabilized silver-containing 
nanoparticles were estimated to be 10 nm (for a broad line) and about 1 nm (for a narrow 
line). The EPR method detects only paramagnetic nanoparticles. If the calculated results 
of the nanoparticles’ sizes by the Kawabata’s theory are considered to be correct, then the 
nanoparticles with other sizes are diamagnetic (it is well known that large-scaled metal 
silver is diamagnetic). 

The analysis of superposition of the narrow EPR signals I1, I2, I3 and triplet (Figure 6, 
model experiments on stimulated aging of PAAg samples) shows that the latter triplet 
signal seems to be attributed to the carboxylate radicals , in which the un-

paired electron interacts with one ά-and one β-proton or to the radical  [60,61]. 
Singlet I3 (ΔH = 12.00 G; g = 2.0043) can be assigned to radicals -CH2-ĊH-, which are formed 
via the decarboxylation reaction of polyacrylic acid [50]. Signal I1 can be referred to the 
small Ag0 silver nanoparticles of about 1–2 nm [48,62,63]. The singlet I2 (ΔH = 1.55 G; g = 
2.0005) relates to acyl radicals from the polyacrylic matrix [64,65]. Moreover, the compar-
ison of the changes in the EPR spectra upon heating and UV irradiation clearly shows that 
the narrow signals (g = 2.0038) in Figure 2, and I1 (g = 2.0043) on inset (Figure 6) are close 
for both processes and correspond to the nature of the narrow weak signal in the spectrum 
of the freshly prepared silver polyacrylate (g = 2.0038). Thus, such EPR singlet signal in all 
three cases can be attributed to the silver nanoparticles. 

Thus, all radicals detected by the EPR technique can be divided into the products of 
the polyacrylate matrix oxidation (  and/or CH2 C COOH

 (triplet), as well as 

-CH2-ĊH-(I3)) or products of this matrix reduction (  (I2)). Simultaneous for-
mation of these radicals can be rationalized by synchronous participation of the polyacry-
late molecules in the redox processes on opposite poles of permanently polarized silver 
nanoparticles, which in this case can be considered as plasmon–polariton-stimulated elec-
trochemical nanocells (Figure 11a). Reduction of the polyacrylate molecules can occur on 
the negative poles of these redox-nanocells, while oxidation can take place on the positive 
poles. Radical products of such a conjugated redox-process involving intensively dis-
cussed plasmon-stimulated photocatalysis on nanoparticles (see, for example in Refs. 
[66,67]) are here observed by the EPR method. 

Thus, in a solid, highly water-soluble polyacrylic silver salt, spontaneous oxidation–
reduction processes lead to a water-soluble nanocomposite of small spherical silver nano-
particles and transformed (radical-enriched) polymeric acrylate immediately after the 
preparation of this salt. This initial nanocomposite exhibits a complex of pronounced an-
timicrobial properties. Over time, in the solid phase, under the action of plasmon–polari-
ton polarization, nanoparticles also spontaneously aggregate into large strongly elon-
gated nanoparticles, and radical centers on neighboring macromolecules partially recom-
bine among themselves to form a 3D polymer network. The resulting products is novel 
and insoluble in water and other solvents; thus, the silver-containing nanocomposite is 
practically unsuitable for use as a biomedical agent with antibacterial properties. On the 
contrary, the remaining water solubility of PAAg can be explained by the fact that in this 
case, there is a preferential intramolecular recombination of the radicals with the 

and/or

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 21 
 

 

be attributed to both the CESR of Ag0 nanoparticles [55] and to ferromagnetic properties 
of the silver nanoclusters [40,55,56]. According to Kawabata’s theory (see Ref. [57]), the 
size of the small particles is estimated by the relationship: 

,
22)(111078.1

M
F
V

dg
H

×

××Δ××
=Δ ρ

 (1)

where the metal density ρ, the Fermi velocity VF, the peak-to-peak linewidth ΔH and the 
metal atomic mass M are known, while values of Δg, which is the difference between the 
g value of the metal considered and the free-electron g-factor (2.0023), have been found by 
the experiments [58,59]. Thus, the particle diameters d of the stabilized silver-containing 
nanoparticles were estimated to be 10 nm (for a broad line) and about 1 nm (for a narrow 
line). The EPR method detects only paramagnetic nanoparticles. If the calculated results 
of the nanoparticles’ sizes by the Kawabata’s theory are considered to be correct, then the 
nanoparticles with other sizes are diamagnetic (it is well known that large-scaled metal 
silver is diamagnetic). 

The analysis of superposition of the narrow EPR signals I1, I2, I3 and triplet (Figure 6, 
model experiments on stimulated aging of PAAg samples) shows that the latter triplet 
signal seems to be attributed to the carboxylate radicals , in which the un-

paired electron interacts with one ά-and one β-proton or to the radical  [60,61]. 
Singlet I3 (ΔH = 12.00 G; g = 2.0043) can be assigned to radicals -CH2-ĊH-, which are formed 
via the decarboxylation reaction of polyacrylic acid [50]. Signal I1 can be referred to the 
small Ag0 silver nanoparticles of about 1–2 nm [48,62,63]. The singlet I2 (ΔH = 1.55 G; g = 
2.0005) relates to acyl radicals from the polyacrylic matrix [64,65]. Moreover, the compar-
ison of the changes in the EPR spectra upon heating and UV irradiation clearly shows that 
the narrow signals (g = 2.0038) in Figure 2, and I1 (g = 2.0043) on inset (Figure 6) are close 
for both processes and correspond to the nature of the narrow weak signal in the spectrum 
of the freshly prepared silver polyacrylate (g = 2.0038). Thus, such EPR singlet signal in all 
three cases can be attributed to the silver nanoparticles. 

Thus, all radicals detected by the EPR technique can be divided into the products of 
the polyacrylate matrix oxidation (  and/or CH2 C COOH

 (triplet), as well as 

-CH2-ĊH-(I3)) or products of this matrix reduction (  (I2)). Simultaneous for-
mation of these radicals can be rationalized by synchronous participation of the polyacry-
late molecules in the redox processes on opposite poles of permanently polarized silver 
nanoparticles, which in this case can be considered as plasmon–polariton-stimulated elec-
trochemical nanocells (Figure 11a). Reduction of the polyacrylate molecules can occur on 
the negative poles of these redox-nanocells, while oxidation can take place on the positive 
poles. Radical products of such a conjugated redox-process involving intensively dis-
cussed plasmon-stimulated photocatalysis on nanoparticles (see, for example in Refs. 
[66,67]) are here observed by the EPR method. 

Thus, in a solid, highly water-soluble polyacrylic silver salt, spontaneous oxidation–
reduction processes lead to a water-soluble nanocomposite of small spherical silver nano-
particles and transformed (radical-enriched) polymeric acrylate immediately after the 
preparation of this salt. This initial nanocomposite exhibits a complex of pronounced an-
timicrobial properties. Over time, in the solid phase, under the action of plasmon–polari-
ton polarization, nanoparticles also spontaneously aggregate into large strongly elon-
gated nanoparticles, and radical centers on neighboring macromolecules partially recom-
bine among themselves to form a 3D polymer network. The resulting products is novel 
and insoluble in water and other solvents; thus, the silver-containing nanocomposite is 
practically unsuitable for use as a biomedical agent with antibacterial properties. On the 
contrary, the remaining water solubility of PAAg can be explained by the fact that in this 
case, there is a preferential intramolecular recombination of the radicals with the 

(triplet), as well
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Thus, in a solid, highly water-soluble polyacrylic silver salt, spontaneous oxidation–
reduction processes lead to a water-soluble nanocomposite of small spherical silver nanopar-
ticles and transformed (radical-enriched) polymeric acrylate immediately after the prepa-
ration of this salt. This initial nanocomposite exhibits a complex of pronounced antimi-
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remaining water solubility of PAAg can be explained by the fact that in this case, there is a
preferential intramolecular recombination of the radicals with the formation of intramolec-
ular cycles, and the intermolecular crosslinking of macromolecules is not realized due to
their spatial separation in solution by solvent molecules.

The optical absorption spectrum of the aged aqueous solution of PAAg, where a PR is
shifted to the longwave region at 450 nm, is characteristic of large spherical nanoparticles.
In addition, there are two components of another complex PR (at 348 nm and at 560 nm)
that can be attributed, respectively, to the transverse and longitudinal components of PR
of elongated silver nanoparticles. These PR data are also fully confirmed by the photo
TEM, where both enlarged spherical and slightly elongated ellipsoidal nanoparticles are
clearly observed.

Another form of enlarged silver nanoparticles (spherical and weakly extended ellip-
soid nanoparticle in aged aqueous solution PAAg against the strongly elongated rod-shaped
or wire-aged solid PAAg) is apparently caused by rotational mobility of macromolecules
and associated nanoparticles in a solution. Firstly, it excludes the constant orientation of
growing nanoparticles to the light flux (as well as to the electric field vector of the incident
quanta) and prevents the highlighted direction of nanoparticles growth. Secondly, in the
aqueous solution, the “electric capacitor’s effect” discussed above for the solid phase is
excluded, since in this case, the water under usual conditions (without special purification,
etc.) is not a dielectric but an electrical conductor.

It is obvious that the differences in the structure of the polymer matrix of the aged sam-
ples of PAAg (insoluble crosslinked intermolecular polymeric 3D nanocomposite network
and water-soluble uncrosslinked nanocomposite) influence their antimicrobial properties
more pronouncedly than the differences in the structure of nanoparticles. Whereas in
the first nanocomposite, these properties, in general, cannot be tested by conventional
methods due to its insolubility in water, the second water-soluble nanocomposite continues
to demonstrate high antimicrobial properties, which are slightly reduced compared to
freshly obtained PAAg (see Tables 1 and 2) that can be explained by the coarsening of silver
nanoparticles and a change in the initial structure of the polymer over time.

Undoubtedly, all the dramatic changes, observed in polyacrylate silver salt, require a
further detailed investigation of not only already-known antimicrobial activities, but also
of other kinds of biological activity, which is inherent both in silver nanocomposites and in
radical-enriched substances.

Thus, spontaneous formation and evolution of silver nanoparticles as well as for-
mation of polymeric radicals discovered for polymeric silver salt can serve as a key to
better comprehension of its biomedical effects and aging behavior. The data obtained
also could be a tool for directional improvement of features of the substance PAAg, since
the nanosilver possesses diverse unusual and valuable physical–chemical and biomedical
properties, and radical centers in formed silver nanocomposites should influence many
radical-caused biomedical properties. This will also stimulate similar studies of other
silver-based drugs, since the principal physical and chemical phenomena observed have
general character. Moreover, the discussed chain growth of metal nano-wires through
plasmon–polariton-induced agglomeration of the nanoparticles could be used to control
nano-object growth. The data obtained should be taken into account for the storage of
silver salt and nanocomposite substances for biomedical purposes; it could also be used for
the development of new approaches forthe utilization of such substances in nanomedicine.
In addition, such evolution processes can be used to produce immobilized silver-containing
polymer coatings.

4. Materials and Methods
4.1. Materials

The PAAg was synthesized according to the published procedure in Refs. [12,15].
Acrylic acid (Sigma-Aldrich, Saint Louis, MO, USA) (9.0 g) was dissolved in water (45 mL)
at room temperature under stirring on a magnetic stirrer. Then, the solution was heated to
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80 ◦C, and potassium persulfate K2S2O8 (Sigma-Aldrich, Saint Louis, MO, USA) (0.045 g)
dissolved in water (5 mL) was added dropwise with stirring. The resulting mixture was
stirred 60 min at 80–85 ◦C. The polymer solution was cooled to room temperature, water
(5 mL) was added, and the resulting solution was passed through a column with an anion
exchanger AV-17-8 (OOO “Smoly”, Moscow, Russia). The purified aqueous solution of
polyacrylic acid was poured into a thin layer and dried at room temperature for about 24 h
to hard brittle transparent plates of polyacrylic acid.

The resulting polyacrylic acid (4.0 g) was dissolved in water (70 mL) at room tem-
perature under stirring on a magnetic stirrer, and AgNO3(Sigma-Aldrich, Saint Louis,
MO, USA) (0.53 g) in water (5 mL) was added. The solution was stirred for 30–60 min
and passed through a column with an anion exchanger AV-17-8 (OOO “Smoly”, Moscow,
Russia). The purified aqueous solution of PAAg was poured into a thin layer and dried at
room temperature for about 24 h to hard brittle grey-brown plates of PAAg.

Silver content (8.73%) in PAAg was determined on Perkin-Elmer AAnalyst 800
(PerkinElmer, Waltham, MA, USA). Aqueous solution of freshly prepared PAAg films,
the same aqueous PAAg solution (5%), stored for a year, as well as the aqueous solution
(extract) of the PAAg film, stored for a year, which lost more of its water solubility over
time, were also studied.

4.2. Physical–Chemical Measurements

The formation of silver nanoparticles within PAAg in solid state and in water solution
was studied by data correlation of complementary physical–chemical methods including
monitoring and simulating technique: PR optical absorption spectroscopy, TEM, SLS, DLS,
as well as the already well proven for the study of biomedical nanosilver, spectroscopy of
EPR including CESR in metal nanoparticles [37,68,69].

The optical absorption spectra were recorded on a Perkin Elmer Lambda 35 UV–Vis
spectrophotometer for the water solution of freshly obtained and one-year-stored PAAg, as
well as for the aqueous extract of a slightly soluble PAAg film stored for one year.

Freshly synthesized PAAg was studied in 0.15 M NaCl aqueous solutions by SLS and
DLS methods at a constant temperature of 21 ◦C. The working concentration interval was
c = (0.022 – 0.009) × 10−2 g/cm3.

Photocor FC setup with the Spectra Physic He-Ne laser (Moscow, Russia) equipped
with a Photocor-FC correlator (the number of channels is 288) was used to conduct the
measurements. The laser wavelength was 632.8 nm. The intensity of scattered light
was measured at varying the scattering angle from 45 to 135 degrees. The Zimm theory
was employed [70] to obtain a weight average molar mass Mw, a second virial coeffi-
cient A2, and a radius of gyration Rg0. The refractive index increment dn/dc neces-
sary for the Mw calculation was measured using a KEM RA-620 refractometer (Shang-
hai, China), dn/dc = 0.215 cm3/g. The hydrodynamic radii Rh of dissolved species were
obtained by the regularization method according to the DLS data. The values of Rh reg-
istered for each concentration were averaged over the scattering angles because of their
angular independence.

The EPR spectra were recorded with Bruker ELEXSYS E-580 spectrometer, X-band
9.7 GHz (Billerica, MA, USA). CW EPR-spectra were recorded at the following conditions
(in quartz ampoules with a diameter of 5 mm): amplitude modulation 1–10 Gs, modulation
frequency 100 kHz, receiver gain 60–80 dB, time constant 0.02–0.04 s, conversion time
0.04–0.08 s, microwave power 0.6325 mW, average number of scans 20 at room temperature.
To study the physical–chemical changes and supramolecular organization of the polymer
salt, the aging of freshly prepared PAAg was stimulated by a single short-term treatment
of the samples at 200 ◦C for an hour (nitrogen thermal attachment) or by UV irradiation
with a broad-spectrum lamp in air atmosphere. Such methods are used to quickly screen
the characteristics of materials that are subjected to accelerate artificial weathering in
an atmosphere of oxygen or nitrogen [34]. The UVirradiation EPR experiments were
recorded with LSB610 100W Hg lamp (UV irradiation system, ER 203 UV (Quantum Design,
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Darmstadt, Germany)) at room temperature. The monitoring of the thermo-stimulated
process was carried out with even heating (slowly increasing the temperature by 30 degrees
steps) up to 200 ◦C in quartz ampoules (diameter of 5 mm) directly in the resonator of EPR
spectrometer. The EPR spectra simulations were performed with WINEPR SimFonia 1.26
1996 (Bruker, Billerica, MA, USA). EPR study of aqueous solutions of PAAg has not been
carried out due to a high level of “parasitic” water absorption of the sounding microwave
radiation of the spectrometer and a decrease due to this signal-to-noise ratio.

To study the morphology of PAAg films, the obtained salts were dissolved in water.
The slightly soluble PAAg film stored for one year was cut into thin strips and extracted
with water at room temperature for one day to form a colored aqueous extract above
the swollen straw. Then, PAAg water solutions or aqueous extract were applied to grids
with formvar supports and dried. The prepared sample films were examined using a Leo
906 E (Carl Zeiss, Jena, Germany) TEM at an accelerating voltage of 80 kV (resolution of
0.36 nm). Micrographs were taken with a MegaView II camera and processed using Mega
Vision software.

4.3. Antimicrobial and Fungicidal Activity

Determination of antimicrobial activity of both freshly synthesized and one-year-
aged PAAg water solution and their comparative assessment of MIC, MBC and MFC
activity was carried out by using a serial dissolution method [71,72]. The study was
conducted according to the requirements of the State Pharmacopoeia of Russian Federation.
Reference museum cultures were used as test strains E. coli ATCC 25922, P. aeruginosa
ATCC 27853, K. pneumonia ATCC 700603 (extended-spectrum β-lactamase), S. aureus ATCC
25923, S. aureus ATCC 25213, E. faecalis ATCC 29212, and C. albicans ATCC 90028 (Becton
Dickinson, Franklin Lakes, NJ, USA). The initials solutions contained 1000 µg of PAAg in
1 mL of water. Under aseptic conditions, from these solutions, two-fold concentrations
of the drug were prepared in a liquid nutrient medium with a final concentration of the
microorganism of 5 × 105 CFU/mL (using 8–11 tubes of 1 mL volume). Antimicrobial
activity was studied at drug concentrations in the range of 0.95–500 µg/mL.

First, 18–24 h cultures of Gram-negative and Gram-positive microorganisms grown on
a dense Mueller-Hinton medium were taken into experiments. For inoculation, test organ-
isms were suspended in a concentration of 0.5 McFarland standard (1.5 × 108 CFU/mL)
diluted 100 times in a sterile isotonic sodium chloride solution. Bacterial suspensions were
standardized using a Densi La METER densitometer (ErbaLachema, Czech Republic). To
obtain the required inoculum (5 × 105 CFU/mL), 50 µL of a bacterial suspension containing
106 CFU/mL was added to each tube. The control tube contained 1 mL of broth without
PAAg and 50 µL of culture for each tested strain. Each test was performed in duplicate. The
inoculates were incubated in a normal atmosphere at 35 ◦C for 18–24 h. The results were
evaluated visually, determining the presence or absence of growth in a medium containing
a test sample with different concentrations. The last tube of the stunted row (clear broth)
corresponded to the MIC of the preparation for this strain. From all transparent test tubes,
seedings were made on a solid nutrient medium (Muller-Hinton agar) to determine cell
viability. After incubation of crops in a thermostat (18–24 h), the lowest concentration of
the drug was noted in a test tube, seeding from which did not give growth. This concen-
tration was taken as MBC. The study of the antifungal activity of the PAAg was carried
out in Sabouraud broth, following the same principle, with seeding on Sabouraud agar to
determine MFC (incubation time 48 h).

5. Conclusions

In summary, just-obtained antimicrobial PAAg is a composite of radical-enriched
macromolecules with silver(0) nanoparticles, but not pure polyacrylic silver salt, as it used
to be considered. Spontaneous formation and evolution of silver nanoparticles as well
as formation of polymeric radicals discovered for polymeric silver salt can serve as a key
to better comprehension of its biomedical effects and aging behavior. The data obtained
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could also be a tool to directional improvement of features of substance PAAg, since the
nanosilver possesses diverse unusual and valuable physical–chemical and biomedical
properties, and radical centers in formed silver nanocomposites should influence many
radical-caused biomedical properties. This will also stimulate similar studies of other
silver-based drugs, since the principal physical and chemical phenomena observed have
general character. Moreover, the discussed chain growth of metal nano-wires through
plasmon–polariton-induced agglomeration of the nanoparticles could be used to control
nano-object growth. The data obtained must be taken into account for the storage of silver
salt and nanocomposite substances for biomedical purposes; they could also be used for
the development of new approaches for the utilization of such substances in nanomedicine.
In addition, such evolution processes can be used to produce immobilized silver-containing
polymer coatings.
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