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Circulating tumor DNA analysis in the era of precision oncology
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ABSTRACT
The spatial and temporal genomic heterogeneity of various tumor types and 

advances in technology have stimulated the development of circulating tumor 
DNA (ctDNA) genotyping. ctDNA was developed as a non-invasive, cost-effective 
alternative to tumor biopsy when such biopsy is associated with significant risk, 
when tumor tissue is insufficient or inaccessible, and/or when repeated assessment 
of tumor molecular abnormalities is needed to optimize treatment. The role of ctDNA 
is now well established in the clinical decision in certain alterations and tumors, 
such as the epidermal growth factor receptor (EGFR) mutation in non-small cell 
lung cancer and the v-Ki-ras2 kirsten rat sarcoma viral oncogene homolog (KRAS) 
mutation in colorectal cancer. The role of ctDNA analysis in other tumor types remains 
to be validated. Evolving data indicate the association of ctDNA level with tumor 
burden, and the usefulness of ctDNA analysis in assessing minimal residual disease, 
in understanding mechanisms of resistance to treatment, and in dynamically guiding 
therapy. ctDNA analysis is increasingly used to select therapy. Carefully designed 
clinical trials that use ctDNA analysis will increase the rate of patients who receive 
targeted therapy, will elucidate our understanding of evolution of tumor biology and 
will accelerate drug development and implementation of precision medicine. In this 
article we provide a critical overview of clinical trials and evolving data of ctDNA 
analysis in specific tumors and across tumor types.

INTRODUCTION

Non-invasive circulating tumor DNA (ctDNA) 
genotyping is a cost-effective alternative to tumor biopsies 
when these biopsies are associated with significant risk, 
tumor tissue is insufficient or inaccessible, and/or serial 
assessment of tumor molecular abnormalities is needed to 
optimize treatment. ctDNA analysis of epidermal growth 
factor receptor (EGFR) in non-small cell lung cancer 
(NSCLC) and v-Ki-ras2 kirsten rat sarcoma viral oncogene 
homolog (KRAS) in colorectal cancer (CRC) is well 
established [1, 2]. However, validation studies of the clinical 
relevance of ctDNA in other tumor types [3] are lacking.

In this systematic review, we summarize the 
published trials of ctDNA analysis by tumor type and 
across tumor types, and we discuss the role of ctDNA 
analysis in selecting patients for enrollment in clinical 
trials and in guiding targeted therapy. The potential use 
of plasma genotyping in cancer is illustrated in Figure 1.

Non-small cell lung cancer

The increasing number of “targetable” genotypes in 
NSCLC and understanding of tumor resistance to targeted 
therapies has led to rapid, non-invasive, longitudinal assays 
to repeatedly assess tumor biology throughout treatment.
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ctDNA for NSCLC genotyping in advanced-stage 
NSCLC

The combination of more targetable genotypes and 
minimally invasive diagnostic tools (e. g. endobronchial 
ultrasound) that result in small specimens [4–6] has 
led to the development of alternative, noninvasive 
testing methods, such as the U. S. Food and Drug 
Administration (FDA)-approved targeted ctDNA assay 
(Cobas) for EGFR genotyping or the CLIA (Clinical 
Laboratory Improvement Amendments)-certified plasma 
droplet digital polymerase chain reaction (ddPCR) assay. 
ddPCR is a highly sensitive (EGFR exon 19 deletion, 
82%; EGFR L858R mutation, 74%) and quantitative 
approach that allows for the longitudinal monitoring 
of treatment response [7, 8]. Although the specificity 
of these PCR-based platforms allows for the initiation 
of EGFR-targeted therapy on the basis of positive 
plasma testing, negative results must be confirmed 
by tumor tissue genotyping [9]. While most clinically 
validated assays are focused on a single predefined 
gene, next-generation sequencing (NGS) of ctDNA can 
broadly interrogate the tumor molecular profile across 
a range of genes and variant types. Hybrid capture-
based NGS platforms have already been evaluated in 
NSCLC [10–12]. Overall, 75% of patients with NSCLC 
harbor potentially actionable genomic aberrations in 
ctDNA, although concordance with tissue is suboptimal 
(specificity, 63.5%) [11, 13–15].

Tumor NGS can help monitor tumor dynamics and 
detect acquired ALK resistance mutations in crizotinib-
resistant patients [14]. Our group has studied various NGS 
methods and found favorable diagnostic accuracy using a 
bias-corrected targeted ctDNA NGS (2/3 ALK; 2/3 RET; 
2/2 ROS1) [16] or using amplicon-based sequencing (6/7 
ALK; 2/2 ROS1) [17]. A larger prospective study is needed 
to determine the most reliable method for identifying 
targetable fusions in ctDNA.

At disease progression, ctDNA constitutes a 
promising alternative to tissue biopsies and is a well-
established approach in the EGFR setting. Plasma 
genotyping is widely used as a screening test for detection 
of the EGFR T790M resistance mutation, with tumor 
biopsy needed only if the result is negative [1, 17, 18]. 
It remains unknown, however, if treatment should be 
adjusted on the basis of isolated plasma variations. 
Ongoing trials, such as the (APPLE)-EORTC study 
[19], will help determine the value of ctDNA analysis in 
treatment selection.

Clinical trials that validated the use of plasma 
NGS to guide therapy have demonstrated encouraging 
results [20–22]. In 323 patients with NSCLC, the 
addition of ctDNA analysis to tissue NGS analysis 
increased the identification of driver alterations and 
resulted in an 85.7% rate of objective response or stable 
disease [20].

Screening and minimal residual disease in early-
stage NSCLC

The National Lung Screening Trial [23] and the 
Dutch-Belgian Randomized Lung Cancer Screening Trial 
(NELSON) [24] demonstrated that low-dose computed 
tomography (CT) screening reduces the mortality rate in 
lung cancer. Benign lung nodules (false positives) generate 
invasive procedures. Deep ctDNA sequencing is a more 
specific and potentially complementary approach to low-
dose CT screening in lung cancer but is limited by the 
low or absent DNA shed of early-stage tumors [25, 26]. 
Combining ctDNA with other circulating biomarkers such 
as transcriptomics (ctRNA) could improve sensitivity, 
while white blood cell sequencing to eliminate “false-
positive” variants linked to clonal hematopoiesis may 
increase specificity [27–29].

ctDNA analysis is also used to detect minimal 
residual disease (MRD) with plasma genotyping. Tumor 
molecular profiles from previous biopsies are used to 
build personalized PCR-based assays with improved 
sensitivity and specificity. In the TRACERx study, 
ctDNA from 100 patients was analyzed at the time of 
diagnosis and followed after definitive treatment. Patient-
specific multiplex PCR assays (threshold: ≥2 variants 
for positivity) demonstrated high sensitivity (93%) and 
specificity for MRD detection [26, 30].

In another study, ctDNA was analyzed using cancer 
personalized profiling by deep sequencing (CAPP-seq) in 
255 samples from 40 patients with stage I–III lung cancer 
(stage II–III, n = 33) treated with curative intent and 54 
healthy adults. It found that in 94% of patients with stage 
I–III lung cancer with disease recurrence, ctDNA was 
detectable in the first post-treatment blood sample and 
preceded radiographic progression by 5.2 months (median), 
indicating that detection of post-treatment ctDNA should 
prompt treatment tailored to the patient’s ctDNA analysis 
to prevent disease progression [31].

Gastrointestinal tract cancers

Esophageal carcinoma
ctDNA analysis of patients with squamous cell 

carcinoma (SCC) of the esophagus with the use of a 90-
gene panel was associated with sensitivity of 94% and 
75%, respectively, when detecting ≥1 or ≥2 mutant genes, 
suggesting that ctDNA analysis can help monitor treatment 
effect in these patients [32]. In multivariate analysis, a higher 
plasma cyclin D1 (CCND1; 11q13) to dopamine receptor 
D2 (DRD2; 11q22-23) ratio (C/D ratio) was significantly 
correlated with worse prognosis [33]. In another study, 
high concordance of multiple somatic mutations was found 
between plasma ctDNA and tumor (primary or metastases) 
DNA (83%–100%). The allele frequencies of the mutations 
increased with tumor burden and preceded radiologic 
evidence of tumor recurrence by 6 months [34].
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In 29 patients with localized esophageal carcinoma 
treated with chemoradiotherapy, baseline ctDNA levels 
(NGS-based CAPP-seq) were correlated with metabolic 
tumor volume and squamous histology. The 2-year overall 
survival (OS) rates for pretreatment ctDNA-positive vs. 
ctDNA-negative patients were 47% and 86%, respectively 
(HR = 6.0; p < 0.05). Compared to patients with undetectable 
ctDNA, detection of ctDNA post-treatment was predictive of 
shorter event-free survival (EFS, p <  0.0001) and shorter 
time to distant metastasis (p <  0.0001) [35].
Gastric cancer

ctDNA analysis is used to detect and monitor HER2 
copy numbers in patients with gastric cancer [36]. The 
preoperative ratio of HER2 to RPPH1 (ddPCR) has been 
correlated with tumor HER2 status (p < 0.001; sensitivity, 
0.73; specificity, 0.93) [37].

In another study, the concordance rate of HER2 
amplification detected between formalin-fixed, 
paraffin-embedded (FFPE) samples vs. ddPCR and 
immunohistochemical (IHC) analysis/fluorescence in situ 

hybridization (FISH) was 92%. The concordance rate of 
FFPE with ctDNA was 62.5%. HER2 positivity by ctDNA 
analysis was associated with significantly shorter OS 
compared to HER2 negativity [38]. In late-stage gastric 
cancer, ctDNA mutations were associated with poor 
prognosis [39].

In a multiple-parallel cohort, ctDNA-guided plasma-
based digital sequencing in patients with metastatic solid 
tumors, including gastric cancer, identified somatic 
alterations in 78% of the 76 patients with gastric cancer, 
and 33% of these 76 patients had targetable alterations. 
Ten patients with gastric cancer received molecularly 
matched therapy, which resulted in response and disease 
control rates of 67% and 100%, respectively [40].
Colorectal cancer

In a prospective study of 106 patient samples of 
CRC, ctDNA analysis of KRAS and BRAF mutational 
status was compared to the analysis of tumor tissue [2]. 
The specificity and sensitivity of ctDNA were both 100% 
for BRAF V600E mutation and were 98% and 92%, 

Figure 1: Potential use of plasma genotyping in cancer. Early stage disease: Screening will require the use of large NGS panels, 
with both high sensitivity and perfect specificity. Before surgery, determination of tumor burden in plasma has the potential to help guide 
neo-adjuvant or adjuvant therapy and monitor response, using large panels or patient-specific assays based on the molecular profile of 
the tissue biopsy when available. After surgery, NGS (large gene panels or patient-specific assays) can detect MRD and guide adjuvant 
therapy (early detection) or detect relapse. Low tumor shed in plasma will be the main limitation to the integration of plasma genotyping 
in early stage disease. Advanced stage disease: At diagnosis, ctDNA can guide genotype-directed therapy (using targeted assays focusing 
on a predefined gene of interest (i. e. EGFR in NSCLC) or targeted NGS covering genes of interest). The variations in allelic fractions 
allow for monitoring of treatment response, which may be helpful for pharmacodynamics analyses in phase I studies. When acquired 
resistance to targeted therapies occurs, ctDNA can detect specific mechanisms of resistance (targeted assay like for EGFR T790M or 
targeted NGS), taking into consideration the different clones present within the primary tumor (P) and all metastatic sites (M1, M2), and 
guide treatment adjustments.
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respectively, for KRAS point mutations. Overall, ctDNA 
was detected in 100% of patients with metastatic CRC, 
suggesting that ctDNA analysis could replace tumor 
analysis in these patients [2].

ctDNA has been used to detect MRD in the adjuvant 
setting in stage II CRC [41, 42]. In a prospective study of 
230 patients, [43] the recurrence rate among patients who 
did not receive adjuvant chemotherapy was 79% (11/14) 
in patients with detectable ctDNA vs. 9.8% (16/164) in 
patients with undetectable ctDNA (HR = 18; p < 0.001). 
ctDNA detection after completion of chemotherapy was 
associated with shorter recurrence-free survival (HR = 11; 
p = 0.001) suggesting the presence of MRD [43].

The same investigators analyzed ctDNA in patients 
with stage III CRC post-operatively, during, and after 
adjuvant chemotherapy [44]. In 95 patients who received 
adjuvant chemotherapy, serial ctDNA analysis identified 
residual metastatic disease not evident on imaging 
studies [44].

In another longitudinal cohort study, ctDNA was 
used to monitor tumor burden in 21 CRC [45] patients 
with localized disease who had ctDNA analysis 3 months 
post-operatively; disease recurrence within 3 years 
occurred in all 6 patients with detectable ctDNA at 3 
months compared to 27% (4/15) of those with undetectable 
ctDNA at 3 months (HR = 37.7; p < 0.001). Of 18 patients 
who had surgical resection of liver metastases, ctDNA 
detection 3 months post-surgically predicted disease 
recurrence compared to patients with undetectable ctDNA 
and metastatic CRC (HR = 4.9; p = 0.007). Therefore, 
postoperative ctDNA detection identified patients at high 
risk of relapse [45].
Pancreatic and biliary tract carcinomas

The role of ctDNA is particularly important in 
patients with pancreatic and biliary tract carcinomas 
because biopsy samples are often inadequate for molecular 
profiling. In a prospective analysis in 26 patients with 
pancreatic (n = 18) or biliary (n = 8) cancer, tumor 
sequencing using a 54-gene panel failed in 9 patients 
(35%), and of the remaining 17 patients, 90.3% of the 
mutations detected in the tumor biopsies were also 
detected using ctDNA. The diagnostic accuracy of ctDNA 
sequencing was 97.7% (5 informative genes: sensitivity, 
92.3%; specificity, 100%) [46].

In pancreatic cancer, high ctDNA levels of KRAS 
and/or other mutations have been associated with poor 
progression-free survival (PFS) and/or OS [47, 48]. 
However, low concordance between the blood and tissue 
samples has been reported in patients with pancreatic 
ductal adenocarcinoma [49].

In a prospective study in advanced pancreatic 
cancer, ctDNA was analyzed for KRAS mutations 
using blood samples collected prior to gemcitabine or 
FOLFIRINOX (5-fluorouracil, oxaliplatin, irinotecan, 
and leucovorin) treatment and monthly during treatment 

(median follow-up, 3.7 months). Disease progression 
was more frequent in patients with ctDNA-identified 
KRAS mutations at baseline compared to KRAS-mutant-
negative patients (9/10 vs. 1/4; p = 0.01). The baseline 
ctDNA level was associated with PFS (p = 0.014) and 
OS (p = 0.01). ctDNA level changes were correlated 
with imaging studies and CA19-9 levels, indicating 
that ctDNA may be used to monitor disease activity in 
these patients [47]. In other studies, ctDNA analysis 
detected mutations in up to 48% of patients, and 
these mutations were associated with shorter OS. In 
another study, ctDNA analysis (ddPCR for rare KRAS 
mutations) detected mutations in 31% of 105 patients 
with pancreatic ductal adenocarcinoma who underwent 
pancreatoduodenectomy. Detectable ctDNA KRAS 
mutations were associated with shorter OS compared to 
patients without mutations (13.6 months vs. 27.6 months; 
p < 0.0001) [48]. Other investigators using ctDNA 
analysis detected KRAS among other mutations (TP53, 
SMAD4, STK11, PIK3CA, NRAS) using ctDNA in 48% 
of patients with advanced pancreatic adenocarcinoma. 
These mutations were strongly correlated with shorter OS 
compared to OS of patients with undetectable mutations 
(6.5 vs. 19.0 months; p < 0.001) [50].

ctDNA analysis is a promising prognostic marker 
in early-stage pancreatic cancer that could also help 
guide treatment after Whipple surgery [51]. ctDNA 
analysis of pre- and post-operative plasma samples 
and tumor tissue (n = 42) using PCR-based SafeSeqS 
assays to identify KRAS mutation (codons 12, 13, and 
61) identified RAS mutations in 90.5% of tumor samples 
and in 62.2% of 37 pre-operative and 37.1% of 35 post-
operative plasma samples. ctDNA detection was an 
independent factor predicting shorter recurrence-free 
survival compared to undetectable ctDNA preoperatively 
(10.3 months vs. not reached, HR = 3.4; p = 0.005) and 
postoperatively (5.4 months vs. 17.1 months, HR = 5.4; 
p < 0.0001) [51].

In ctDNA promoter hypermethylation analysis 
of a selected gene panel, the number of methylated 
genes was significantly higher in patients with 
pancreatic adenocarcinoma than in healthy individuals 
or patients with acute pancreatitis (mean, 8.41 vs. 4.74, 
respectively; p < 0.001), suggesting that ctDNA promoter 
hypermethylation may be used for diagnostic purposes in 
pancreatic adenocarcinoma [52].

ctDNA analysis can also inform the diagnosis, 
prognosis, and treatment of patients with biliary tract 
cancer. In patients with metastatic locally advanced/
metastatic biliary tract cancer, the concordance rate 
between plasma ctDNA analysis and tumor tissue 
analysis (15-gene panel) was 74%; this rate was 92% in 
intrahepatic tumors. ctDNA variant allele frequency (VAF) 
was significantly correlated with tumor load and PFS, and 
the mutational profile changed after chemotherapy in 36% 
of patients [53].
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Hepatocellular carcinoma

ctDNA analysis has been investigated in 
hepatocellular carcinoma (HCC) [54–56]. In patients 
who underwent hepatectomy or liver transplantation, 
disease recurrence and extrahepatic metastases were 
more frequent in those with mutations detected by ctDNA 
analysis vs. others (p = 0.01 and 0.04, respectively) and 
ctDNA was an independent factor predicting invasion of 
the portal vein (odds ratio = 6.10) [54]. In other studies, 
hotspot mutations in the TERT, CTNNB1, and TP53 
genes detected in the plasma of patients with HCC were 
associated with vascular invasion and likely predicted a 
shorter recurrence-free survival time [55].
Breast cancer

The concordance between ctDNA and tissue 
DNA in breast cancer varies by stage and subtype [57]. 
In patients with early-stage breast cancer, PIK3CA 
mutations have been identified presurgically in ctDNA 
with high sensitivity (93.3%) and specificity (100%) 
[58]. In a retrospective analysis, the concordance 
between tissue DNA and ctDNA (digital sequencing of 
plasma-derived DNA) was robust in PIK3CA mutation 
and ERBB2 amplification analyses (Cohen’s κ = 0.64 
and 0.77, respectively) but poor in TP53 mutation and 
EGFR amplification analyses (Cohen’s κ = 0.18 and 
0.33, respectively) [59, 60]. In another study, TP53 
and PIK3CA mutant allele frequencies were associated 
with response to therapy and PFS [60]. When PCR 
and targeted exome sequencing were used to detect the 
hotspot AKT1 E17K mutation in two cohorts of patients 
with advanced metastatic breast cancer (MBC), the 
concordance rates between tissue and blood samples 
were 98% and 97.1% [61].

ctDNA analysis has been used extensively in large 
trials in hormone-receptor–positive, HER2-negative 
advanced breast cancer. In the BOLERO-2 study, PIK3CA 
mutations by ctDNA analysis were associated with 
efficacy of everolimus [62, 63]. In the BELLE-3 study, 
patients progressing on or after mTOR inhibition and 
endocrine therapy [64] with PIK3CA mutations (detected 
by ctDNA or tissue DNA analysis; concordance, 80%) had 
significantly longer PFS in the buparlisib plus fulvestrant 
arm compared to the fulvestrant arm [64, 65].

In patients with HER2-positive breast cancer treated 
with an anti-HER1/HER2 tyrosine kinase inhibitor, 
ctDNA analysis for HER2 amplification was associated 
with disease progression (4/6, 66.7%), whereas TP53 
mutations (3/6, 50%) and PI3K/mTOR pathway alterations 
(3/6, 50.0%) were associated with disease resistance. 
Dynamic ctDNA analysis identified drug resistance with 
sensitivity 85.7% and specificity of 55.0%; and had a high 
concordance rate with CT imaging studies (82.1%) [66].

In patients with non-metastatic triple-negative breast 
cancer, ddPCR for customized ctDNA analysis detected 
alterations in 75% of patients at baseline. Lower ctDNA 

levels were associated with longer OS during neoadjuvant 
chemotherapy [67]. In this setting, targeted MRD 
sequencing using serial ctDNA monitoring predicted 
tumor recurrence 7.9 months (median) before clinical 
evidence of relapse [68].

Other investigators found that a panel of cell-
free methylation markers was a strong predictor of 
OS in MBC and may have clinical usefulness in risk 
disease monitoring [69]. Methylated ctDNA from the 
promoter region of RASSF1A was more sensitive than 
carcinoembryonic antigen and CA15-3 for monitoring 
response to neoadjuvant chemotherapy [70]. ctDNA 
analysis of a 6-gene methylation panel for diagnosis 
of breast cancer had sensitivity of 79.6% compared to 
healthy individuals and 82.4% compared to benign 
disease control (specificity, 72.4% and 78.1%, 
respectively). This test complemented mammography or 
ultrasonography [71].

ctDNA for assessment of resistance to aromatase 
inhibitors as first-line therapy was also prospectively 
studied in MBC (n = 83) [72]. ESR1 mutations were 
detected in 56.4% (22/39) of patients who had disease 
progression 6.7 months (median) prior to clinical 
progression [72]. On the basis of detection of ESR1 
mutations in primary breast cancer using ctDNA analysis 
at a very low allele frequency, in contrast to a high allele 
frequency in metastases, it is plausible that in some tumors 
rare ESR1-mutant clones may be enriched by endocrine 
therapy [73].
Gynecologic cancers

ctDNA analysis has contributed to diagnosis and 
monitoring of patients with gynecologic cancers. High 
ctDNA levels have been associated with poor PFS and 
OS in patients with resistant epithelial ovarian cancer 
treated with bevacizumab (n = 144) [74]. In patients 
with high-grade serous ovarian carcinoma who received 
standard-of-care therapy, p53 alterations identified using 
ctDNA analysis at baseline were correlated with volume 
of disease, and a decrease in TP53 mutant allele fraction 
≤60% after 1 cycle of chemotherapy was associated with 
shorter time to disease progression [75].

In patients with gynecologic cancer (n = 44), ctDNA 
analysis using ddPCR detected alterations in 93.8% of 
patients, and detected cancer in 6 patients, 7 months prior 
to radiologic evidence on CT imaging studies [76]. ctDNA 
levels were correlated with serum CA-125 levels and CT 
imaging studies, and they were an independent factor 
predicting OS [76].

Plasma DNA analysis for detection of chromosomal 
instability using copy-number alterations in patients with 
an adnexal mass (n = 68) and in healthy individuals (n 
= 44) improved detection of malignancy (AUC = 0.89) 
compared to serum CA-125 (AUC = 0.78) or the RMI 
(risk of malignancy) index (composite of serum CA 125 
level, ultrasound scan result and menopausal status) (AUC 
= 0.81) [77].
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Data suggest that human papillomavirus (HPV) 
detection by ctDNA analysis is a surrogate marker for 
HPV-associated cervical cancer and can guide antiviral 
therapy. In patients with HPV 16/18-associated cervical 
cancer and tumors >2 cm at diagnosis, HPV ctDNA was 
identified in 11 of 13 patients and levels were associated 
with tumor dynamics [78]. In another study, HPV ctDNA 
was detected in all patients (n = 19) with HPV-positive 
metastatic cervical cancer but in 0 healthy blood donors 
(n = 45) [79]. Of 9 patients who received tumor-infiltrating 
lymphocyte (TIL) immunotherapy, the HPV genotype of 
the patients’ tumors was identified in serum samples from 
all patients, and 2 patients with complete response had 
persistent clearance of HPV ctDNA [79].

Genitourinary cancers

Prostate cancer

In patients with metastatic castration-resistant 
prostate cancer (mCRPC), ctDNA analysis can identify 
molecular alterations that are associated with clinical 
outcomes and can guide therapy. Detection of biallelic 
BRCA2 gene loss by ctDNA analysis indicated that 
patients may benefit from therapies targeting defective 
DNA repair [80]. Others identified alterations in all 
analyzed patients with mCRPC treated with enzalutamide, 
including alterations in DNA damage repair and PI3K 
pathway genes [81]. Aberrations in the androgen receptor 
(AR) gene by ctDNA analysis have been correlated with 
resistance to enzalutamide and abiraterone treatment 
and AR amplification was more common in patients 
whose disease progressed on enzalutamide compared 
to abiraterone or other agents (p = 0.02) [82]. Targeted 
NGS covering all AR coding bases using plasma from 
patients treated with abiraterone (control, patients’ 
normal circulating DNA) identified AR copy numbers 
in 82.5% (80/97) of patients and demonstrated that 45% 
of tumors had AR gain or T878A or L702H changes 
before abiraterone treatment, which were associated 
with shorter PFS and OS [83]. Other investigators also 
demonstrated that circulating AR copy number gain is a 
useful biomarker [84]. In patients with CRPC treated with 
docetaxel followed by enzalutamide (n = 59), patients 
with AR copy number gain (36%) had higher levels of 
PSA, alkaline phosphatase, and lactate dehydrogenase 
(LDH) and shorter PFS (p = 0.0004) and OS (p = 0.0003) 
compared to those without AR copy number gain. In 
multivariate analysis, a decrease in PSA ≥50% and AR 
copy number gain were associated with longer PFS and 
OS [84].

In a retrospective study, ctDNA genomic profiling 
using Guardant 360™ demonstrated ≥1 alteration 
in 94% of 514 men with progressive mCRPC, and 
had good concordance with the correspondent tumor 
tissue [85]. Higher numbers of ctDNA alterations were 
associated with shorter time to treatment failure (HR = 

1.05, p = 0.026) in patients treated with chemotherapy or 
androgen inhibitors [85].
Renal cell carcinoma

Total serum ctDNA levels and CpG island 
methylation of RASSF1A and VHL were shown to support 
the diagnosis of renal cell carcinoma (RCC) and VHL 
methylation indicates clear cell RCC [86]. Higher levels of 
ctDNA were identified in metastatic RCC or necrotic RCC 
compared to benign tumors, and they were associated with 
poorer DFS [86]. Using Guardant 360 ctDNA analysis, 
78.6% of 220 patients with RCC had >1 alteration and the 
most frequent alterations were TP53 (35%), VHL (23%), 
EGFR (17%), NF1 (16%), and ARID1A (12%) [87]. 
Higher rates of detection after systemic therapy compared 
with baseline were noted for NF1 (21% vs. 3%), TP53 
(49% vs. 24%), and VHL (29% vs. 18%), indicating clonal 
evolution of genomic alterations [87].
Bladder cancer

In patients with advanced urothelial carcinoma, 
high rates (86%–90%) of aberrations using Guardant 360 
ctDNA analysis were found; the most common aberrations 
were TP53 (48%), ARID1A (17%), and PIK3CA (14%) 
[88, 89]. Using a 62-gene panel (FoundationACT), 73% 
of patients with metastatic urothelial cancer were found to 
have ≥1 aberration and the most frequent alterations were 
TP53 (68%) and TERT-promoter (38%) [90]. In another 
study, 36% (129/363) of patients with non-muscle-invasive 
bladder cancer and 11% (44/403) of patients with muscle-
invasive bladder cancer who underwent radical cystectomy 
had ≥1 FGFR3 or PIK3CA mutations and high ctDNA 
levels were associated with disease progression. ctDNA 
levels in the urine and plasma were positively correlated 
and indicated that higher levels of FGFR3- and PIK3CA-
mutated DNA can predict disease progression [91].
Melanoma

In patients with metastatic melanoma, identification 
of BRAF mutations in ctDNA has been associated with 
higher disease burden and worse prognosis and may 
precede clinical evidence of disease progression. In 
patients with unresectable advanced-stage metastatic 
melanoma, BRAF and NRAS mutations identified in 
ctDNA analysis at baseline and during treatment with 
targeted therapy against BRAF or immunotherapy have 
been associated with larger tumors, increased LDH levels, 
and brain metastases [92]. Other investigators found 
that in this setting, the presence of BRAF mutations in 
ctDNA analysis was associated with a higher number of 
metastatic sites, higher serum LDH levels or S100 protein 
concentration, and shorter OS [93].

In one study, 73% of 48 patients with metastatic 
melanoma had tumor-associated BRAF and NRAS 
alterations in ctDNA analysis [94]. In another study, 
patients with the BRAF V600E mutation in ctDNA 
had shorter PFS and OS compared to those without the 
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mutation (p = 0.02 and p = 0.017, respectively) [95]. 
Others also demonstrated that lower baseline ctDNA 
levels were associated with higher rates of response and 
PFS [94]. In patients with BRAF V600E/V600K-positive 
tumors enrolled in 4 different studies of dabrafenib or 
trametinib, ctDNA analysis identified BRAF V600E 
and BRAF V600K mutations in 76% and 81% of 732 
patients, respectively. Patients with undetectable 
ctDNA BRAF mutations at baseline had higher rates of 
response, PFS, and OS than those with ctDNA BRAF 
mutations [96]. Circulating BRAF mutations have been 
identified in some patients prior to clinical evidence of 
disease progression [97]. In patients with melanoma who 
received adoptive transfer of activated autologous TILs, 
ctDNA analysis for BRAF V600E (n = 48, 388 serum 
samples) demonstrated a strong correlation between an 
early peak of circulating V600E mutation and objective 
response. Patients whose serum had an early ctDNA peak 
followed by undetectable ctDNA had a higher likelihood 
of having a complete response in 1–2 years [97]. Others 
also found a correlation between serial ctDNA analysis 
of BRAF and NRAS status and tumor response. PFS was 
longer in patients with an early decrease (1–4 weeks 
post-treatment) in ctDNA levels than in patients with 
unchanged or increased ctDNA levels post-treatment 
(HR = 2.6; p = 0.05) [98]. In the post-surgical setting, 
ctDNA analysis of BRAF and NRAS mutations predicted 
OS in 161 patients with high-risk stage II/III melanoma 
who underwent surgical resection followed by adjuvant 
bevacizumab for 1 year [99]. The 5-year OS rates 
were 33% and 65% for patients with detectable and 
undetectable ctDNA levels, respectively. After adjustment 
for performance status, patients with detectable ctDNA 
had shorter OS compared to those with undetectable 
ctDNA (HR = 2.63; p = 0.003) [99].

An intriguing application of longitudinal ctDNA 
analysis is the distinction of pseudoprogression 
from true progression [100]. ctDNA for BRAF 
and NRAS mutations was analyzed at baseline 
and at 12 weeks of treatment with PD-1 antibodies 
with or without ipilimumab [100]. Overall, 23.2% 
(29/125) of patients had initial disease progression 
by imaging studies. Thirty-one percent (9/29) of 
patients had pseudoprogression and 69% (20/29) 
had true progression. The 9 patients with confirmed 
pseudoprogression had undetectable ctDNA at baseline 
or detectable ctDNA at baseline followed by >10-fold 
decrease (favorable ctDNA profile). Eighteen of 20 
patients with true progression had detectable ctDNA at 
baseline that remained stable or increased (unfavorable 
ctDNA profile). Among patients with confirmed true 
progression, the 1-year OS rates were 82% and 39% in 
those with favorable ctDNA and unfavorable ctDNA 
profiles, respectively (HR = 4.8; p = 0.02) [100].

Sarcoma

Ewing sarcoma

In patients with localized or metastatic Ewing 
sarcoma (EWS), copy numbers of the EWSR1 fusion 
sequence in plasma were associated with tumor volume. 
Rapid decrease in ctDNA levels of EWSR1 was noted 
during initial chemotherapy, and increase in ctDNA levels 
indicated disease recurrence [101]. As a driving EWS-
ETS translocation specific to each tumor is identified in 
up to 95% of patients with Ewing sarcoma, investigators 
used long-range PCR analysis to identify tumor-specific 
EWS-ETS breakpoints in plasma DNA [102]. In children 
with metastatic Ewing sarcoma and primary localized 
osteosarcoma, detection of ctDNA was associated with 
inferior outcomes [103]. In patients with localized EWS 
and detectable ctDNA, the 3-year rates of EFS and OS 
were lower compared to those with undetectable ctDNA 
(p = 0.006 and p = .01, respectively). The respective rates 
in localized osteosarcoma for EFS were 48.6% vs. 82.1% 
(p = 0.006) and for OS were 79.8% vs. 92.6% (p = 0.01); 
the risk of death increased proportionately with ctDNA 
levels [103].
Gastrointestinal stromal tumors

In patients with gastrointestinal stromal tumors 
(GIST), ctDNA harboring CKIT or PDGFRA was used 
as a tumor-specific biomarker and the amount of mutant-
free circulating DNA was correlated with disease course 
[104]. In patients with TKI-refractory GIST treated 
with dovitinib, genotyping of the KIT gene in exon 17 
of serum ctDNA using beads, emulsions, amplification, 
and magnetics assays identified mutations associated with 
disease resistance [105]. Other investigators suggested that 
detection of secondary C-KIT mutations in ctDNA may 
improve the selection of targeted agents [106].
Soft tissue sarcoma

In patients with metastatic soft tissue sarcoma, 
ctDNA was detected in 36% (4/11) of patients and TP53/
PIK3CA mutations in ctDNA analysis were concordant 
with the primary tumor in 2 of 4 patients [107].
Brain tumors

In brain tumors, ctDNA analysis is used as a non-
invasive alternative to tumor biopsies that are associated 
with significant risk. In patients with glioblastoma 
multiforme (GBM), ctDNA analysis identified the 
EGFRvIII deletion in 3 of 13 patients, which was 
correlated with tumor tissue analysis [108]. This mutation 
is identified in approximately one third of patients with 
GBM and is associated with resistance to chemotherapy 
and radiotherapy. ctDNA levels were correlated with 
the extent of tumor resection. This test may help select 
patients for anti-EGFRvIII therapy and monitor response 
to treatment [108]. In patients with neuroblastoma, 
serum MYCN amplification (real-time quantitative PCR, 
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sensitivity 86%, specificity 95% compared with tissue 
analysis) was associated with OS, suggesting that it may 
help select treatment prior to tumor biopsy, particularly for 
patients younger than 18 months whose risk assessment 
and treatment depend on MYCN amplification status 
[109]. In patients with glioma, the IDH1 R132H mutation 
was identified in plasma with a specificity of 100% and 
sensitivity related to the tumor volume and contrast 
enhancement, suggesting that it may help in the diagnosis 
of patients not amenable to biopsy [110].

Lymphoma

Classical Hodgkin lymphoma

In patients with classical Hodgkin lymphoma, an 
XPO1 mutation detected using ctDNA analysis at the 
end of treatment was associated with a tendency toward 
shorter PFS compared to patients without the mutation, 
suggesting that plasma ctDNA may be clinically useful for 
the noninvasive management of this disease [111].
Diffuse large B-cell lymphoma

In patients with relapsed, refractory de novo, or 
transformed diffuse large B-cell lymphoma (DLBCL) 
treated with panobinostat with or without rituximab, 
ctDNA was detected in ≥1 plasma sample in 96% of the 
patients and its increase was associated with resistance 
to treatment [112]. In another study of patients with 
lymphoma and healthy subjects, the amount of ctDNA 
at diagnosis was strongly correlated with clinical indices 
and was independently predictive of patient outcomes 
[113]. ctDNA genotyping could help distinguish indolent 
follicular lymphomas from those that transformed into 
DLBCL and classify transcriptionally defined tumor 
subtypes, including DLBCL cell of origin [113].

Other investigators used immunoglobulin high-
throughput sequencing (Ig-HTS) [114] to analyze 
circulating leukocytes and ctDNA of patients with 
DLBCL. At baseline, Ig clonal rearrangement was detected 
in 82% and 71% of patients in ctDNA and circulating 
cells, respectively (p = 0.68); at relapse, the respective 
rates were 100% and 30% (p = 0.001). Interestingly, Ig-
HTS detection preceded radiologic evidence of recurrent 
disease by 88 days with high sensitivity and specificity, 
indicating that it may be a surrogate marker for monitoring 
disease after complete remission is achieved [114].

In a retrospective study in patients with DLBCL 
after first-line treatment, disease progression was evident 
on imaging studies a median of 3.5 months (range, 0-200 
months) after detection on ctDNA analysis of the clonal Ig 
gene sequence [115].

In contrast to these data showing that ctDNA is 
associated with prognosis and can be identified prior to 
radiologic evidence of recurrent DLBCL, in patients 
with newly diagnosed primary central nervous system 
lymphoma who had 34-gene panel high-throughput 
sequencing of primary tumors followed by targeted 

sequencing of identified somatic mutations on plasma, 
the correlation between ctDNA concentration and tumor 
volume was insignificant (R2 coefficient = 0.01) [116]. 
Overall, 88% of patients with MYD88 L265P in tissue 
had an identifiable L265P variant in their ctDNA and OS 
was not significantly correlated with mutations detected 
in ctDNA [116].
Clinical trials across tumor types

In patients with advanced cancer, circulating 
nucleic acid biomarker analyses had promising clinically 
important multipurpose utility awaiting further studies 
[117]. In an analysis of 105 patients using the Sequenom 
MassArray System and OncoCarta panel for somatic 
mutations, the ctDNA concentration was 3 times higher 
in patients with advanced cancer compared to healthy 
volunteers. Although the concordance between matched 
ctDNA and archival tumor tissue was high for selected 
‘hot-spot’ mutations (KRAS, BRAF, PIK3CA), some 
differences were noted between archival tumor and 
ctDNA. Factors predicting longer OS in multivariate 
analysis were lower ctDNA concentration, higher albumin 
levels, and better performance status [117].

We have previously published our experience 
analyzing ctDNA and archival primary or metastatic tumor 
tissue (FFPE) from patients with advanced metastatic cancer 
who were referred to our Phase I program at MD Anderson 
for participation in clinical trials [118]. We found that the 
concordance rates between mutations in archival tissue 
and ctDNA were high in patients with refractory cancer 
types that progressed on systemic therapy. These rates were 
91%, 99%, 83%, and 91% for BRAF, EGFR, KRAS, and 
PIK3CA mutations, respectively [118]. Patients with >1% 
of KRAS mutant ctDNA had shorter OS compared to those 
with ≤1% of KRAS mutant ctDNA (4.8 vs. 7.3 months, 
p = 0.008). Patients with >1% of mutant ctDNA (BRAF, 
EGFR, KRAS, or PIK3CA) had shorter OS compared to 
those with ≤1% of mutant ctDNA (5.5 vs. 9.8 months, p = 
0.001) [118].

Other investigators demonstrated that ctDNA 
and circulating tumor cells are distinct biomarkers, as 
ctDNA was also detected in patients without any evident 
circulating tumor cells [119]. ctDNA analysis demonstrated 
high detection rates (>75%) in advanced breast, bladder, 
colorectal, gastroesophageal, hepatocellular, head and 
neck, melanoma, ovarian, and pancreatic cancer. Low 
detection rates (<50%) were noted in primary brain, renal, 
prostate, and thyroid cancers. In localized tumor stage, 
the rate of ctDNA detection was 73% in CRC, 57% in 
gastroesophageal, and 50% in breast adenocarcinoma. 
In metastatic CRC (n = 206), ctDNA analysis for KRAS 
mutation was associated with high sensitivity (87.2%) and 
specificity (99.2%). ctDNA analysis to assess resistance 
mechanisms to anti-EGFR treatment in patients with CRC 
demonstrated that 96% (23/24) of patients developed 
≥1 mutation in genes involved in the mitogen-activated 
protein kinase pathway [119].
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Table 1: Selected studies by tumor type, the gene(s) used for ctDNA analysis, and outcomes
Year, First 

Author [Ref] Study Type Tumor Type Number 
of Patients

Biomarker 
Method Tested Genes Outcome

Lung cancer

2016, Adrian G. 
Sacher [8]

Prospective Advanced NSCLC 180 ddPCR KRAS, EGFR Detection of KRAS and 
EGFR mutations, lower 
turnaround time compared 
to tissue

2016, Jeffrey C. 
Thompson [10]

Cohort Advanced NSCLC 102 Hybrid capture NGS 70 cancer-related 
genes

Detection of potentially 
actionable variants in 75% of 
patients; concordance with 
tissue, 79%

2018, Nicolas 
Guibert [13]

Cohort, blinded 
to tissue

Advanced NSCLC 168 
specimens 
from 46 
patients

Amplicon-based 
NGS

36 cancer-related 
genes

Detection of EGFR mutations, 
rare variants and fusions 
with high specificity. Early 
detection of resistance 
mechanisms in serial samples.

2018, Charu 
Aggarwal [20]

Prospective Advanced NSCLC 323 Hybrid capture 73 cancer-related 
genes

Detection of actionable 
alterations in 20% of stage IV 
M1b patients in plasma but 
not tissue. Complementarity 
of tissue and plasma

2014, Aaron M. 
Newman [25]

Cohort Early-stage lung 
cancer

103 Hybrid capture 16 cancer-related 
genes + 8 proteins

Detection of ctDNA in early 
stages (stage I sensitivity, 
50%)

2017, Christopher 
Abbosh [26]

Cohorts Early-stage lung 
cancer

96 Patient-specific 
multiplex PCR

10–22 SNVs MRD and subclonal evolution

Gastro-intestinal tumors

2016, Honglei 
Luo [32]

Cohort Esophageal, SCC 8 Illumina TruSight 
sequencing

90 cancer-related 
genes

Multigene panel has a role 
in detection and monitoring 
response to treatment

2010, Hiroki 
Takeshita [33]

Case-control Esophageal, SCC 96 patients, 
40 controls

PCR-applied 
biosystems

CCND1 
amplification

Poor prognostic value of 
CCND1 amplification

2016, Masami 
Ueda [34]

Cohort Esophageal, SCC 13 HiSeq2000 53 cancer-related 
genes

Multigene panel is associated 
with a greater accuracy of 
tumor recurrence compared to 
imaging methods (post-op)

2015, Katsutoshi 
Shoda [36]

Case-control Gastric 52 patients, 
40 controls

PCR-applied 
biosystems

HER-2 HER2 amplification can 
be used for therapeutic 
monitoring

2017, Katsutoshi 
Shoda [37]

Case-control Gastric 60 patients, 
30 controls

PCR-applied 
biosystems

HER-2 HER2 amplification can 
be used for therapeutic 
monitoring

2015, Hideaki 
Kinugasa [38]

Cohort Gastric 25 PCR - QX200, 
Bio-Rad

HER-2 High concordance in detection 
of HER-2 between ddPCR 
and tissue IHC/FISH

2016, Wen-Liang 
Fang [39]

Cohort Gastric 277 TaqMan qPCR 68 mutations (8 
genes)

High ctDNA levels are 
associated with peritoneal 
recurrence and poor prognosis

2017, Jeanne Tie 
[43]

Prospective, 
cohort, 
multicenter

Colon 230 (1046 
plasma 
samples)

Safe-SeqS PCR 15 cancer-related 
genes

ctDNA detection after stage 
II colon cancer resection 
provides direct evidence of 
residual disease and identifies 
patients at very high risk of 
recurrence.

2018, Jeanne Tie 
[44]

Prospective, 
cohort, 
multicenter

Colon 95 Safe-SeqS PCR 15 cancer-related 
genes

ctDNA detection after 
adjuvant chemotherapy 
for stage III colon cancer 
resection can identify 
patients at very high risk of 
recurrence.
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2017, Lone V. 
Schøler [45]

Longitudinal 
cohort

Colon 45 (371 
plasma 
samples)

QX200 PCR Somatic structural 
variants,
KRAS

Postoperative ctDNA analysis 
detects residual disease and 
identifies patients at very high 
risk of relapse. Longitudinal 
surveillance allows early 
detection of relapse and 
response to intervention.

2015, Oliver A. 
Zill [46]

Cohort Pancreato-biliary 
carcinomas

26 Illumina Hi-Seq 
2500

54 cancer-related 
genes

ctDNA sequencing is feasible, 
accurate, and sensitive in 
identifying tumor-derived 
mutations.

2016, Kjersti 
Tjensvoll [47]

Cohort Pancreatic 14 (53 plasma 
samples)

Mx3000P rtPCR KRAS ctDNA can be used as a 
marker for monitoring 
treatment efficacy and disease 
progression.

2016, Naoto 
Hadano
 [48]

Cohort Pancreatic 105 TaqMan assay PCR KRAS ctDNA can predict poor 
survival

2017, Daniel 
Pietrasz [50]

Prospective, 
cohort

Pancreatic 135 Ion AmpliSeq NGS 112 cancer-related 
genes

ctDNA is an independent 
prognostic marker in 
advanced pancreatic 
adenocarcinoma

2018, Belinda 
Lee [51]

Cohort Pancreatic 42 SafeSeqS assays 
PCR

KRAS ctDNA analysis is a promising 
prognostic marker in early-
stage pancreatic cancer and 
guides risk-adaptive treatment 
strategies. ctDNA detection 
post-operatively helps to 
identify disease progression 
after standard adjuvant 
chemotherapy.

2016, Stine Dam 
Henriksen [52]

Prospective 
case-control

Pancreatic 95 patients, 
183 controls

Methylation-specific 
PCR

28 cancer-related 
genes

ctDNA promoter 
hypermethylation is a 
diagnostic biomarker that 
helps distinguish malignant 
from benign pancreatic 
disease.

2018, Andreas 
Wolfgang Berger 
[53]

Cohort Biliary tract 
cancer

24 1010× depth 
Sequencing

15 cancer-related 
genes

The molecular landscape is 
represented in ctDNA.

2015, Atsushi 
Ono [54]

Cohort Hepatocellular 
carcinoma

46 Illumina Hi-Seq 
2500

ctDNA detection post-surgery 
reflects tumor progression and 
disease recurrence.

2016, Wenjun 
Liao [55]

Cohort Hepatocellular 
carcinoma

41 Illumina MiSeq™ Cancer-related 
genes TERT, 
TP53, and 
CTNNB1

ctDNA mutation detection 
is associated with vascular 
invasion and predicts a shorter 
recurrence-free survival time.

2016, Ao Huang 
[56]

Cohort Hepatocellular 
carcinoma

48 QX200 PCR Cancer-related 
genes TERT, 
TP53, and 
CTNNB1

ctDNA analysis can detect 
intratumoral heterogeneity 
and may have a promising 
role in the therapeutic 
management.

Breast cancer

2017, Heather A. 
Parsons [57]

Prospective 
cohort

Triple-negative 
breast cancer

26 HiSeq 2500 Illumina 33 cancer-related 
genes

High concordance between 
ctDNA analysis and tumor 
tissue analysis, allowing 
monitoring of the therapeutic 
effect.

2014, Julia A. 
Beaver [58]

Prospective 
cohort

Breast cancer 29 ddPCR PIK3CA 
mutations

In patients with early-stage 
breast cancer, mutations can 
be detected in tumor tissue 
using ddPCR, and ctDNA can 
be detected in blood before 
and after surgery.
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2016, Diana H. 
Liang [60]

Retrospective 
chart review

Breast cancer 100 Illumina Hi-Seq 
2500

TP53, PIK3CA, 
ERBB2, and 
EGFR genomic 
alterations

Robust concordance between 
tissue and blood for detection 
of PIK3CA mutation and 
ERBB2 amplification, but not 
for TP53 mutation and EGFR 
amplification. Directional 
changes of TP53 and PIK3CA 
mutant allele are associated with 
response to therapy and PFS.

2016, Marion 
Rudolph [61]

Cohort Breast cancer 600 HiSeq 2500 Illumina 306 cancer-related 
genes

AKT1E17K is the most likely 
disease driver in selected 
breast cancer patients and 
its detection in blood is 
achievable in advanced-stage 
disease.

2017, Mary Ellen 
Moynahan [62]

Prospective Breast cancer 724 QX200 PCR PIK3CA Improvement in PFS was 
maintained using everolimus, 
irrespective of PIK3CA 
genotypes (detected by 
ctDNA), and it was consistent 
with previous analysis of 
archival tumor DNA using 
NGS.

2016, Sarat 
Chandarlapaty 
[63]

Prospective Breast cancer 541 QX200 PCR ESR1 ESR1 mutations are prevalent 
in ER-positive metastatic 
breast cancer treated with 
aromatase inhibitors. Both 
Y537S and D538G mutations 
are associated with aggressive 
disease biology.

2018, Rosaria 
Condorelli [65]

Cohort Breast cancer 3 QX200 PCR RB1 Somatic RB1 mutations can 
emerge after exposure to 
CDK4/6 inhibitors.

2016, Fei Ma 
[66]

Prospective, 
cohort

Breast cancer 18 HiSeq 2500 Illumina 368 cancer-related 
genes

ctDNA analysis provides 
information regarding 
resistance to treatment and 
guides administration of anti-
HER2 targeted therapy in the 
metastatic setting.

2017, Francesca 
Riva [67]

Cohort Triple-negative 
breast cancer

46 Illumina MiSeq TP53 ctDNA levels decreased 
quickly during neoadjuvant 
chemotherapy (NCT) and 
helped identify minimal 
residual disease after surgery. 
Slow decrease of ctDNA 
levels during NCT was 
strongly associated with 
shorter survival.

2015, Isaac 
Garcia-Murillas 
[68]

Prospective, 
cohort

Breast cancer 55 HiSeq 2500 Illumina Cancer-related 
genes

In patients with early stage 
breast cancer, ctDNA analysis 
can identify patients at high 
risk for relapse and guide 
adjuvant therapy.

2017, Kala 
Visvanathan [69]

Cohort Breast cancer 141 cMethDNA assay 10 cancer-related 
genes

ctDNA gene methylation is 
a strong predictor of survival 
outcomes.

2017, Hiroyo 
Takahashi [70]

Cohort Breast cancer 87 Methylation-specific 
PCR

RASSF1A Met-ctDNA is a more 
sensitive marker than CEA 
and CA15-3 and it can be 
used to monitor clinical tumor 
response to neoadjuvant 
chemotherapy.

2016, Ming Shan 
[71]

Cohort Breast cancer 749 MethyLight SFN, P16, 
hMLH1, 
HOXD13, 
PCDHGB7 and 
RASSF1a

Epigenetic markers in serum 
have potential for diagnosis of 
breast cancer.
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2018, Charlotte 
Fribbens [72]

Prospective, 
cohort

Breast cancer 83 Enhanced 
tagged-amplicon 
sequencing (eTAm-
Seq)

ESR1, KRAS, 
NRAS and HRAS

In patients with progressive 
disease after first-line 
aromatase inhibitors, ctDNA 
analysis demonstrated high 
levels of genetic heterogeneity 
and frequent sub-clonal 
mutations. Sub-clonal KRAS 
mutations were found at a 
high frequency.

2016, Peilu Wang 
[73]

Cohort Breast cancer 126 Bio-Rad QX100 dd 
PCR

ESR1 ESR1 mutations were 
detected at very low allele 
frequencies in some primary 
breast cancers, and at high 
allele frequency in patients 
with metastatic breast 
cancer. ESR1-mutant clones 
are enriched by endocrine 
therapy.

Gynecological cancers

2014, Karina 
Dahl Steffensen 
[74]

Cohort Ovarian cancer 144 QiaSymphony, 
multiplex qPCR

ctDNA detection In patients treated with 
bevacizumab, high ctDNA 
levels were associated with 
poor PFS and OS.

2016, Christine 
A. Parkinson [75]

Retrospective 
analysis

Ovarian cancer 40 ddPCR TP53 ctDNA is correlated with 
volume of disease at the start 
of treatment.

2015, Elena 
Pereira [76]

Cohort Ovarian/
endometrial 
cancer

44 qPCR using 
TaqMan®, ddPCR

ctDNA detection ctDNA is an independent 
predictor of survival in 
patients with ovarian and 
endometrial cancers.

2017, Adriaan 
Vanderstichele 
[77]

Prospective, 
cohort

Ovarian cancer 68 HiSeq 2500 Illumina Chromosome 
instability

ctDNA analysis demonstrated 
that chromosomal instability 
can help detect ovarian 
cancer.

2012, Maura 
Campitelli [78]

Cohort Cervical cancer 16 RT-qPCR ctDNA detection ctDNA analysis demonstrated 
that the HPV mutational 
insertion is a highly specific 
molecular marker and it is 
detected in most patients with 
stage 2-4 cervical cancer.

2017, Zhigang 
Kang [79]

Retrospective 
analysis

Cervical cancer 19 ddPCR HPV genetic 
components

HPV genetic insertion in 
ctDNA represents a promising 
tumor marker.

Urological cancers

2017, Matti 
Annala [80]

Prospective, 
cohort

Prostate cancer 319 NimbleGenSeqCap, 
Illumina

73 cancer-related 
genes

Biallelic gene loss detected 
in ctDNA can help prioritize 
therapy.

2016, Alexander 
W. Wyatt [81]

Cohort Prostate cancer 65 Illumina MiSeq, Ion 
Ampliseq

19 cancer-related 
genes

Genomic profiling of ctDNA 
is feasible in mCRPC patients 
and provides important 
insights into enzalutamide 
response and resistance.

2015, Arun A. 
Azad [82]

Cohort Prostate cancer 62 PCR-based 
BEAMing

AR AR gene aberrations in 
ctDNA are associated with 
resistance to enzalutamide 
and abiraterone in mCRPC.

2015, Alessandro 
Romanel [83]

Cohort Prostate cancer 97 Ion Torrent 
Sequencing

AR Plasma AR sequencing can 
identify primary resistance to 
abiraterone.

2016, Samanta 
Salvi [84]

Cohort Prostate cancer 59 RT-PCR, ddPCR AR Detection of circulating 
AR copy number gain is 
a non-invasive biomarker 
for outcome of patients 
with CRPC treated with 
enzalutamide.



Oncotarget200www.oncotarget.com

2017, Sumanta K. 
Pal [87]

Prospective, 
cohort

Renal cell 
carcinoma

220 HiSeq 2500 Illumina 73 cancer-related 
genes

Higher rates of detection by 
ctDNA analysis after systemic 
therapy compared with baseline 
was noted for NF1, TP53, and 
VHL, indicating clonal evolution 
of genomic alterations.

2018, Neeraj 
Agarwal [89]

Cohort Urothelial 
carcinoma

369 HiSeq 2500 Illumina 73 cancer-related 
genes

ctDNA NGS identified similar 
genomic alterations with 
tumor tissue. The genomic 
landscape was similar 
between lower tract and upper 
tract urothelial carcinoma.

2017, Emil 
Christensen [91]

Cohort Urothelial 
carcinoma

831 ddPCR FGFR3 and 
PIK3CA

ctDNA levels in the urine 
and plasma were positively 
correlated and indicated that 
higher levels of FGFR3- and 
PIK3CA-mutated DNA can 
predict disease progression.

Skin cancer

2016, Gregory A. 
Chang [92]

Cohort Melanoma 43 ddPCR NRAS, BRAF ctDNA had a higher 
sensitivity than LDH to detect 
disease progression.

2016, Anne C. 
Knol [93]

Cohort Melanoma 38 RT-PCR BRAF ctDNA BRAF mutation is a 
prognostic factor of OS and it is 
correlated with tumor burden.

2015, Elin S. 
Gray [94]

Cohort Melanoma 48 ddPCR NRAS, BRAF ctDNA is a biomarker of 
response to kinase inhibitor 
therapy and it can be used to 
monitor resistance to treatment.

2015, Maria 
Gonzalez-Cao 
[95]

Cohort Melanoma 22 TaqMan assay PCR BRAF Detection and accurate 
quantification of low- BRAF 
V600E in ctDNA can predict 
treatment outcome.

2016, Ademi 
Santiago-Walker 
[96]

Cohort Melanoma 732 PCR-based 
BEAMing

BRAF BRAF mutation using ctDNA 
analysis can be detected in 
>75% of patients and is a 
prognostic marker.

2016, Max 
Schreuer [97]

Cohort Melanoma 36 qPCR BRAF Quantitative analysis of 
BRAF mutation in ctDNA 
is a monitoring tool during 
treatment with BRAF/MEK 
inhibitors.

2017, Stephen Q. 
Wong [98]

Cohort Melanoma 52 Amplicon 
sequencing, ddPCR

NRAS, BRAF ctDNA is a powerful 
complementary modality 
to functional imaging for 
real-time monitoring of tumor 
burden and genomic changes 
throughout therapy.

2018, R. Jeffrey 
Lee [99]

Cohort Melanoma 161 QX200 ddPCR NRAS, BRAF ctDNA predicts relapse and 
survival in high-risk resected 
stage II/III melanoma and 
can help select patients for 
adjuvant therapy.

Sarcoma

2016, Manuela 
Krumbholz [101]

Cohort Ewing 20 AccuPrime Taq 
DNA PCR

EWSR1-FLI1 
fusion

Detection of EWSR1 
fusion sequence in plasma 
is a promising noninvasive 
biomarker for improved 
therapeutic monitoring.

2016, Masanori 
Hayashi [102]

Cohort Ewing 3 ddPCR EWS-ETS Tumor specific EWS-ETS 
translocation breakpoints 
in plasma DNA is a highly 
personalized biomarker for 
relapsed disease.



Oncotarget201www.oncotarget.com

2018, David S. 
Shulman [103]

Cohort Ewing, 
osteosarcoma

166 Illumina HiSeq 2500 EWSR1, FUS, 
CIC, CCNB3, 
TP53, STAG2

Detectable ctDNA in patients 
with localized disease is 
associated with inferior 
event-free survival and OS at 
3 years compared to patients 
with undetectable ctDNA 
levels.

2013, Jacqueline 
Maier [104]

Prospective 
cohort

Gastrointestinal 
stromal tumor

38 RT-PCR CKIT, PDGFRA ctDNA harboring CKIT or 
PDGFRA was correlated with 
disease course.

2014, Changhoon 
Yoo [105]

Cohort Gastrointestinal 
stromal tumor

30 PCR-based 
BEAMing

CKIT, PDGFRA, 
BRAF

Genotyping of the KIT 
gene in exon 17 of serum 
ctDNA identified mutations 
associated with resistance to 
dovitinib.

2016, Noriko 
Wada [106]

Cohort Gastrointestinal 
stromal tumor

4 Sanger sequencing, 
PCR

C-KIT Detection of secondary C-KIT 
mutations in ctDNA is useful 
to select targeted agents and 
to predict antitumor effects.

2018, Nicholas C. 
Eastley [107]

Cohort Soft tissue 
sarcoma

11 Ion AmpliSeq 57 cancer-related 
genes

ctDNA analysis detected 
TP53/PIK3CA mutations 
concordant with the primary 
tumor in 2 of 4 cases.

Brain tumors

2013, Mohamad 
A. Salkeni [108]

Prospective Glioblastoma 13 Illumina HiSeq EGFR (vIII 
deletion)

ctDNA analysis identified the 
EGFRvIII deletion in 3 of 13 
patients, which was correlated 
with tumor tissue analysis and 
may help select patients for 
targeted therapy.
ctDNA levels were correlated 
with the extent of tumor.

2016, Shigeki 
Yagyu [109]

Retrospective Neuroblastoma 151 Real-time 
quantitative PCR

MYCN Serum MYCN amplification 
(sensitivity 86%, specificity 
95% compared with tissue 
analysis) was associated 
with OS. It may help 
select treatment prior to 
tumor biopsy, particularly 
for patients < 18 months 
(risk assessment and 
treatment depend on MYCN 
amplification status).

2012, Blandine 
Boisselier [110]

Prospective Glioma 80 patients, 
31 controls

Digital PCR, Agilent 
technologies

IDH1 The IDH1 R132H mutation 
was identified in plasma 
(specificity, 100%; sensitivity 
related to the tumor volume and 
contrast enhancement). It may 
help in the diagnosis of patients 
not amenable to biopsy.

Lymphoma

2016, Vincent 
Camus [111]

Cohort Hodgkin 94 TaqMan assay PCR XPO1 The XPO1 E571K mutation in 
ctDNA can be used as a novel 
biomarker in diagnosis and 
detection of minimal residual 
disease.

2016, Sarit E. 
Assouline [112]

Phase 2 trial Diffuse large 
B-cell

40 ddPCR CREBBP, EP300, 
MLL2, FAS, 
STAT6, TP53

Increase in ctDNA levels 
at 15 days after treatment 
initiation was associated with 
resistance to treatment.

2016, Florian 
Scherer [113]

Case control Diffuse large 
B-cell

92 patients, 
24 controls

CAPP-Seq BCL2, BCL6, 
MYC, IGH

ctDNA levels at diagnosis 
were strongly correlated with 
clinical indices and were 
independently predictive of 
patient outcomes.
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2015, David M. 
Kurtz [114]

Prospective 
cohort

Diffuse large 
B-cell

75 RT-PCR Immunoglobulin 
high-throughput 
sequencing (Ig-
HTS)

ctDNA immunoglobulin 
high-throughput sequencing 
preceded radiologic evidence 
of recurrent disease indicating 
that it may be a surrogate 
marker for monitoring disease 
after complete remission.

2015, Mark 
Roschewski [115]

Retrospective 
analysis

Diffuse large 
B-cell

126 LymphoSIGHT™ VDJ After first-line treatment, 
disease progression was 
evident on imaging studies a 
median of 3.5 months after 
detection on ctDNA analysis 
of the clonal Ig gene sequence.

Across Tumor Types

2012, Geraldine 
Perkins [117]

Cohort from 
multiple phase 
1 trials

Colorectal, breast, 
melanoma, 
prostate, ovarian, 
and other

105 Sequenom 
MassArray, 
OncoCarta PCR

KRAS, BRAF, 
PIK3CA

ctDNA analysis has potential 
clinical multi-purpose utility 
in patients with advanced 
cancer.

2015, Filip Janku 
[118]

Cohort from 
multiple phase 
1 trials

Colorectal, 
melanoma, non-
small cell lung, 
and other

157 PCR-based 
BEAMing

BRAF, EGFR, 
KRAS, PIK3CA

Patients with > 1% of mutant 
ctDNA had shorter median OS 
compared to patients with ≤ 1%.

2014, Chetan 
Bettegowda [119]

Cohort Pancreatic, 
ovarian, 
colorectal, 
bladder, 
gastroesophageal, 
breast, melanoma, 
hepatocellular, 
head and neck, 
and other

640 BEAMing, PCR-
Ligation, Safe-SeqS

187 cancer-related 
genes

ctDNA is a broadly 
applicable, sensitive, and 
specific biomarker that can be 
used for clinical and research 
purposes in patients with 
various tumor types.

2013, 
Muhammed 
Murtaza [120]

Cohort Breast, ovarian 
and lung

6 HiSeq 2500 Illumina PIK3CA, RB1, 
GAS6, EGFR

ctDNA analyses can 
complement invasive tumor 
biopsies to identify mutations 
associated with acquired drug 
resistance in advanced cancer.

2015, Jean 
Sebastien Frenel 
[121]

Cohort Colorectal, 
ovarian, 
breast, bladder, 
glioblastoma, lung 
adenocarcinoma, 
endometrial

39 Ion AmpliSeq, 
ddPCR

Cancer-related 
genes

Targeted sequencing of 
ctDNA has potential clinical 
utility to monitor the effect of 
targeted therapies.

2016, Maria 
Schwaederle 
[122]

Cohort Lung, breast, 
glioblastoma, 
genitourinary, 
gastrointestinal, of 
unknown primary, 
and other

171 Illumina Hi-Seq 
2500

54 cancer-related 
genes

A large proportion of patients 
had detectable ctDNA 
aberration (s), among which 
the majority are targetable by 
an approved drug.

2016, Maria 
Schwaederle 
[123]

Cohort Brain, lung, breast 168 Illumina Hi-Seq 
2500

54 cancer-related 
genes

ctDNA tests provide 
information complementary 
to the tissue biopsies and 
may be useful in determining 
prognosis and treatment.

2017, Yulian 
Khagi [124]

Cohort Skin, lung, breast, 
glioblastoma, 
genitourinary, 
gastrointestinal, 
and other

69 Illumina Hi-Seq 
2500

54–70 cancer-
related genes

Hyper-mutated ctDNA is 
correlated with response to 
checkpoint inhibitor-based 
therapy and investigation 
of hypermutated ctDNA as 
a predictive biomarker is 
warranted.

Abbreviations: AR: Androgen Receptor; ddPCR: droplet digital PCR; FISH: fluorescence in situ hybridization; IHC: immunohistochemistry; mCRPC 
= metastatic castration-resistant prostate cancer; Met: methylation; MRD: minimal residual disease; NCT: neoadjuvant chemotherapy; NGS: next-
generation sequencing; NSCLC: non-small-cell lung carcinoma; OS = overall survival; PCR: Polymerase chain reaction; PFS: Progression free 
survival; qPCR: quantitative polymerase chain reaction; rtPCR: real-time Polymerase chain reaction; SCC: Squamous cell carcinoma; SNVs: single 
nucleotide variants.
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In a study of clonal evolution, exome sequencing 
of ctDNA using serial plasma from 6 patients with breast, 
ovarian, or lung cancer demonstrated that emergence of 
resistance was associated with increased mutant allele 
fractions, and an activating PIK3CA mutation was noted 
after treatment with paclitaxel [120]. In another study with 
ctDNA analysis of 23 patients with various tumor types 
treated with PI3K-AKT-mTOR pathway or MEK inhibitors, 
clonal response to treatment was noted and some clones 
changed over time discordantly. Increasing mutational 
levels were associated with poorer prognosis [121].

Other investigators used NGS to analyze 54 genes 
and copy number variants in three genes (EGFR, ERBB2 
and MET) on ctDNA of patients with various tumor 
types [122]. Overall, 171 patients with lung (n = 39), 
breast (n = 39), glioblastoma (n = 33), or other cancers 
were analyzed. Actionable mutations were noted in 40% 
(TP53 29.8%, EGFR 17.5%, MET 10.5%, PIK3CA 
7%, and NOTCH1 5.8%). Eighteen percent (6/33) of 
patients with glioblastoma had actionable mutations 
[122]. The same investigators analyzed 168 patients 
with diverse cancers [123]. In ctDNA analysis, 58% of 
patients had ≥1 alteration. Among them, 71.4% had ≥1 
alteration potentially targeted by an FDA-approved 
drug. The concordance rates between ctDNA analysis 
and tissue analysis were: TP53 70.3%, EGFR 70.3%, 
PIK3CA 88.1%, and ERBB2, 93.1%. In patients with 
≥1 alteration, those with ctDNA ≥5% of total DNA 
had shorter OS compared to patients with ctDNA <5% 
(median, 4.03 months vs. NR, p < .001) [123]. With the 
use of checkpoint inhibitor–based immunotherapy across 
various histologies, correlation between high alteration 
number detected in blood-derived ctDNA and favorable 
response, PFS and OS has been reported [124].

In a meta-analysis of patients with solid tumors (39 
studies, 4,052 patients), detection of ctDNA in plasma was 
associated with shorter OS in multivariable analyses [HR, 
2.70; P < .001) compared to patients with undetectable 
ctDNA [125].

Selected studies by tumor type, the gene (s) used for 
ctDNA analysis, and outcomes are summarized in Table 1.

CONCLUSIONS

ctDNA analysis is a non-invasive, cost-effective test 
with a potentially significant role in the early detection 
and diagnosis of tumors. Evolving data from clinical trials 
indicate the association of ctDNA with tumor burden and 
the usefulness of ctDNA analysis in assessment of MRD, 
in understanding mechanisms of resistance to treatment, 
and in dynamically guiding therapy. The discordance 
between ctDNA analysis and tumor tissue genomic 
analysis is attributed, at least in part, to biologic and 
technical differences in detection of alterations between 
DNA shed by the tumor in the circulatory system and 
DNA in tumor tissue. ctDNA is thought to reflect tumor 

from all sites of disease and is secreted by tumor cells, 
phagocyte-engulfed tumor cells, and necrotic or apoptotic 
tumor cells. Selected prospective trials with targeted 
agents incorporate ctDNA analysis to select targeted 
therapy. Longitudinal ctDNA analysis starting at the time 
of diagnosis will enrich our knowledge of the evolution of 
patients’ tumor biology, will accelerate drug development, 
and will contribute to the implementation of precision 
medicine to improve clinical outcomes.
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