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Abstract
Large numbers of statistically significant associations between sentinel SNPs and case-control status have been replicated by
genome-wide association studies. Nevertheless, few underlying molecular mechanisms of complex disease are currently
known. We investigated whether variation in binding of a transcription factor, the vitamin D receptor (VDR), whose activating
ligand vitamin D has been proposed as a modifiable factor in multiple disorders, could explain any of these associations. VDR
modifies gene expression by binding DNA as a heterodimer with the Retinoid X receptor (RXR). We identified 43,332 genetic
variants significantly associated with altered VDR binding affinity (VDR-BVs) using a high-resolution (ChIP-exo) genome-wide
analysis of 27 HapMap lymphoblastoid cell lines. VDR-BVs are enriched in consensus RXR::VDR binding motifs, yet most fell
outside of these motifs, implying that genetic variation often affects the binding affinity only indirectly. Finally, we compared
341 VDR-BVs replicating by position in multiple individuals against background sets of variants lying within VDR-binding
regions that had been matched in allele frequency and were independent with respect to linkage disequilibrium. In this
stringent test, these replicated VDR-BVs were significantly (q < 0.1) and substantially (>2-fold) enriched in genomic intervals
associated with autoimmune and other diseases, including inflammatory bowel disease, Crohn’s disease and rheumatoid
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arthritis. The approach’s validity is underscored by RXR::VDR motif sequence being predictive of binding strength and being
evolutionarily constrained. Our findings are consistent with altered RXR::VDR binding contributing to immunity-related dis-
eases. Replicated VDR-BVs associated with these disorders could represent causal disease risk alleles whose effect may be
modifiable by vitamin D levels.

Introduction
Genetic variants can alter transcription factor (TF) binding,
chromatin status and gene expression (1–3) and can be explana-
tory of disease susceptibility variation. Rather than residing in
protein-coding sequence, the majority (approximately 93%) of
disease- or trait-associated variants lie in non-coding sequence
(4). Furthermore, non-coding variants in regulatory elements
explain 8-fold more heritability of complex traits than protein-
coding variants (5). If we are to better understand the mechan-
istic bases to complex disease (and their interaction with
environmental factors) then we will need to understand how
sequence differences in TF binding sites (TFBSs) across multiple
genotypes contribute to disease susceptibility. Variations in TF
affinities will then need to be cross-referenced not just with
the sentinel variant from genome-wide association studies
(GWASs), which has a very low probability (�5%) of being causal
and is on average 14 kb from the true causal variant (6), but also
with all other variants with which it lies in strong linkage dis-
equilibrium (LD). True causal variants will be enriched in
cis-regulatory elements, especially in enhancers and, to a lesser
extent, in gene promoters (6). These elements are often active
in only a few cell types (7) and at limited developmental time
points (8), which provides an opportunity for relating genetic
variation — via molecular observations (TF binding differences)
— to cellular or organ-based aetiologies.

Understanding complex disease will also need the deter-
mination of how functional genetic variants interact with en-
vironmental factors. One such factor is Vitamin D, a class of
fat-soluble secosteroids that enhance intestinal absorption of
dietary minerals, which are synthesised in the skin upon expos-
ure to sunlight. Many observational studies have yielded associ-
ations between low serum concentrations of 25-hydroxyvitamin
D [25(OH)D] and the risks of developing diverse diseases (9,10).
However, Mendelian randomisation studies, for example on sus-
ceptibility to multiple sclerosis (11) and all-cause mortality (12)
have indicated a causal role for this hormone. Identifying a mo-
lecular basis to these statistical associations would also indicate
a direct causal role for vitamin D levels in these diseases.
Vitamin D signalling occurs principally following the binding of
calcitriol, the active form of vitamin D, to its cognate nuclear vita-
min D receptor (VDR) which binds DNA in a heterodimer with the
Retinoid X receptor (RXR (13)). We previously have shown that
VDR binding in lymphoblastoid cell lines (LCLs) occurs at 2,776 lo-
cations and preferentially (>2-fold) within intervals genetically
associated with diseases, such as Crohn’s disease and Multiple
Sclerosis (14). On one hand, these enrichments could indicate a
direct modifying effect of VDR-binding on disease risk. On the
other hand, they could, more trivially, reflect a general associ-
ation between regulatory regions and disease-associated gen-
omic intervals. These enrichments of VDR binding within these
intervals also are not informative of whether altered VDR binding
to DNA functional elements explains genetic contributions to dis-
ease risk. If this is the case, we then also wish to determine
whether it is a gain or loss of VDR binding that causally increases
disease risk.

In this study, we inferred VDR-binding sites using ChIP-
exo (chromatin immunoprecipitation combined with lambda
exonuclease digestion followed by high-throughput sequencing
(15,16)) from each of 27 LCL samples using three complementary
approaches. The first ‘peak-calling’ method models the vari-
ation in read density. The second and third approaches predict
VDR-binding sites using genetic variation to explain differences
in VDR-binding affinity, either by quantitative trait loci associ-
ation testing (‘QTL’) across all samples or by allele-specific bind-
ing (‘ASB’) analysis of allelic imbalance based on read depth at
sites with heterozygous single nucleotide variants. Sequence
variants were identified that both alter VDR binding and have
been statistically associated by GWAS with altered risk for par-
ticular diseases (or are in strong LD with such variants). These
are excellent candidates for sequence variants that, through
their alteration of VDR binding, directly alter disease suscepti-
bility. Compared against a background of all VDR-binding sites,
we found that human variants associated with variable VDR-
binding are enriched (by up to 2-fold) in genomic intervals pre-
viously associated with particular traits, including some auto-
immune diseases.

Results
ChIP-exo yields finely resolved VDR binding peaks
genome-wide

Calcitriol–stimulated lymphoblastoid cells for 30 HapMap sam-
ples were grown and prepared for ChIP essentially as described
previously (14) with modifications for ChIP-exo (15,16)
(Methods; Supplementary Material, Table S1). In total, 27 sam-
ples successfully passed quality checking (Supplementary
Material). Unlike for data from the more traditional ChIP-seq ap-
proach, analysis of ChIP-exo data has yet to become standar-
dised. We thus undertook an in-depth study using contrasting
approaches to modelling the ChIP-exo data background, to han-
dling duplicate reads, to performing cross-correlation analyses
and to calling peaks; these approaches are discussed in detail in
the Supplementary Material (see also Supplementary Material,
Figs S1 and S2, Tables S2–S9).

VDR peaks were both highly reproducible between samples,
with 15,509 intervals containing peaks called in at least 3 sam-
ples (CPo3 peak set) (Fig. 1A and B; Supplementary Material, Figs
S3 and S4), and highly concordant with our previously pub-
lished VDR ChIP-seq data for calcitriol-stimulated LCLs (CPo3:
76.3%; Fig. 1C; Supplementary Material, Table S11) (14). For
peaks identified in both experiments, binding intervals were
considerably better resolved (typically >5-fold) using ChIP-exo
(Supplementary Material, Fig. S2A, pairwise Kruskal-Wallis
Test, P<0.001 ).

As expected, VDR binding peaks occurred preferentially
at protein coding transcriptional start sites (TSS) (Fig. 1D)
and within regions of open chromatin (at LCL DNase 1 hyper-
sensitivity sites, DHS), especially for those observed repeatedly
(Supplementary Material, Figs S5 and S6). VDR binding
peaks were significantly concentrated within proposed func-
tional elements, specifically regions of high regulatory factor
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binding (HOT regions (17) and clustered TF binding sites from
ENCODE), active promoters, enhancers and insulators (Fig. 1E;
Supplementary Material, Fig. S7) and previously reported
GWAS disease loci, principally for autoimmune disorders
(Supplementary Material, Fig. S8). Notably, this latter observation
could reflect a causal effect in which VDR-binding influences
disease susceptibility and/or with gene loci being correlated non-
causally with both disease susceptibility intervals and VDR bind-
ing sites.

VDR binding motifs occur preferentially in enhancers

De novo motif analyses of peaks within ChIP-exo VDR binding
intervals revealed motifs strongly resembling those for the
RXR::VDR DR3 heterodimer (18,19) (Fig. 2A; Supplementary
Material, Fig. S9A and Table S12). For example, 9,899 (63.8% of
the CPo3 set) instances of this DR3 heterodimer motif occurred
in binding sites (PScanChIP (20), score >0.7). 874 instances of the
monomeric VDR motif were also identified in these peak inter-
vals (Supplementary Material, Fig S9B; PScanChIP score¼ 1)
which are known to have limited affinity for functional dimeric
nuclear hormone receptor complexes (18). The heterodimeric
DR3 motif was strongly over-represented (Supplementary
Material, Table S12) both locally (in the peak sequences, com-
pared to neighbouring regions) and globally (in the peak regions,

compared to LCL DHS sites (20)) and was significantly centrally
enriched in the binding regions (Fig. 2A).

VDR binding sites could be separated into functionally dis-
tinct classes based on the presence of RXR::VDR DR3-like motifs.
Class I sites contain strong DR3-like motifs (top 20% of the
PScanChIP score distribution, 3,094 regions, Supplementary
Material, Fig. S10A) and tend to be located away from genes’
transcriptional start sites (TSSs) and yet close to genes involved
in immune response processes (Fig. 2B and C). Class I VDR bind-
ing sites show the greatest significance of proximity to genomic
regions associated with cancer and autoimmune diseases
(Fig. 2C). We compare these to Class II sites which contain only
weak or no DR3-like motifs (bottom 20% of PScanChip scores,
3,102 regions, Supplementary Material, Fig. S10A) (Fig. 2B and
D). Class I binding events occur preferentially in strong or weak
enhancers defined by ENCODE, rather than in promoters
(Supplementary Material, Fig. S10B and C).

Thousands of variants explain differential VDR binding

We next used the QTL and ASB methods to explain differences
in VDR binding affinity (Supplementary Material). The QTL ana-
lysis used Bayesian regression modelling of variants underlying
binding peaks (21,22) (Supplementary Material, Tables S13 and
S14, Supplementary Material, Figs S12–S15). The ASB analysis of
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ping ChIP-exo peaks across 27 LCL samples (log scale). Highlighted rows indicate numbers of peaks called in at least three (CPo3), ten (CPo10) or twenty (CPo20) samples.

(B) Normalised peak read depths (63,62,78) (Supplementary Material) are concordant between samples. VDR ChIP-exo peak binding affinity heatmap, showing pair-

wise binding affinity correlation among all 27 sample pairs. (Inset) histogram of correlation counts. (C) 50-fold enriched overlap between CPo3 peaks and the consensus
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allelic imbalance is based on read depth at heterozygous single-
nucleotide variants (23) and uses sample-specific maternal and
paternal reference maps, which we corrected for unannotated
copy number variation and from which we excluded variants
in ENCODE blacklisted repeat regions (24). The two methods’
variants associated with differences in VDR binding (VDR-
Binding Variants, VDR-BVs) were annotated and prioritised
based on the guidelines proposed by (25) and related algorithms
(Funseq2, (26)).

We report a total of 43,332 VDR-BVs. Of these, only 6.6–10.5%
(2,867 or 4,447) lie within (or ‘hit’) RXR::VDR consensus motifs
(Pscanchip score > 0.7 or> 0.5, respectively). This could be ex-
plained, in part, by variants that alter DNA-binding affinity either
for other subunits of a larger multi-molecular complex (‘collab-
orative binding’ (27)) or for factors that inhibit RXR::VDR binding.

Consequently, we next considered whether a sequence vari-
ation in motifs for potential binding cofactors of RXR::VDR could
explain the remaining > 90% of binding variation. We found that
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position weight matrices for 26 additional TFs (Supplementary
Material, Tables S15 and S16) were significantly enriched (P<0.01)
(i) relative to both open chromatin genome-wide and chromoso-
mally adjacent regions (< 150bp), and/or (ii) at the peak sum-
mits within VDR-BV intervals (Pscanchip score > 0.5 or 0.7;
Supplementary Methods). Virtually all (84.1–88.3%) of binding
variation could be explained by VDR-BVs lying within a RXR::VDR
consensus motif, or within one or more of these 26 additional
motifs (Pscanchip score > 0.7 or> 0.5). These are upper-bound
values because of the inaccuracy of motif prediction and because
not all variants lying in motifs will alter binding affinity.

Functional annotation of VDR-BVs

To begin to understand whether VDR-BVs could contribute to
particular human diseases, we first considered their enrichment
in relevant genomic annotations. We were interested in
whether these variably-bound sites are enriched relative to a
background of all VDR binding regions genome-wide so that the
non-uniform chromosomal distribution of binding sites is
accounted for. We chose for our null expectation all variants
that were tested for differential binding within replicated (CPo3)
VDR binding peaks (Supplementary Material). Relative to this
stringent background, VDR-BVs are 20–40% enriched within en-
hancers but not within promoters (Fig. 3A). These patterns of
enrichment are reinforced when we stringently select only the
most significant VDR-BVs (VDR-sBVs, Supplementary Material,
Fig. S16A; AlleleSeq FDR � 0.01; 6,715 VDR-BVs) or the 357 recur-
rent VDR-BVs that are called at the same position in multiple

samples (VDR-rBVs, Supplementary Material, Fig. S16D). We
conclude that VDR-BVs are not uniformly distributed among all
VDR binding genomic intervals, and are especially frequent in
enhancer regions manifested in LCLs.

VDR-BVs occurred 60% more frequently in RXR::VDR motifs
within replicated (CPo3) VDR binding peaks and 120% more fre-
quently in strong (class I) RXR::VDR motifs in the same regions
(Fig. 3B). Again, these enrichments strengthened substantially
for VDR-sBVs or VDR-rBVs (Supplementary Material, Fig. S16B
and E, respectively).

We then considered whether VDR-BVs are significantly en-
riched within LCL expression QTLs (eQTLs) relative to 1000
Genomes variants under VDR ChIP-exo pileups tested for VDR
binding variation potential (Supplementary Material). In addition,
these background variants were matched by derived allele fre-
quency and LD-dependence confounders (Methods). We also took
care to only consider variants that do not share strong linkagedis-
equilibrium (32,183 VDR-BVs, 5,808 VDR-sBVs and 341 VDR-rBVs.)

VDR-BVs were enriched with dsQTLs (1.4-fold) and eQTLs (1.1–
1.2-fold; Fig. 3C) particularly for the more stringent VDR-BVsubsets
(Supplementary Material, Fig. S16C and F). The enrichment in
eQTLs was confirmed using an independent eQTL resource
(GEUVADIS LCL eQTLs (28); Supplementary Material).

Complex trait-associated variants influence
VDR binding

To investigate whether susceptibility to specific diseases could
be influenced by VDR-BVs, we considered their locations
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Figure 3. Genomic association testing of VDR-BVs with functional annotation. VDR-BVs are enriched at enhancers, in RXR::VDR DR3-type motifs, and in LCL eQTLs.

(A) Enrichment of VDR-BVs within ENCODE chromatin state segmentation tracks for LCL NA12878, TF-dense regions (HOT (17) and ENCODE clustered TF binding sites)

and DNase hypersensitive areas (ENCODE). (B) Enrichment of VDR-BVs in VDR consensus motif intervals present in VDR CPo3 binding regions. (C) Enrichment of VDR-

BVs at DNase-QTLs and eQTLs from the Pritchard resource and CEU/YRI LCL eQTLs from the GEUVADIS resource. Significant enrichments are indicated using blue

histogram bars (f.c.¼ fold change of observed versus expected overlaps; FDR q<0.1; numbers in a box close to each bar indicate ‘observed [expected]’ overlap counts;

light grey bars indicate lack of significance). For A, enrichments shown are above-and-beyond the previously observed (Figure 1E) enrichments of VDR CPo3 peaks in

the same functional annotation classes (relative to a background of 20,330 1000 Genomes SNPs in CPo3 VDR binding regions). For B, enrichments are relative to a back-

ground of 114,155 1000 Genomes variants lying under VDR ChIP-exo read pileups (� 5 reads) which had been tested as potential VDR binding affinity modifiers. This

background was further corrected for the analyses in C, were only LD-independent foreground VDR-BVs were tested and 10,000 DAF-matched random background sets

were extracted with replacement from the main set of 114,155 background variants.
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relative to GWAS variants significantly associated with 472 di-
verse diseases or traits from 688 studies in the largest catalogue
available (GRASP v2.0 (29)) with at least 5 associated genome-
wide significant SNPs (P<5� 10�8) (Supplementary Material). All
traits available in these catalogues were considered so as not to
bias subsequent findings. Again, we employed stringent pro-
cedures, matching variants for allele frequency and LD-
dependence and discarding VDR-BVs in the MHC region as well
as again comparing against a background of all VDR-binding re-
gions (�Test 3’, p. 34 of the Supplementary Material).

VDR-BVs were significantly and up to 2-fold enriched within
LD intervals associated with 17 diseases or traits (Fig. 4). It is
notable that these are not drawn randomly from all 472 traits
considered, but are mostly immune- or inflammatory-related
disorders, such as sarcoidosis, Graves’ disease, Crohn’s disease,
irritable bowel syndrome and type I diabetes (Fig. 4A). The most
enriched trait is Alzheimer’s disease, for which 25-hydroxyvita-
min D level is a proposed causal risk factor (30).

For the 341 VDR-rBVs, intervals from six disorders contained
more VDR-rBVs than expected from sets of DAF-matched LD-
accounted regions that bind VDR (Fig. 4B). We emphasise
that this represents a highly stringent analysis that accounts for
all known confounding effects, namely potential biases from

called VDR-binding sites, population stratification and physical
linkage.

Functional impact of genetic variation on loss or gain of
VDR binding

This evidence is consistent with altered RXR::VDR binding con-
tributing to immunity-related diseases. Nevertheless, because
variants in TFBS often fail to alter binding affinity and/or have
no measurable effect on gene expression levels (31,32), we
needed to demonstrate that VDR-BVs are functional, specifically
that they influence gene expression and have been negatively
selected over evolution (33). As expected if they are enriched in
functional variants, we found that 50–100% more VDR-BVs than
random samples lie near (< 10kb) genes that are differentially
expressed, in LCLs, upon addition of calcitriol (14) (P<10�4 ,
Supplementary Methods).

Also, as expected if as a class they are functional, replicated
VDR-binding peaks exhibit variable cross-species conservation
(34) across RXR::VDR motif positions (Supplementary Material,
Fig. S17A and B). This signature of uneven selection across
the DR3 motif is evident for class I VDR binding sites
(Supplementary Material, Fig. S17C and D; Kruskal Wallis test,
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Figure 4. VDR-BVs are enriched in GWAS LD blocks for autoimmune, inflammatory and other diseases. (A,B) Traits and diseases showing enrichment of VDR-BVs (A) or

VDR-rBVs (B). Diseases/trait associations were acquired from the GRASP catalog v2.0 (29). Statistical association was computed between VDR-BVs and strong-LD

(Supplementary Material) intervals around genome-wide significant (P<5�10�8) disease tag-SNPs from the GRASP catalog. All available GRASP diseases and traits rep-

resented by at least 5 SNPs were analysed and those showing significant enrichment of VDR binding beyond a 1% FDR threshold were retained; disease associations

supported by only 1 VDR-BV were discarded (full data are presented in the Supplementary Material). The sizes of black squares indicate the statistical significance of

enrichments.
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P¼ 1.9� 10�11 and post-hoc pairwise Kruskal Wallis compari-
sons), but not in class II sites (Kruskal Wallis test, P¼0.14) con-
sistent with the DR3 heterodimer-binding motif regulating
transcription.

Next, we assessed the impact on the VDR binding affinity of
VDR-BVs with respect to their location within the consensus
DR3-type motif (JASPAR database, Fig. 5), the transcriptionally
active binding site motif for the RXR::VDR heterodimer (35–37).
Mapping of allele-specific ChIP-exo reads to multiply replicated
VDR binding regions (CPo3 peaks) was highly predictive of
whether variants substantially alter (‘break’) functional motifs.
For 89% of observations, the change in the strength of the VDR
binding motif correctly predicts the direction of VDR binding af-
finity change (Fig. 5A), a proportion that rises to 100% in class I
VDR binding sites (Supplementary Material, Fig. S18A). Motif

breaks do not favour 5’ RXR over 3’ VDR hexamers (Fig. 5A,
Wilcoxon rank sum test, P¼0.71), but especially impact con-
served G and C nucleotides (positions 2, 5, 11 and 14), and a
T nucleotide (position 13). Notably fewer events occur at the
near-essential T nucleotides at positions 4 and 12. Interestingly,
in class I sites there are no VDR-BVs disrupting the T nucleotide
at position 12 (Supplementary Material, Fig. S18A) which could
reflect either low mutation rates (mutational ‘cold spots’) or
strong purifying selection against deleterious nucleotide substi-
tutions at these binding sites (38).

To distinguish these possibilities we next compared the
population frequencies of alleles associated with either histor-
ical Loss Of Binding (LOB) or Gain of Binding (GOB) affinity to
VDR (Methods). LOB VDR-BVs cause significantly stronger ef-
fects when within either 5’ or 3’ hexamer than within the DR3
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Figure 5. Genetic variation modulating VDR binding affinity in LCLs within the canonical RXR::VDR heterodimeric binding motif. The figure shows a genome-wide

quantification of the effect of genetic variation on VDR binding, based on the analysis of VDR-BVs in CPo3 binding peaks which hit the canonical RXR::VDR DR3 hetero-

dimeric consensus motif (motif shown in B, JASPAR database, (19)). (A) Distribution across the RXR::VDR motif of VDR-BVs which cause significant motif disruption (sig-

nificance assessed via FunSeq2 using TFMPvalue (82), with default threshold P<4�10�8) and quantification of the concordance between directionality of VDR PWM

disruption and directionality of resulting VDR binding affinity variation. 102/115 (89%) VDR-BVs in CPo3 VDR peaks that significantly break the RXR::VDR motif predict

the direction of VDR binding affinity change. (C,D) Genome-wide quantification of the phenotypic effect of all VDR-BVs intersecting the RXR::VDR motif (including

those which do not generate a motif break at the above significance level). The vertical axis (Magnitude of VDR binding affinity change) indicates the fold change of read

depth of the ancestral versus the derived allele (C) or derived versus the ancestral allele (D). (C) Impact on VDR binding affinity of Loss of Binding (LOB, orange dots)

VDR-BVs and Loss of Binding VDR-BVs which test for significant RXR::VDR motif break (red dots). (D) Impact on VDR binding affinity of Gain of Binding (GOB) VDR-BVs

(blue dots). Nucleotide position has a significant influence on LOB (Kruskal-Wallis rank sum test, x2(14) ¼ 33.385, P<0.01 ) but not on GOB (x2(12) ¼ 17.68, P¼.12) pheno-

type magnitude. (C,D) Grey dots indicate impact on binding affinity of those 1000 Genomes variants carried by the LCL samples which do not test for significant asym-

metric binding (AlleleSeq (23), FDR threshold ¼ 0.1) and are not, therefore, VDR-BVs.
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spacer sequence (Wilcoxon rank sum test, P<0.01; GOB variants:
P¼0.11). VDR-BVs affecting one of the most highly conserved
motif positions (position 13) always result in motif-breaking
LOB effect (Fig. 5C and D; Supplementary Material, Fig. S18C and
D).

We next found that RXR::VDR motif sequences have been
under constraint during recent evolution, within the extant
human population. We did so by comparing the frequencies of
derived alleles (Derived Allele Frequency [DAF] test) for LOB or
GOB VDR-BVs in either Northern and Western European (CEU)
or Yoruban (YRI) populations. In the absence of demographic
confounders, stronger purifying selection is implied by an ex-
cess of low population frequency variants in one set of variants
over another (39).

We detected significant increases in DAF distribution for
GOB over LOB VDR-BVs, both for CEU (Fig. 6C, top-left panel)
and YRI (Fig. 6C, bottom-left panel) cohorts. Class I binding site
VDR-BVs exhibited significant differences in GOB versus LOB
DAF distributions (Supplementary Material, Fig. S19; P<0.05 for
both CEU and YRI). By contrast, variants in RXR::VDR hexamers
not assigned as VDR-BVs showed no significant difference in
GOB versus LOB DAF distributions (Fig. 6C, top-right and

bottom-right panels). Significant differences between GOB and
LOB DAFs were attained even when observing the RXR and VDR
motif hexamers separately, and in both sub-populations
(P<0.012). Consequently, LOB variants are under substantially
stronger purifying selection than are GOB variants. This is an
important finding because it indicates that reduced binding of
VDR at these genomic positions, and presumably reduced vita-
min D levels, are commonly deleterious.

Discussion
We have demonstrated how genetic variation alters the binding
affinity of the vitamin D receptor (VDR), a member of the nu-
clear receptor family of transcription factors. Genetic variants
significantly associated with immune and inflammatory dis-
ease were found to disrupt VDR binding and to be located pref-
erentially within enhancer regions (Fig. 3), in line with a recent
analysis of causal immune disease-related variants (6). The
study benefited from the �5-fold greater spatial resolution and
signal-to-noise ratios provided by the ChIP-exo assay.

In its best studied model of allosteric modulation, the
RXR::VDR heterodimer binds to DNA and enhances
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Figure 6. Evolutionary conservation of VDR-BVs at RXR::VDR consensus motifs. The diagrams show distributions of the Derived Allele Frequency (DAF) for variants in

RXR::VDR consensus motifs within reproducible CPo3 binding peaks. DAF values are separated by ethnicity (A and C: CEU; B and D: YRI); variants are separated by their

effect on VDR binding affinity (A and B: VDR-BVs; C and D: 1000 Genomes variants carried by the LCL samples which do not test for significant asymmetric binding and

are not, therefore, VDR-BVs). Within each of the four panels, variants are split in two groups, based on their effect on VDR binding affinity direction (whether GOB or

LOB). For all quadrants, only DAFs for variants hitting hexamer positions (i.e. hitting either the RXR recognition element at positions 1-6 or the VDR recognition element

at positions 10-15) in the RXR::VDR motif are shown. An asterisk indicates significance (non-parametric Wilcoxon rank sum tests, a¼0.05). A: Wilcoxon rank sum test,

P¼2.8�10�4. B: Wilcoxon rank sum test, P¼4.6�10�5. C and D: P¼0.55 and P¼0.14, respectively. ns¼not significant.
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transcription via response elements that typically consist of
two hexameric ((A/G)G(T/G)TCA) half-sites, with RXR and
VDR DNA binding domains occupying the upstream and down-
stream half-site, respectively (40). This DR3 motif, which we
previously identified using ChIP-seq data from two calcitriol-
activated CEU LCLs (14), was also the predominant VDR binding
interface in calcitriol-activated LCLs in the present ChIP-exo
study. We identified strong enrichment of VDR binding within
enhancers, with stronger enrichments associated with the
more stringent subsets of VDR-BVs (Figs 1 and 3). Whilst VDR
binding occurs preferentially within promoters, these inter-
actions are only rarely associated with RXR::VDR DR3 motifs,
and may be mediated by additional DNA-binding co-factors,
including CTCF, and might reflect unproductive binding to open
chromatin. In contrast, those VDR binding sites containing
strong instances of the RXR::VDR DR3 motif were particularly
enriched in enhancers, and also near to genes involved in im-
munity processes and related diseases (Fig. 2). VDR thus is ex-
pected to exert a substantial effect on the biology of the
immune system as a sequence-specific enhancer regulator.

Most remarkably, we found variants weakening or strengthen-
ing the RXR::VDR PWM score to be highly predictive of the loss or
gain of VDR binding affinity (Fig. 5). Furthermore, the VDR-bound
RXR::VDR motif shows evidence of levels of sequence conserva-
tion across vertebrate evolution that mirror its information con-
tent, and loss of VDR-binding variants over modern human
evolution has occurred under stronger purifying selection than
the gain of binding variants (Fig. 6). Together, these results imply
that VDR-binding and thus presumably vitamin D levels, have in
general been protective of disease.

Our study will have underestimated the true extent of regu-
latory variation at VDR binding sites. This is because the asym-
metric binding analysis (23) by definition can only test variants
which are heterozygous for a given LCL sample: therefore, true
positive VDR-BVs will be unobserved if all LCL samples we con-
sidered are homozygous. Similarly, not all of the required three
biallelic genotypes will have been present in these samples for
the regression-on-genotype analysis (22,21). Consequently, a
larger scale study would be expected to show improved power
to detect VDR-BVs.

At least 90% of VDR-BVs lay outside of RXR::VDR DR3 motifs.
The majority of variable binding could occur, as with other TFs
(41), at weak or non-canonical binding motifs, or its affinity may
alter because of genetic disruption to a cofactor binding site
(42). Another explanation is that VDR-BVs commonly exert their
effect by altering the DNA conformation of regions flanking the
core binding site (43). Nevertheless, our de novo motif discovery
identified several proteins as potential RXR::VDR cofactors,
whose altered DNA-binding affinity could influence VDR bind-
ing. Over-representation of motifs in VDR peaks has been
observed before, for example in a recent study of VDR binding
in monocytes and monocyte-derived inflammatory and tolero-
genic dendritic cells (44). Direct interaction between VDR and
CREB1 has been reported previously (45) as have functional
interactions between vitamin D/VDR and oestrogen metabolism
and MYC proteins (46,47). Co-occurrence of GABPA and ESRRB
motifs with VDR-binding sites had been reported previously
(48). ZNF423 is not known to bind VDR yet it might do so indir-
ectly because it physically associates with its heterodimer part-
ner, RXRa (49).

Our finding that VDR-BVs are significantly enriched within
eQTLs (Fig. 3C) is intriguing because the eQTLs were inferred
from LCLs not treated with calcitriol, and implied that these en-
hancers’ activities may not be entirely vitamin D-dependent in

these cells. Nevertheless, there was no clear concordance or dis-
cordance between the direction of change of VDR binding at
VDR-BVs (in calcitriol-treated LCLs) with the direction of change
of gene expression in calcitriol-minus human LCLs reported for
the GEUVADIS eQTL variants (data not shown). This, and the
lack of enrichment of the DR3 motif in the VDR binding sites for
the basal (unstimulated) state in LCLs (14) indicate that a
calcitriol-activated LCLs’ study at a similar scale to those em-
ploying unstimulated LCLs (28) will be required to fully resolve
this issue.

Our most important results derived from a conservative ana-
lysis of a stringent set of replicated binding variants (Fig. 4B).
From this, we report a significant excess of VDR-rBVs coincident
or in strong LD with genome-wide significant GWAS tag vari-
ants for six disorders, including three that are autoimmune dis-
orders (inflammatory bowel disease, Crohn’s disease and
rheumatoid arthritis) whilst a fourth, endometriosis, is fre-
quently comorbid with autoimmune disorders (50). Deficiency
of serum 25(OH)D levels is associated with cardiovascular dis-
ease risk factors in adults (10), while the association between
vitamin D levels and coronary artery disease, as for many dis-
orders, is debated (51). These results associate a molecular phe-
nomenon, the genetic disruption of nuclear receptor binding,
with a narrow set of immune-related syndromes and diseases.

Based on the combined functional, evolutionary and GWAS-
based evidence, we propose that VDR-BVs represent good tar-
gets for subsequent experimental validation using, for example,
genome editing in cells. It is also expected that only a small mi-
nority of genes bound by VDR will be altered in expression. A
large-scale expression QTL study in calcitriol-activated LCLs
will thus be required to further narrow down the set of candi-
date disease genes whose regulatory elements are variably
bound by VDR and which are differentially expressed across the
human population.

We have provided the first quantitative association-based
analysis to explain the genetic effect on binding affinity vari-
ation for a nuclear receptor, and to propose a mechanistic
model for disease susceptibility. Our results support the hy-
pothesis that DNA variants altering transcription factor binding
at enhancers contribute to complex disease aetiology and sug-
gest that altered VDR binding, and by inference variable vitamin
D levels, explain, in part, altered autoimmune and other com-
plex disease risk.

Materials and Methods
VDR ChIP-exo sample preparation

Calcitriol stimulated lymphoblastoid cell lines (LCLs) were
grown and prepared for ChIP as described previously with some
modifications (52) and adapted for ChIP-exo (15,16). LCLs are
known to be a good model of primary B-cells (53) and we chose
lines from HapMap, a unique resource whose genomes have al-
ready been sequenced. Briefly, cells were incubated in phenol
red free RPMI-1640, 10% charcoal stripped FBS, 2mM glutamine-
L, penicillin with streptomycin solution (100 U/mlþ 100 microG/
ml) medium at 37�C and 5% CO2. Cells were harvested after
stimulation for 36 hours with 0.1 mM calcitriol (Sigma) and cross-
linked using a 1% formaldehyde buffer for 15 minutes at room
temperature and quenched with 0.125 M glycine. Cells were
lysed and chromatin sheared by sonication into fragments of
�200–1000 bp. VDR-bound genomic DNA regions were isolated
using a rabbit polyclonal antibody against VDR (Santa Cruz
Biotechnology, sc-1008). Immunoprecipitated chromatin was
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then processed enzymatically on magnetic beads. Samples
were polished, A-tailed, ligated to sequencing library adaptors
and then digested with lambda exonuclease to remove nucleo-
tides from 5’ ends of double stranded DNA. Single-stranded
DNA was eluted and converted to double-stranded DNA by pri-
mer annealing and extension. A second sequencing adaptor
was ligated to exonuclease treated ends, PCR amplified, gel puri-
fied and sequenced. Libraries were prepared for Illumina as
described in (16).

Data processing and peak calling

Full data processing steps are presented in the Supplementary
Material. Briefly, we mapped the ChIP-exo sequence reads
(Peconics Inc., USA; single-end 40bp) against the hg19 build of
the human reference genome (54) using BWA (v. 0.7.4, (55)) fol-
lowed by Stampy (v 1.0.21 (56)). We filtered the reads to retain
only uniquely mapping reads with MAPQ > 20 and removed
reads mapping to empirical blacklist regions identified by the
ENCODE consortium (24).

For peak calling, we first computed strand cross-correlation
profiles (57) of read start densities to obtain consensus esti-
mates of the ChIP-exo digested fragment sizes, which we cor-
rected for the presence of phantom peaks (58) using a
mappability-corrected approach to cross-correlation inference
(MaSC, (59)). We used the cross-correlation based estimates for the
digested fragment size as a MACS2 (version 2.0.10, (60)) input par-
ameter to obtain peak calls. Separately, to increase sensitivity, we
called peaks using GPS/GEM (v. 2.4.1, (61)) with recommended
ChIP-exo options –smooth 3 –mrc 20. We then pooled, for each
sample, the two sets of peak calls (Supplementary Material).
Finally, we used DiffBind (62) to manipulate the per-sample
merged peaksets and to obtain consensus peakset (CPo3, CPo10,
CPo20) based on an overlap threshold. To do this, we normalised
the read numbers using DiffBind’s embedded EdgeR routines,
based on the Trimmed Means of M’s (TMM) algorithm (63).

Interval overlap enrichment analysis

We used the Genomic Association Tester (64) to perform the
randomization-based interval enrichment analyses. All ana-
lyses were based on 10,000 randomisations over the chosen
background, and backgrounds differed depending on the spe-
cific analysis performed. All analyses accounted for genome-
wide patterns of GC content variability and, where relevant, for
uniquely mappable regions (40bp reads). For the enrichment ana-
lysis of VDR-BVs in GWAS intervals and QTLs, we used an in-
house bootstrapping pipeline to perform LD-filtering (to retain
only LD-independent foreground and background variants) and
DAF matching. Further details on annotations, background and
analytical design are provided in the Supplementary Material.

Motif discovery

Full motif analysis steps are documented in the Supplementary
Material. Briefly, we carried out de novo motif analysis using
multiple parallel approaches: MEME-ChIP (65) from the MEME
suite (66), XXmotif (67) and PScanChIP (20) from the Weeder/
MoDtools suite (68). For the MEME-ChIP and XXmotif analyses,
we used the peak intervals in CPo10 and extracted the sequence
underlying each interval 6 150bp from a repeat-masked version
of the hg19 reference (54). For the PScanChIP analysis, we used
as the input the full set of CPo3 binding regions with Jaspar PWM

descriptors, to which we added the best heterodimeric
RXR::VDR PWM found by XXmotif and the best monomeric VDR
PWM found by DREME (MEME-ChIP package). The global back-
ground chosen for the analysis consisted of built-in PScanChIP
DNase I digital genomic footprinting data for the LCL CEPH indi-
vidual NA12865. For the motif analysis at the 43,332 VDR-BVs
we used PScanChIP (20) with Jaspar PWM descriptors and a
mixed background of the promoters and LCL DNase cut sites.

Differential binding analyses

We performed both allele-specific (VDR-ASB) and regression on
genotype (VDR-QTL) differential binding analyses. Both meth-
ods start from analyses of read counts. For the VDR-QTL ana-
lysis, reads were normalised and covariant-corrected as
detailed in the Supplementary material.

For the VDR-ASB tests, we utilised the sequence composition
of ChIP-exo sequence reads overlapping heterozygous SNPs to
determine the sequences originating from each allele separately
(23,69,70) and to identify allele-specific binding events showing
a significant difference in the number of mapped reads between
parental alleles. We employed a modified version of the
AlleleSeq pipeline (23) to carry out the VDR-ASB analysis.
Briefly, we tested for significant allelic imbalance among all
read pile-ups intersecting a variant showing heterozygous
genotype, given a null hypothesis of 50% paternal versus 50%
maternal reads. We followed (23) in controlling for two major
sources of bias typically encountered when running an allele-
specific analysis of short read data: a bias due to mapping to the
reference hg19 genome (71) and a bias due to unannotated copy
number variants skewing the read counts for some of the SNPs
being tested (72). In addition, we corrected for a third source of
potential erroneous ASB SNP calls by removing any significant
allelic imbalance hypothesis falling under repeat regions con-
tained in the ENCODE blacklist data (24).

For the VDR-QTL tests, we analysed all 27 LCL samples sim-
ultaneously. We grouped the samples based on the genotypes
of the underlying variant, and carried out QTL association test-
ing between the variant’s genotype (under the assumption of an
additive genetic model (73)) and the phenotype at that location
(the VDR binding affinity based on the quantile-normalised
ChIP-exo peak size at that location). We used an in-house pipe-
line based on SNPs and indels imputed with IMPUTE2 (74) and
Bayesian regression modelling based on SNPTEST (21) and
BIMBAM (22). Bayesian methods for analysing SNP associations
are now an established tool in the GWAS analysis (75–77) and
show advantages over the use of p-values in power and the in-
terpretation (73) ) though they require tighter initial modelling
assumptions when compared to frequentist methods. For de-
tails on the underlying model and priors we refer the reader to
the Supplementary document.

Variant annotation

We annotated all variants associated with differences in VDR
binding and obtained by pooling the VDR-QTL and the VDR-ASB
variants (VDR-Binding Variants, VDR-BVs) according to the
guidelines in (25) and using a customised version of the
Funseq2 suite of algorithms (26). We added additional VDR-
centric information to Funseq2: VDR CPo3 binding regions, motif
intervals from the PScanChIP analysis for the VDR:RXR Jaspar
DR3 motif and for the DREME VDR monomer, and VDR dimer/
monomer PWM information. Gene annotation used Funseq2’s
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default (Gencode, v. 16) and the HOT annotation in Funseq was
filtered to only retain LCL HOT information. We ran Funseq
using the -m 2 -nc options so that all annotation referred to the
ancestral allele of the variant.

Availability of Data and Material
Sequencing data from this study have been submitted to the
Gene Expression Omnibus archive (GEO; http://www.ncbi.nlm.
nih.gov/geo; accession number GSE73254).
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