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Abstract

The prediction of functional RNA structures has attracted increased interest, as it allows us to study the potential functional
roles of many genes. RNA structure prediction methods, however, assume that there is a unique functional RNA structure
and also do not predict functional features required for in vivo folding. In order to understand how functional RNA
structures form in vivo, we require sophisticated experiments or reliable prediction methods. So far, there exist only a few,
experimentally validated transient RNA structures. On the computational side, there exist several computer programs which
aim to predict the co-transcriptional folding pathway in vivo, but these make a range of simplifying assumptions and do not
capture all features known to influence RNA folding in vivo. We want to investigate if evolutionarily related RNA genes fold
in a similar way in vivo. To this end, we have developed a new computational method, TRANSAT, which detects conserved
helices of high statistical significance. We introduce the method, present a comprehensive performance evaluation and
show that TRANSAT is able to predict the structural features of known reference structures including pseudo-knotted ones as
well as those of known alternative structural configurations. TRANSAT can also identify unstructured sub-sequences bound by
other molecules and provides evidence for new helices which may define folding pathways, supporting the notion that
homologous RNA sequence not only assume a similar reference RNA structure, but also fold similarly. Finally, we show that
the structural features predicted by TRANSAT differ from those assuming thermodynamic equilibrium. Unlike the existing
methods for predicting folding pathways, our method works in a comparative way. This has the disadvantage of not being
able to predict features as function of time, but has the considerable advantage of highlighting conserved features and of
not requiring a detailed knowledge of the cellular environment.
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Introduction

RNA molecules play diverse roles in many of the most basic

cellular processes. In the translation process, for instance, the

protein coding ‘message’ is encoded in a messenger RNA (mRNA)

and transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) are

involved in this catalytic process. Micro RNAs are implicated in

regulating mRNA availability. A range of other non-protein-

coding RNAs (ncRNAs) have been identified [1,2]. Moreover,

studies of mammalian transcriptomes have found, rather surpris-

ingly, that the majority of the genome is transcribed, and that the

vast majority of transcripts do not overlap with known protein-

coding regions, hinting at the possibility that many functionally

important classes of ncRNAs remain to be discovered [2,3].

For many classes of ncRNA molecules studied so far, RNA

structure plays a crucial part in defining its functional role in the

cell. We know, for example, that tRNAs assume a distinct three-

dimensional conformation in order to function properly during

translation and that the functional configuration of the ribosome

complex relies both, on properly folded rRNAs as well as many

proteins binding to the respective rRNAs. In contrast to proteins,

we can typically learn a lot about an RNA’s functionality by

studying only its secondary structure, i.e. the set of base-pairing

nucleotide positions in the RNA sequence. This is the case because

most RNA sequences studied so far fold in a hierarchical manner,

with the secondary structure emerging first and the tertiary

contacts between secondary structure elements emerging later.

In vivo, an RNA molecule is synthesized during transcription

and will immediately start to fold [4,5]. A succession of cellular

events — involving, for example, splicing, RNA editing, the

binding of proteins, metabolites or other RNA molecules — may

influence the kinetic, co-transcriptional folding pathway in vivo

which yields one or more biologically active, i.e. functional

structural confirmations.

The view that one RNA sequence has one functional RNA

structure turns out to be too simplistic. We know by now of several

cases, where a given RNA sequence has more than one

functionally important RNA structure, e.g. ribo-switches [6–8]

which change their structure upon binding a metabolite, as well as

cases, where a transient RNA structure is functionally important
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[9,10]. We therefore propose to develop a method which allows us

to identify evolutionarily conserved structural elements which are

likely to be required for the formation of the functional structures

in vivo.

There exist by now a wide range of computational methods that

can predict an RNA secondary structure given an RNA sequence.

Many of these methods [11–14] in particular earlier methods, aim

to predict the thermodynamically most stable RNA secondary

structure. Many biological systems, however, are not in thermo-

dynamic equilibrium. The predictions of these so-called minimum-

free energy (MFE) methods depend on the underlying energy

parameters which in turn depend on the temperature, the ion

concentration and other parameters. Theoretical studies of RNA

molecules [15] have shown that the thermodynamic structure of

even moderately long RNA molecules often does not correspond

to the functional RNA structure that has been conserved during

evolution, i.e. the RNA structure that exerts the biological function

in vivo. This may, at least partly, be due to co-transcriptional

folding [4,5,16]. More recent structure prediction methods use a

comparative approach which simultaneously analyzes several

evolutionarily related RNA sequences from different organisms

[17–32]. Detailed structural studies employing several dedicated

evolutionary models [21] find that the substitution rate in base-

paired regions is reduced by a factor of 0:384+0:034 and in loop

and bulges by a factor of 0:476+0:066 with respect to the

substitution rate in un-structured regions, i.e. that loops and bulges

tend to evolve significantly slower than un-structured regions and

only slightly faster than base-paired regions at least in set of RNA

structures investigated in [21]. This is in line with our expectation

that loops and bulges are on average more likely to be bound by

other molecules (RNAs, DNAs or proteins) than unstructured

regions. These comparative methods aim to detect the RNA

secondary structure that has been conserved during evolution. The

implicit assumption made by these methods is that evolutionarily

conserved structures are likely to be functionally important which

has been shown to be a reasonable assumption. The performance

of these comparative methods is – generally speaking – higher than

that of non-comparative methods [33] provided the input data are

high-quality multiple-sequence alignments or the method is

capable of generating a multiple-sequence alignment as part of

its predictions [27–30,32]. All of the above computational

methods, however, only aim to predict a single RNA structure

and cannot be used to detect the presence of transient RNA

structures or the presence of multiple functional RNA structures

such as, for example, ribo-switches which are known to have two

distinct functional structures.

The program RNASUBOPT [34] takes a single RNA sequence as

input and predicts a list of all structures below a certain energy

cutoff. Enumerating enough structures to capture most of the

structure probability, however, is only possible for short sequences.

Moreover, since the total number of possible structures is so vast,

the probability of any particular structure is not a reliable indicator

for identifying potential alternative structures. Rather, one would

like to group similar structures together, and identify groups with a

high overall probability. Voss et al. [35] formalize this grouping

process by defining abstraction functions in order to map

structures to ‘RNA shapes’, and are capable of calculating the

total probability for a given shape. The runtime for this method

grows exponentially with sequence length, making it impractical

for sequences longer than about 400 nucleotides [36]. It is possible,

however, to sample structures from the Boltzmann distribution in

polynomial time [37], and to then apply the RNA shapes

abstraction in order to estimate the shape probability for longer

sequences. This approach is capable of recovering alternative

structures for some ribo-switches [35]. All of the above approaches

assume the RNA sequence to be in thermodynamic equilibrium

and are thus limited to identifying alternative structures which

occupy a significant portion of the Boltzmann distribution. For co-

transcriptionally folding RNA sequences (which may become

kinetically trapped), this assumption does not necessarily hold and

the time-averaged probabilities for different structural configura-

tions encountered during the kinetic folding may differ markedly

from their respective probabilities derived from the Boltzmann

distribution.

In vivo, RNA molecules are known to fold co-transcriptionally

[4,5], i.e. while they emerge during transcription. The resulting

kinetic folding pathway can depend on a variety of events during

and after transcription such as the speed of transcription [9,38,39],

splicing [40], RNA editing [41], the binding of proteins [42],

metabolites [43] and other RNA molecules [44], the temperature

and the concentrations of monovalent and divalent ions [45]. The

co-transcriptional folding pathway can differ significantly from the

re-folding one [46,47], both in terms of time line and structural

features.

The increasing interest in RNA folding pathways has spurred

the development of computational methods for RNA structure

prediction which take the folding kinetics explicitly into account.

These methods try to model the physical process by which an

unfolded RNA folds into its functional conformation(s) as a

continuous-time Markov process which allows only local rear-

rangements of secondary structures. If we knew all entries of the

transition rate matrix K containing the transition rates between all

pairs of possible structures, the vector of probabilities for all

structures at a given time could be calculated as P(t)~etKP(0). As

the state space of all possible secondary structures can be very

large for RNAs of biological interest, it is generally not feasible to

calculate the full transition matrix. However, folding trajectories

can be sampled using Monte Carlo stochastic simulation of

the Markov process. Several programs, including RNAKINETICS

[48–50], KINFOLD [51] and KINEFOLD [52–54], employ this

method, though they differ significantly in their implementation.

Mironov and Lebedev [49] were the first to model the co-

transcriptional folding of an emerging RNA sequence and to allow

entire helices not only to form, but also to disintegrate [55]. The

Author Summary

Many non-coding genes exert their function via an RNA
structure which starts emerging while the RNA sequence is
being transcribed from the genome. The resulting folding
pathway is known to depend on a variety of features such
as the transcription speed, the concentration of various
ions and the binding of proteins and other molecules. Not
all of these influences can be adequately captured by the
existing computational methods which try to replicate
what happens in vivo. So far, it has been challenging to
experimentally investigate co-transcriptional folding path-
ways in vivo and only little data from in vitro experiments
exists. In order to investigate if functionally similar RNA
sequences from different organisms fold in a similar way,
we have developed a new computational method, called
TRANSAT, which does not require the detailed computational
modeling of the cellular environment. We show in a
comprehensive analysis that our method is capable of
detecting known structural features and provide evidence
that structural features of the in vivo folding pathways
have been conserved for several biologically interesting
classes of RNA sequences.

Conserved Features of RNA Folding Pathways
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transition probabilities of their Markov chain Monte-Carlo

method correspond to the chemical rate constants for forming

and disintegrating helices [48] and thus have a clear physical

interpretation. Their theoretical framework could be readily

extended to also deal with pseudo-knotted RNA secondary

structures [49].

KINFOLD [51] defines legal transitions as the formation,

disruption, or shifting of a single base-pair. The folding trajectories

it generates are therefore very fine-grained, specifying when each

base-pair is added or removed. In KINEFOLD [52–54], transitions

add or remove entire helices, a simplification which reduces the

number of legal transitions from any state, but which also requires

a more complex estimation of the transition state energy. The

program assumes that the energy barrier is the energy required to

nucleate three base pairs of a new helix, plus the energy required

to displace any helices blocking the formation of the new helix.

KINEFOLD also allows for pseudo-knotted structures, which requires

a more complicated energy model than the standard Turner

model [56] used by KINFOLD (which ignores pseudo-knots).

KINEFOLD also takes into account some topological constraints

induced by pseudo-knots which may kinetically trap other helices

[54]. Both programs can simulate the folding from an unfolded

state as well as the co-transcriptional folding of an emerging

sequence. The latter is done by dividing the sequence into

transcribed and un-transcribed regions whose boundary shifts 59 to

39 at a certain rate, and restricting legal moves to those that form

no base-pairs in the un-transcribed region. Neither of these two

programs can model dynamic transcription speeds, although there

is experimental evidence that transcriptional pausing influences

the folding [57].

Other computational approaches for predicting kinetic folding

pathways consider energy landscapes in order to reduce the size of

the state-space. The energy landscape can be viewed as a barrier

tree, where the local minima are leaves in the tree which are

connected to one or more gradient basins via saddle-points.

Saddle-points are the lowest energy structures that connect the

gradient basins around these local minima [51,58]. Constructing

such a barrier tree representation of the energy landscape requires

the consideration of all possible structures. Barrier trees construct-

ed from a list of the lowest-energy structures (generated with

RNASUBOPT [34]) typically capture the most relevant features of

the energy landscape for sufficiently short sequences (v100 base

pairs (bp)). In order to reduce the state space, Wolfinger et al. [59]

define the state-space as the basins around local minima of the

energy landscape, and calculate the transition rates between

adjacent basins using a variation of the so-called flooding

algorithm used to construct barrier trees. Barrier trees are also

useful for interpreting folding trajectories sampled with Monte

Carlo simulations [51]. A similar approach is taken by Tang et al.

[60,61], where the folding landscape is approximated by a

probabilistic road map which defines the allowed transitions

between states. They restrict the state-space to a set of secondary

structures probabilistically sampled from the Boltzmann distribu-

tion. Transitions are only allowed to the nearest k neighbors, with

energy barriers estimated heuristically. Ideally, these states should

capture the main features of the folding landscape while being few

enough to solve the master equation (though it is also possible to

do Monte Carlo simulation here). Zhang and Chen [62–64]

partition the structure space into clusters based on the presence or

absence of certain (somewhat arbitrarily chosen) rate-limiting

base-stacks, which have particularly high energy barriers to their

formation or disruption. The distribution of structures within

clusters is assumed to be at thermodynamic equilibrium, so the

transition rates between clusters can be calculated by summing the

rates of transition between the structures at the boundaries of

clusters, adjusted for the probability of the boundary structure in

its cluster. All of these thermodynamic-landscape-based methods,

however, are not applicable to the analysis of co-transcriptional

folding, since an RNA’s energy landscape changes while it is being

transcribed. By calculating energy landscapes for all partially

transcribed subsequences and then mapping the local minima

from each landscape onto its successor, however, one could – in

theory – adapt landscape-based methods to co-transcriptional

folding [65].

Long sequences are problematic for all the above methods since

the number of possible secondary structures, and therefore the

worst-case complexity of the energy landscape, grows exponen-

tially with the sequence length. The KINWALKER program [66] was

designed to allow the analysis of the folding kinetics for long

sequences (around 1000 bp). For this, it dispenses with simulation

and instead deterministically predicts a potential co-transcription

folding pathway which is pieced together from heuristically chosen

combinations of pre-computed minimum free-energy (MFE)

structures for short sub-sequences and assumes (similar to MFE

methods for RNA structure prediction) the pseudo-knot free MFE

structure to be the final RNA structure. The method can be

considered kinetic in that it allows the incorporation of an MFE

sub-structure only if the energy barrier between the current

structure and the resulting merged structure that the transition can

occur within a reasonable time, i.e. before the next transcription

step. Calculating the energy barrier between two arbitrary

structures, however, has been shown to be NP-complete [67].

KINWALKER thus employs a further heuristic for estimating these

barriers. In summary, KINWALKER aims to find the MFE structure

at each transcription step, subject to the constraint that the

transitions between structures be kinetically feasible.

All of the above prediction methods take at most the RNA

sequence itself, the temperature, the Naz concentration and a

constant transcription speed into account, but do not capture any

potential interactions with other molecules or other features of the

biological environment which may influence the folding pathway

in vivo. The latter is difficult to do, not only because we typically

lack information on the interaction partners and the mechanisms

and timing of their interactions, but also because we cannot easily

capture the wealth of relevant details of the complex cellular

environment in a computationally tractable model. The perfor-

mance of the existing computational methods can strongly depend

on the sequence length and other features of the individual input

sequence. This is not surprising given that any errors in the early

stages of the folding pathway prediction are magnified as the

folding progresses. A precise knowledge of the transcription start

site i.e. the 59 end of the RNA sequence is thus crucial. The

prediction performance of the existing methods has thus only been

evaluated on very small data sets.

It is also challenging to study kinetic folding pathways

experimentally. There exist by now a range of powerful

experimental techniques for studying large sets of RNA sequences

in an ensemble-averaged way such as UV melting, isothermal

titration calometry, circular dichroism, chemical foot-printing and,

more recently, single-molecule techniques such as fluorescence

correlation spectroscopy [68], single-molecule fluorescence reso-

nance energy transfer [69] and force spectroscopy [70,71]. These

experimental methods, however, still await to be taken from the

test tube to the cell in order to explore how RNA sequences fold in

vivo [72].

We propose a conceptually new computational approach for

studying RNA folding pathways in vivo. Rather than trying to

replicate the folding kinetics of a single RNA sequence in vivo —

Conserved Features of RNA Folding Pathways
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which is very difficult to do — we introduce a comparative

approach which takes several evolutionarily related RNA

sequences as well as an evolutionary tree relating these sequences

as input. Our main goals in devising TRANSAT can be summarized

as follows:

N predict evolutionarily conserved helices that are likely to play a

role in the co-transcriptional formation of the functional RNA

structure(s) in vivo

N do not require a detailed knowledge of the in vivo environment,

e.g. transcriptional speed, ion concentrations, interaction

partners etc., and keep the number of free parameters and

assumptions incorporated into the method to a minimum

N estimate reliability values for all predictions

N present a comprehensive performance evaluation

N have a performance which is robust with respect to sequence

length

Methods

The prediction program TRANSAT

Motivation. If a structural feature is functionally important, it

is typically well conserved in groups of related RNAs, even if the

level of primary sequence conservation may be low. These

conserved structural features can be detected in alignments of

several evolutionarily related RNA sequence by identifying pairs of

alignment columns where the base-pairing potential, but not

necessarily the primary sequence itself has been conserved. This

analysis of these so-called co-varying alignment columns is even

capable of identifying tertiary structure motifs [73,74].

Functionally equivalent RNA sequences from related organisms

tend to be more conserved in terms of RNA structure than

primary sequence, making it often challenging to establish high-

quality sequence alignments based on primary sequence

conservation only. Theoretically, all functional helices, regardless

of their stability or transience, should be evolutionarily conserved

(though not necessarily equally conserved), and comparative

methods should therefore be capable of identifying functional

transient or alternative structures. Moreover, evolution acts on in

vivo structures, which may be influenced by protein-binding, RNA

binding in trans or other local factors. These interactions would

need to be taken into account by non-comparative methods which

try to replicate the co-transcriptional folding process, but are

currently ignored. Comparative methods, however, do not

necessarily require information on interaction partners because

they derive their predictions from the observed patterns of

covariation. One can even argue that comparative methods may

be able to predict single-stranded binding sites by identifying regions

which are devoid of conserved structural features.

We have devised TRANSAT as a comparative method which takes

as input a fixed multiple-sequence alignment of evolutionarily

related RNA sequences from different organisms and an

evolutionary tree relating these sequences. It employs a multiple

step strategy in order to predict a set of conserved helices that can

be considered statistically significant.

Identifying conserved helices and calculating their log-

likelihood values. In the first step, TRANSAT determines helices

for each individual, un-gapped sequence of the input alignment.

We define a helix to consists of 4 or more consecutive consensus

base-pairs which are fG,Cg, fG,Ug and fA,Ug. In the next step,

the helices of the individual sequences are mapped onto the input

alignment, see Figure 1 for details. This procedure produces many

helices spanning all sequences of the multiple sequence alignment

and ensures that the impact of alignment errors is minimized. We

call these helices conserved helices. For each conserved helix h, we

then compute the log-likelihood score as follows:

L(h)~log2

P(hDhpaired)

P(hDhunpaired)

� �
1

L

where L is the length of the helix in base-pairs, hpaired corresponds

to the hypothesis that the alignment columns of h are base-paired

Figure 1. TRANSAT: Mapping of helices to the alignment. TRANSAT

first predicts the helices for all individual sequences in the fixed input
alignment and then maps all of them to the alignment remembering
the base-pairing sequence positions. In the example above, there are
two helices, one derives from sequence 1 (see top figure), the other one
from sequence 2. Mapping these two helices from their respective
sequence to the entire alignment results in the two potential conserved
helices shown above (see the arcs linking the respective alignment
columns). Both conserved helices are then evaluated by TRANSAT in terms
of log-likelihood value and p-value estimation. The log-likelihood value
is calculated based on the base-paired alignment columns in that helix
and all sequences in the alignment, see the text and Figure 2 for details.
All helices predicted by TRANSAT for a given input alignment can then be
ranked according to their p-value. For the two helices in the example
above, the helix that fits the sequences in the given alignment better
will have the higher log-likelihood value and lower p-value. As TRANSAT is
not capable of modifying the fixed input alignment, this mapping
strategy minimized the impact of alignment errors.
doi:10.1371/journal.pcbi.1000823.g001

Conserved Features of RNA Folding Pathways
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and hunpaired to the hypothesis that the alignment columns of h are

un-paired, see Figure 2. Division by L ensures that the log-

likelihood scores are length-normalized.

We model the evolution of base-paired and un-paired alignment

columns along the evolutionary input tree with two reversible, time-

continuous Markov chains using the same rate matrices and

equilibrium distributions as the comparative RNA structure

prediction programs PFOLD [20] and SIMULFOLD [32]. The

likelihood values P(hDhpaired) and P(hDhunpaired) are both calculated

using the Felsenstein algorithm [75] by taking only the alignment

columns of the conserved helix h into account. If we hypothesize that

the alignment columns of h are base-paired, the overall likelihood is

equal to the product of the likelihood values for all pairs of base-

paired alignment columns, i.e. P(hDhpaired)~PL
i~1 P(xi,yi Dhpaired).

If we, however, hypothesize that the alignment columns of h are

unpaired, the overall likelihood is equal to the product of the

likelihood values for all unpaired alignment columns, i.e.

P(hDhunpaired)~PL
i~1 P(xi Dhunpaired):P(yi Dhunpaired). For two base-

paired alignment columns xi and yi, the corresponding likelihood is

calculated using the Felsenstein algorithm and P(xi,yi Dhpaired)~
P(xi,yi Dypaired), where ypaired is an evolutionary model for

base-paired alignment columns of length N , if N denotes the

number of sequences in our multiple sequence alignment. Similarly,

the likelihood for an unpaired alignment column xi is also calculated

using the Felsenstein algorithm and P(xi Dhunpaired)~P(xi Dyunpaired),
where yunpaired is an evolutionary model for unpaired alignment

columns of length N. Each evolutionary model y for alignment

columns of length N corresponds to a five-tuple y~(S,Q,p,t,b),
where S is the corresponding alphabet, Q is the rate matrix, p the

vector of equilibrium frequencies, t is a binary rooted tree topology

and b is a vector of branch lengths. S, Q and p define a continuous

Markov process which models the substitution process (either for

paired or unpaired alignment columns) along the tree defined by t
and b. Either hypothesis, hpaired and hunpaired , is thus captured by a

probabilistic model of evolution. The Felsenstein algorithm [75] is a

recursive algorithm which calculates the likelihood by moving from

the leaf nodes of the evolutionary tree, i.e. the observed nucleotides

and gaps in the corresponding alignment column or pair of

alignment columns, via the internal tree nodes to the root node of

the tree.

In contrast to the customary way of calculating the likelihood,

we interpret one-sided gaps in base-paired alignment columns as

non-consensus base-pairs rather than missing information. Two-

sided gaps, however, are still treated as missing information which

amounts to summing over all possible base-pairs when moving ‘‘up

the tree’’ in the Felsenstein calculation. This treatment of two-

sided gaps makes sense as the length of a helix can shrink or

expand over time [76]. One-sided gaps, however, cannot be

interpreted as the loss or gain of an entire base-pair and we

therefore regard them as non-consensus base-pair.

In the likelihood calculation for two base-paired alignment

columns, the Felsenstein algorithm traverses the tree from the leaf

nodes (i.e. the observed nucleotides in two base-paired alignment

columns) via the internal nodes to the root node of the tree. It sums

over all possible nucleotide pairs at the internal nodes, weighing

each possibility according to the corresponding entry of the pair

rate matrix. If we interpret a gap in the base-pair f{,Gg as

missing information (as is customary), the Felsenstein algorithm

takes all base-pairs, i.e. fA,Gg, fC,Gg, fU ,Gg and fG,Gg,
probabilistically in account at the corresponding leaf node thereby

including two consensus pairs (fC,Gg and fU ,Gg). The likelihood

of going from f{,Gg to the next internal tree node is dominated

by the two good options, whereas we argue that it is conceptually

more appropriate to interpret the gap as character which cannot

base-pair with the other nucleotide (G in this case). This is also in

line with what we know about the evolution of RNA secondary

structure, namely that helices tends to lose or acquire entire base-

pairs, not half-pairs. Using our modified likelihood calculation

which treats one-sided gaps as non-consensus base-pairs rather

than missing information significantly increases our ability to

distinguish base-paired from un-paired alignment columns.

Estimating p-values. The ability of an RNA sequences to

form random helices is known to strongly depend on the sequence

itself, in particular its length and its nucleotide and di-nucleotide

composition. The log-likelihood value L(h) alone is thus typically

not a reliable indicator of whether or not a helix h should be

considered real. In order to correct for the fact that different RNA

sequences have a higher chance of forming random helices than

others, we estimate the p-value for the log-likelihood value of each

conserved helix. This estimation procedure is done as follows for

each input alignment separately.

In the first step, the input alignment is realigned based primary

sequence conservation only using T-COFFEE [77]. The purpose of

the realignment step is to remove patterns that are only supported

by secondary structure conservation and patterns that may have

Figure 2. Log-likelihood calculation for a conserved helix
detected by TRANSAT. See the text for more details.
doi:10.1371/journal.pcbi.1000823.g002

Conserved Features of RNA Folding Pathways
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been introduced by human experts. The realigned alignment is

then randomized following the procedure described by Washietl

and Hofacker [78]. This involves first binning the alignment

columns according to their primary sequence similarity and gap

composition and then swapping alignment columns only within

bins. This procedure ensures that a column can only be swapped

for another column with a similar gap pattern and level of

sequence conservation.

For each original alignment, we generate 500 randomized

alignments. For each shuffled alignment (which we assume to no

longer contain any real helices), we detect ‘‘conserved’’ helices that

may have appeared by chance and then calculate their log-

likelihood values. Both are done in the same way as for the original

input alignment. We then combine the log-likelihood values from

all 500 randomized alignments into a single histogram of log-

likelihood values and use the resulting distribution to assign p-

values to the log-likelihood values of the conserved helices in the

original input alignment. Conserved helices in alignments with a

high structure-formation potential thus require – generally

speaking – larger log-likelihood values in order to be considered

significant than helices in alignments where the overall structure-

formation potential is lower. Figure 3 summarizes the strategy

employed by TRANSAT. The number of randomized alignments

that it is to be generated for each input alignment to TRANSAT is an

input parameter to one of the programs of the TRANSAT software

package that can be easily adjusted by the user. The number of

randomized alignments should be increased if significantly lower

p-values are to be studied.

Output of TRANSAT and brief summary. The output of

TRANSAT thus consists of a list of conserved helices and their

corresponding log-likelihood and p-values. The user of TRANSAT

can then discard all conserved helices above a desired p-value

Figure 3. Overview of strategy employed by TRANSAT. TRANSAT takes as input a multiple sequence alignment and an evolutionary tree (left figure,
top). It first predicts helices for all individual sequences in the alignment and then projects them back onto the multiple sequence alignment. It then
calculates the log-likelihood value for each helix and estimates a p-value. The p-value estimation is explained in the right figure. In the first step, the
original TRANSAT input alignment is realigned based on primary sequence conservation only. In the second step, the columns of the resulting
alignment are permuted multiple times, resulting in 500 shuffled versions of the original alignment. For each shuffled alignment, conserved helices
are detected and their log-likelihood values calculated as for the original alignment. In the final step, the log-likelihood values of all helices in the
shuffled alignments are entered into a histogram which is then used to derive p-values for the helices of the original alignment.
doi:10.1371/journal.pcbi.1000823.g003
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threshold or rank the helices according to their p-values. For an

input alignment of N sequences and length L, TRANSAT requires

O(N:L2) time. TRANSAT does not require a known RNA

secondary structure or known structural features for generating

its predictions and makes only a few basic assumptions, namely

how individual base-paired and unpaired nucleotides evolve (these

assumptions are incorporated in the Felsenstein calculation) and

what the number of consecutive base-pairs in a helix is (which we

set to 4 and which can be changed).

Results

Datasets
Our data set comprises four sub-sets which have been chosen to

represent (a) data, where multiple functional RNA secondary

structures are known, (b) data, where only one functional RNA

secondary structure is known and (c) artificially generated data

which allows us to investigate some features of TRANSAT in greater

detail. Our aim was to compile a large and diverse data set and to

include as many examples of known functional and transient RNA

structures as possible. Taken together, our data set comprises 1126

multiple-sequence alignments whose lengths ranges from 100 to

1247 bp and which comprise between 6 and 712 sequences.

The RFAM data set. The RFAM database [79–81] contains

multiple sequence alignments for a wide variety of RNA gene

families. For each family, RFAM stores a manually curated seed

alignment and a single conserved RNA secondary structure

structure. These seed alignments are used in the RFAM database

to generate a covariance model [82,83] for each family. Each

covariance model is a probabilistic model which captures structural

as well as sequence features of the seed alignment and which can be

used to search sequence (not structure) databases for RNA

sequences that share both sequence and structural features with

the corresponding RNA family. Each covariance model in RFAM is

also used to compile a so-called full RFAM alignment which consists

of the sequences in the seed alignments as well as additional

nucleotide sequences from EMBL [84] that score above a certain

threshold with the covariance model. As searching the entire EMBL

data base with a covariance model would be too time-consuming,

the data base is first pre-filtered by removing all sequences that lack

a high-scoring BLAST hit to at least one of the sequences in the seed

alignment.

We select a sub-set of high-quality seed alignments from the

RFAM database version 9.1 [81] which meet four criteria: (1) to

consist of at least 5 sequences, (2) to have a minimum length of

100 bp, (3) to have a mean fraction of canonical base pairs larger

than 0:8 and (4) a covariation of at least 0:2 [85]. The mean

fraction of canonical base-pairs corresponds to the proportion of

consensus base-pairs in the base-paired alignment columns of the

consensus structure. The closer this fraction is to 1, the better the

consensus structure is supported by all sequences in the seed

alignment. The covariation measures the fraction of base-paired

alignment columns that are supported by mutations which

maintain the base-pairing ability, but alter the nucleotides forming

the base-pair.

Applying these four selection criteria, we arrive at a data set of

134 seed alignments which contain 6 to 712 sequences (average is

60 sequences) and whose length ranges from 100 to 1247 bp

(average is 221 bp). The total tree length of these alignments

ranges from 0.4 to 116.3, the average being 10.0. We call this data

set the RFAM data set.

The artificial data set. In order to be able to investigate the

dependence of the performance on the alignment length and the

total tree length in detail, we generate an artificial data set

comprising a total of 990 alignments. Each alignment in this

artificial dataset is generated as follows. In the first step, an RNA

secondary structure from the RNA STRAND database [86], a

total tree length, and a desired number of sequences in the

alignment is chosen. In the second step, a balanced, binary tree is

generated where all branches have the same length. In the third

step, the alignment itself is generated by assigning a nucleotide to

each position in the alignment (or pair of positions when dealing

with alignment columns which are base-paired in the

corresponding RNA structure) from the respective equilibrium

distribution, and then following the tree from its root to the leaves,

assigning nucleotides to each node in the tree based on the

transition matrices derived from the appropriate rate matrix. We

use the same equilibrium distributions and rate matrices as PFOLD

[20] and SIMULFOLD [32].

Structures selected from the RNA STRAND database were

binned according to their sequence length (100–199, 200–299, etc.

up to 900–999). For the tree length experiment, 10 structures were

selected at random from each bin, and for each structure,

alignments of 10 sequences were generated with total tree lengths

of 0.5, 1, 2, 4, 8, and 16. The artificial data set for which the tree

experiments were performed thus consists of 540 artificial

alignments. For the alignment length experiment, 50 structures

were selected at random from each bin. For each structure, we

generated an alignment with 10 sequences and a total tree length

of 4. The artificial data set for which the length experiments were

performed consists therefore of 450 artificial alignments.

The hok data set. The hok/sok system in the R1 plasmid of

Escherichia coli is responsible for maintaining the plasmid’s presence

through successive generations [87]. It comprises three genes: the

hok (‘host-killing’) gene encoding a protein toxin, the mok

(‘modulation of killing’) gene required for hok translation, and

the sok (‘suppression of killing’) gene which blocks the translation of

mok, thereby repressing hok [88]. The hok/sok system expresses two

constitutively transcripts. One transcript, called the hok transcript,

where the hok and mok reading frames overlap, and the other

transcript corresponding to the sok RNA gene [89]. The hok/sok

system stabilizes the plasmid by killing daughter cells that lack the

plasmid after fission from the plasmid-containing parent. The way

this happens is that daughter cells soon run out of sok transcripts to

suppress hok translation because the constitutively-expressed hok

transcript is more stable than the the also constitutively-expressed

sok transcript which degrades quickly. The RNA structure of the

hok transcript is key to this mechanism.

As the hok transcript emerges, it forms a metastable structure,

which blocks the ribosomal binding sites for the hok and mok gene,

thereby preventing premature ribosome loading. Once the whole

transcript has been produced, the transcript adopts a stable

inactive RNA structure. However, 39 processing of this transcript

allows the transcript to rearrange into the active structure, which is

translationally active unless the sok transcript is bound to it. This

metastable structure is likely to also guide the folding into the

stable inactive structure (which comprises a ‘long-distance’ helix

that pairs a region at the 59 end of the transcript to a region near

its 39 end), preventing premature formation of the active structure.

A review of the hok/sok mechanism can be found in [88]. Several

evolutionarily related toxin/antitoxin systems have been identified,

and the alignment of their transcripts reveal covariation patterns

consistent with each of these structures [90]. We choose the

alignment from Gerdes et al. [88] which contains several more

members of the hok family. It comprises a total of 9 sequences, has

a length of 196 bp and a total tree length of 2.31. As this alignment

provides only an outline of the helices, we manually derived the

exact consensus structure from the observed evolutionary pattern.
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The Gerdes alignment does not cover the entire length of the hok

transcript, but comprises the regions with most structural

rearrangements.

The trp-attenuator data set. The trp-attenuator is a ribo-

switch which regulates transcription of the trp-operon in Escherichia

coli [91]. It is located in the leader peptide region of the trp-operon

transcript, and can form three different helices. Two of the helices,

the helix involving regions 1 and 2 (called the 1:2 helix) and the 3:4

helix (the numbering of regions is from 59 to 39), are mutually

compatible, whereas the third 2:3 helix is incompatible with either

of the two other helices.

The formation of the 1:2 helix during transcription causes the

RNA-polymerase to pause. If a ribosome starts translation, it

disrupts the 1:2 helix as soon as it reaches region 1 of the

transcript, thus freeing the RNA-polymerase. If tryptophan is

limited, the ribosome will pause at the tryptophan codon in region

1, thereby allowing helix 2:3 to form and simultaneously

preventing the formation of the 3:4 helix which serves as a

terminator stem which ends transcription. This allows the trp-

operon to be fully transcribed. If tryptophan is not limiting,

however, the ribosome disrupts the 2:3 helix, thereby allowing the

3:4 helix to form and to terminate the transcription.

Several protein-mediated ribo-switches which regulate trp-

operon activity have been identified in Bacillus subtilis [92]. The

comparative analysis of trp-operons from several species of

Actinobacteria show similar features to the Escherichia coli trp-

attenuator [93]. The RNA structure detection program RNA-

lishapes can successfully identify all three helices from an

alignment of several actinobacterial trp-attenuator sequences

[94]. For our dataset, we choose the alignment proposed by Voss

[94] which comprises 8 sequences, has a total length of 117 bp and

a total tree length of 2.29.

Performance evaluation
The performance of new prediction methods is best bench-

marked by comparing the set of predicted to the set of known

structure for an, ideally, large and diverse data set that has been

carefully and completely annotated (the test set). If the prediction

method depends on free parameters, these parameters should have

been trained or manually derived from a training set which should

have no overlap with the test test (and which has to be large and

diverse enough to minimize the risk of parameter over-fitting).

Typically, training and test sets are permuted several times in

cross-evaluation experiments in order to show that both, the

parameter training and the resulting performance are fairly

independent of the particular choice of training and test set. This

careful benchmarking is comparatively easy to accomplish for

some applications, e.g. methods for RNA secondary structure

prediction, but more difficult for others.

The conclusive benchmarking of computational methods for

predicting kinetic folding pathways has, so far, been difficult. This

is due to several reasons. First, detailed experimental results on

folding kinetics, usually done via temperature- or pH-jump kinetic

trapping procedures [95] or single-molecule ‘optical-tweezer’

manipulation [96], are only available for a small number of

sequences which are typically quite short (v100) bp) and may,

moreover, correspond to artificial sequences. Second, the

assumptions made explicitly or implicitly by the prediction

methods may not apply to the experimental setting. Third, there

are no standard metrics for comparing experimental results with

output from computational prediction methods (whose type of

output varies greatly from method to method). Fourth, many

computational methods (especially more heuristic ones [66,97])

rely on a number of free parameters which require a dedicated test

set in order to train them reliably and to avoid overlap with the test

set. Consequently, most methods for predicting the RNA folding

kinetics have been evaluated via a qualitative rather than

quantitative comparison and only by considering a few chosen

experimentally investigated sequences.

TRANSAT has been devised to detect conserved RNA helices of

statistical significance. Using TRANSAT, we thus hope to not only

detect the helices of the known functional RNA structure, but also

new helices of functional importance which may be involved in

defining the RNA’s folding pathway in vivo.

Performance for detecting helices of known functional

RNA secondary structures. Comparing the helices predicted

by TRANSAT to the helices of the known RNA secondary structures

in our RFAM data set should allow us to get an estimation of

TRANSAT’s performance. For the purposes of this evaluation, we

assume that the structural annotation of this data set is not only

correct, but also complete.

As we want to know how good TRANSAT is at recovering helices

of the known RNA secondary structure, we investigate the helix-

specific performance in addition to the base-pair specific

performance. We measure the performance in two ways: the

sensitivity as function of the false positive rate (FPR) and the

sensitivity as function of the positive predictive value (PPV).

As is customary, we define the sensitivity as Sens~
TP=(TPzFN), where TP is the number of true positives and

FN is the number of false negatives. The false positive rate is

defined as FPR~FP=(FPzTN), where FP is the number of false

positives and TN is the number of true negatives. The positive

predictive value is defined as PPV~TP=(TPzFP). The sensitiv-

ity thus measures the fraction of known features that have been

correctly predicted, whereas the positive predictive value corre-

sponds to the fraction of predicted features that are correct. As we

discard predicted helices with a p-value below a user-defined

threshold of c, we classify base-pairs as defined in Table 1.

TRANSAT’s primary aim is to reliably detect statistically

significant, conserved helices. It thus makes sense to investigate

the helix-specific performance in some detail. We do this as before

by investigating the sensitivity (Sens) as function of the false

positive rate (FPR) as well as the sensitivity (Sens) as function of the

positive predictive value (PPV). The above definitions for these

three terms still apply, but the definitions for TP, TN, FP and FN

have to be revised as we are now comparing helices rather than

individual base-pairs. For a predicted helix to be considered a true

positive (TP), we require 70% or more of its base-pairs to match

known base-pairs. For a given p-value threshold of c, each helix is

classified as defined in Table 2.

Table 1. Definitions regarding the base-pair-specific
performance of TRANSAT.

base-pair is known
structure

base-pair not in
known structure

minimum p-value vc TP FP

minimum p-value §c FN TN

In order to quantify the performance of TRANSAT, base-pairs are first classified
into true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) according to the definitions above, where c denotes the user-
defined p-value threshold which is applied to the helices predicted by TRANSAT.
The minimum p-value of a predicted base-pair is defined as the minimum p-
value of all predicted helices that contain this base-pair, i.e. a predicted base-
pair inherits its statistical significance from the most statistically significant helix
to which it belongs.
doi:10.1371/journal.pcbi.1000823.t001
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As Figure 4 shows, TRANSAT has almost the same performance for

helices as for individual base-pairs. For many applications, one wants

to maximize the sensitivity and the PPV at the same time. A good way

to visualize how both performance measures vary with the p-value

threshold is thus to plot the F-measure as function of the p-value

threshold as shown in Figure 4. The F-measure or F-score is defined

as the harmonic mean of the sensitivity and the PPV, i.e.

F~2:(Sens:PPV)=(SenszPPV). The helix specific F-measure

reaches its maximum value of 0:54 for a p-value threshold of

1:9:10{3, whereas the base-pair specific F-measure peaks at a p-value

threshold of 4:7:10{4 with an F-measure of 0:51. Another measure

which combines several performance indicators into one is the so-

called Mathews correlation coefficient (MCC) which is defined as

Table 2. Definitions regarding the helix-specific performance
of TRANSAT.

ww70% known base-pairs ƒƒ70% known base-pairs

p-value vc TP FP

p-value §c FN TN

In order to quantify the performance of TRANSAT for entire helices, helices are first
classified into true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) according to the definitions above, where c denotes the user-
defined p-value threshold which is applied to the helices predicted by TRANSAT.
doi:10.1371/journal.pcbi.1000823.t002

Figure 4. Performance of TRANSAT for detecting the known base-pairs (bp) and helices (helix) of the RFAM data set. The top left figure
shows the sensitivity as function of the false positive rate (FPR) and the top right figure the sensitivity (Sens) as function of the positive predictive
value (PPV). The bottom left figure shows the F-measure and the bottom right figure the MCC as function of the p-value threshold, see the text for
the definitions of the F-measure and the MCC. Note that each data point in the figures above corresponds to the respective performance measure
averaged over the entire RFAM data set for a particular p-value threshold (along the x-axis).
doi:10.1371/journal.pcbi.1000823.g004
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MCC~
TP:TN{FP:FN

sqrt(TPzFP):(TNzFN):(TPzFN):(TNzFP)
. It is

similar, but not identical to the F-measure, see Figure 4. We expect

the observed sensitivity to be an indicator of TRANSAT’s true

performance. As we do not know for sure, however, whether or

not the known structural annotation is complete, i.e. if all functional

helices have been annotated, the measured positive predictive value

can be viewed as a lower boundary to the true performance of

TRANSAT.

Dependence of the performance on the alignment length

and the total tree length. The performance of methods that

predict a kinetic folding pathway is known to strongly depend on

the length of the input sequence. In order to systematically

investigate to which extent the performance of TRANSAT depends

on the alignment length, we investigate the predictions for the

artificial data set. As Figure 5 shows, the sensitivity as function of

the false positive rate shows no perceptible dependence on the

length of the alignment, whereas the sensitivity as function of the

PPV decreases slightly as the length of the alignment increases.

TRANSAT is a comparative method, whereas all existing methods

for predicting kinetic folding pathways take a single RNA sequence

as input. It is well known that the performance of comparative

RNA secondary structure prediction methods depends on the

number of sequences in the alignment, see e.g. [19], or, more

precisely, on the total tree length of the sequences in the input

alignment, see e.g. [22]. In order to investigate how TRANSAT’s

performance varies with the total tree length, we investigate the

predictions for the artificial data set. We calculate the maximum-

Figure 5. Performance of TRANSAT for predicting the known helices of the artificial data set as function of the alignment length. The
top left figures shows the sensitivity (Sens) as function of the false positive rate (FPR) for different alignment lengths. The colors indicate the length of
the alignment in nucleotides ranging from 100 to 999 nucleotides. The top right figures shows the sensitivity as function of the positive predictive
value (PPV) for different alignment lengths. The bottom left figures shows the F-measure and the bottom right figure the MCC as function of the p-
value threshold, see the text for the definitions of the F-measure and the MCC. All figures use the same coloring scheme as the top left figure.
doi:10.1371/journal.pcbi.1000823.g005
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likelihood (ML) tree as the reference tree for all alignments in our

artificial data set. As Figure 6 shows, the performance increases

with the total tree length. This dependence is more pronounced

for the sensitivity as function of the PPV than the sensitivity as

function of the false positive rate.

When comparing the performance plots for the artificial data set

to those for the RFAM data set shown in Figure 4, it is clear that the

performance for the artificial data set is superior. This is mainly

due to two reasons. First, due to the way the artificial data set was

constructed, it does not contain any conserved structural features

that are not already part of the structural annotation, whereas we

cannot say for sure whether or not the structural annotation of the

RFAM data set is really complete. This affects in particular the

sensitivity as function of the positive predictive value. Second,

(again due to the way the artificial data set was generated) its

alignments do not contain any alignment errors and no structural

variation between sequences of the same alignment, whereas the

alignments of the RFAM data set may be affected by both types of

complications. The performance evaluation for the artificial data

set thus presents only an idealized view of the program’s true

performance, but has the advantage of allowing us to study the

influence of the alignment length and the total tree length in great

detail and without having to take additional complications into

account.

Figure 6. Performance of TRANSAT for predicting the known helices of the artificial data set for different total tree lengths. The top left
figures shows the sensitivity (Sens) as function of the false positive rate (FPR) for different tree lengths. The colors indicate the total length of the
maximum-likelihood trees that were derived for the alignments of the artificial data set. They range from 0.5 to 16. The top right figures shows the
sensitivity as function of the positive predictive value (PPV). The bottom left figures shows the F-measure and the bottom right figure the MCC as
function of the p-value threshold, see the text for the definitions of the F-measure and the MCC. All figures use the same coloring scheme as the top
left figure.
doi:10.1371/journal.pcbi.1000823.g006
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When comparing the effect of the total tree length on the

performance to the effect that the alignment length has, it is clear

that evolutionary diversity, i.e. the total tree length, has a much

greater influence on the performance than the alignment length.

This can be understood by the way that TRANSAT generates

predictions. TRANSAT detects conserved helices by identifying pairs

of co-varying alignment columns. We expect the amount of co-

variation to strongly depend on the total tree length. If the

sequences in the input alignment look very similar, i.e. if they are

closely related and if the corresponding total tree length is small,

the amount of co-variation will be significantly smaller than if the

sequences are evolutionarily more distantly related, i.e. if the total

tree length is large. If the sequences are only very distantly related,

we expect structural variation to occur between the sequences, e.g.

helices that have been conserved in some sequences, but not in

others. This effect cannot be observed in our artificial data set, but

has been shown to exist in some biological data sets, see e.g. [22].

The number of possible bi-secondary RNA structures, i.e. RNA

structures that can be viewed as combination of at most two

secondary structure without pseudo-knots, grows exponentially

with the sequence length [98]. For a non-comparative method that

predicts structure elements such as helices, we thus expect the PPV

to significantly decrease with the sequence length. For a

comparative method, however, we expect this effect to be less

pronounced because there is no reason to expect the number of

structural features that are supported by co-variation to also increase

quadratically with the alignment length. This is, in our view, the

main reason why comparative methods tend to outperform non-

Figure 7. Performance of TRANSAT for detecting the known helices of the hok data set. The top left figures shows the sensitivity as function
of the false positive rate (FPR) and the top right figure the sensitivity as function of the positive predictive value (PPV). The bottom left figure shows
the F-measure and the bottom right figure the MCC as function of the p-value threshold, see the text for the definitions of the F-measure and the
MCC.
doi:10.1371/journal.pcbi.1000823.g007
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comparative methods. The alignment length has, however, an

effect on the p-values that are estimated for the detected helices.

This, more minor, effect is shown in Figure 5.

TRANSAT predictions for the hok and trp-attenuator data

sets. The hok and trp-attenuator data sets allow us to evaluate the

performance of TRANSAT for sequences, where more than a single

functional RNA secondary structure is known.

The performance of TRANSAT for the hok data set is shown in

Figure 7, those for the trp-attenuator data set in Figure 8. These

figures show how the performance varies as the p-value threshold

value is changed. The F-measure for the hok data set peaks with a

value of 0:73 for a p-value threshold of 5:5:10{3, whereas the F-

measure for the trp-attenuator data set peaks with a value of 0:65

for a p-value threshold of 5:2:10{2. TRANSAT can thus successfully

detect the alternative structure of the hok data set, whereas the

performance for the trp-attenuator data set is not as high. The peak

performance values for these two data sets where known transient

helices exist is, however, still significantly larger than the peak

performance for the RFAM data set (0:51 for base-pairs and 0:54
for helices).

A more intuitive way of visualizing the TRANSAT predictions is to

plot the predicted helices for a given p-value threshold as shown in

Figure 9 and Figure 10. These so-called arc-plots show the known

structure as well as the predictions made by TRANSAT. The x-axis

symbolizes the alignment that was used as input to TRANSAT. Each

arc corresponds to a base-pair between the respective positions in

Figure 8. Performance of TRANSAT for detecting the known helices of the trp-attenuator data set. The top left figures shows the sensitivity
as function of the false positive rate (FPR) and the top right figure the sensitivity as function of the positive predictive value (PPV). The bottom left
figure shows the F-measure and the bottom right figure the MCC as function of the p-value threshold, see the text for the definitions of the F-
measure and the MCC.
doi:10.1371/journal.pcbi.1000823.g008
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the alignment. Arcs drawn above the x-axis correspond to base-

pairs that are known to exist in the known RNA secondary

structure (black) and that TRANSAT predicts correctly (non-black

colors), whereas arcs drawn below the x-axis correspond to new

base-pairs predicted by TRANSAT. The top arcs therefore visualize

the sensitivity, whereas the bottom arcs visualize the positive

predictive value of TRANSAT. The colors of the individual arcs

indicate the minimum p-value of the respective base-pair as

estimated by TRANSAT (v10{5 green, v10{4 blue, v10{3

orange and v (p-value threshold) red). As defined earlier, the

minimum p-value of a predicted base-pair corresponds to the

minimum p-value of all predicted helices that contain this base-

pair.

Revisiting the TRANSAT predictions for the RFAM data

set. The RFAM data set allows us to evaluate TRANSAT’s

performance for detecting the known references structures as

presented above. For this, we assume the structural annotation of

the RFAM data set to be both, correct and complete. Any RFAM

alignment, however, only corresponds to a single functional RNA

secondary structure in the RFAM data base and does not contain

information on alternative functional RNA secondary structure or

conserved transient helices. It may thus be possible to detect

additional, evolutionarily conserved structural features with

TRANSAT that are currently not part of the structural annotation.

For this, we studied several RFAM families in greater detail.

Figure 11 shows the TRANSAT predictions for the Cripavirus

internal ribosomal entry site (IRES). TRANSAT not only detects the

helices of the known, pseudo-knotted RNA secondary structure,

but also predicts several transient helices of lower statistical

significance which may be involved in defining the RNA’s

co-transcriptional folding pathway. As shown in Figure 11, it is

fairly easy to manually bring all helices into an order in which

Figure 9. Conserved helices predicted by TRANSAT for the hok data set for different p-value threshold values (left 10{2, right 10{3).
The x-axis represents the hok alignment. Each arc corresponds to a base-pair between the respective positions in the alignment. Arcs above the x-axis
correspond to known base-pairs, whereas arcs below correspond to new base-pairs predicted by TRANSAT, i.e. they correspond to base-pairs that do
not involve the same pair of nucleotide positions as any base-pair in the known structure(s). Base-pairs predicted by TRANSAT have non-black colours
which indicate their reliability as estimated by TRANSAT (v10{5 green, v10{4 blue, v10{3 orange and v (p-value threshold) red). They can either be
found above the x-axis, if they agree with a pair in the reference structure(s), or below, if they are new. TRANSAT predicts most helices of the known
structure as well as three statistically significant conserved helices which may guide the structure formation.
doi:10.1371/journal.pcbi.1000823.g009

Figure 10. Conserved helices predicted by TRANSAT for the trp-
attenuator data set as function for a p-value threshold of
5:10{2. The x-axis represents the trp-attenuator alignment, see the text
or the caption of Figure 9 for more information on arc-plots. TRANSAT

predicts almost all base-pairs of the known structure correctly as well as
several equally significant conserved helices which may guide the
formation of the known structure.
doi:10.1371/journal.pcbi.1000823.g010

Figure 11. Known RNA secondary structure and TRANSAT

predictions for the Cripavirus internal ribosomal entry site
(IRES), RF00458, for a p-value threshold of 10{3. TRANSAT predicts
the helices of the pseudo-knotted known structure correctly and also
predicts several transient helices which suggest a co-transcriptional
folding pathway (see numbering of helices above). All predicted
transient helices (helices 4, 6 and 10) are mutually incompatible with a
helix of the known RNA structure. Helix 4 may yield to helix 8, helix 6 to
helix 7 and helix 10 to helix 12. The transient helices may thereby guide
the formation of the known functional RNA structure.
doi:10.1371/journal.pcbi.1000823.g011
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Figure 12. Known RNA secondary structure and TRANSAT predictions for telomerase RNA for vertebrates (left, RF00024) and ciliates
(right, RF00025) for a p-value threshold of 10{3. The TRANSAT predictions indicate that the co-transcriptional folding of the vertebrate sequences
may involve large-range structural rearrangements, whereas the two hair-pins of the known ciliate structure are predicted to form independently.
Note that TRANSAT correctly captures the known pseudo-knotted structure of the vertebrate telomerase RNA (left). See the text or the caption of
Figure 9 for more information on arc-plots.
doi:10.1371/journal.pcbi.1000823.g012

Figure 13. Known RNA secondary structure and TRANSAT predictions for two hairpin-like known structures, the small nucleolar RNA
snR76 for a p-value threshold of 10{3 (left, RF01209) and the bacterial signal recognition particle RNA (right, RF00169) for a p-value
threshold of 10{2 (right, top) and 10{4 (right, bottom). The TRANSAT predictions for both RNA families indicate several, mutually incompatible
transient helices. In case of the bacterial signal recognition particle, the transient helices (right, bottom, numbered 1–5) are mutually incompatible
with the base-pairs of the known structure. The hairpin-like structure of the small nucleolar RNA snR76 seems to fold in one go, whereas the
formation of the hairpin-like structure of the bacterial signal recognition particle RNA may first involve the formation of helix 1 which is later replaced
by the known hairpin-like structure as the RNA sequence gets further transcribed. Helices 2 to 5 are predicted as statistically more significant (p-
values v10{4) than the helices of the known hairpin-like structure. They are mutually exclusive and may correspond to alternative structural
confirmations for this sequence. See the text or the caption of Figure 9 for more information on arc-plots.
doi:10.1371/journal.pcbi.1000823.g013
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they may appear in the co-transcriptional folding pathway (see

helices 1 to 12).

Figure 12 shows the results for telomerase RNA, once for

vertebrate sequences and once for ciliate sequences. Note that

TRANSAT correctly captures the pseudo-knotted structure of the

vertebrate telomerase RNA. As the TRANSAT predictions show, the

vertebrate data set contains evidence for a conserved helix of high

statistical significance (see blue helix with p-value v10{4) linking

the first two hairpin-like structures which would involve large-

range structural rearrangements, whereas the ciliate sequences do

not support such a helix. Similar to the predictions shown in

Figure 11, transient helices predicted by TRANSAT are often

mutually incompatible. This arrangement enforces an ordered

way of rearranging the emerging RNA secondary structure while

at the same time minimizing the sequence space occupied by these

transient helices.

Figure 13 shows the TRANSAT predictions for two hairpin-like

known structures which suggest that they fold in different ways.

Both alignments are roughly of the same length (RF01209 121 bp,

RF00169 129 bp). The hairpin-like structure of the small nucleolar

RNA snR76 seems to fold in one go, whereas the formation of the

hairpin-like structure of the bacterial signal recognition particle

RNA may first involve the formation of helix 1 which is later

replaced by the known hairpin-like structure as the RNA sequence

gets further transcribed. Helices 2 to 5 are predicted as statistically

more significant (p-values v10{4) than the helices of the known

hairpin-like structure. They are mutually exclusive and may

correspond to alternative structural confirmations for this sequence.

The four RFAM alignments presented in Figure 14 show that

TRANSAT provides strong evidence that a pseudo-knotted config-

uration is part of the co-transcriptional folding pathway or the

annotated, functional RNA secondary structure. The latter is likely

given that most RNA secondary structure prediction program

ignore pseudo-knots and that human annotators could have easily

missed the new helix whose two halves are far apart.

One motivation for devising TRANSAT was to develop a method

that does not require a detailed modeling of the in vivo

environment, in particular of molecules binding to the RNA

sequence which may involve the resulting folding pathway. As the

two examples for alignments of length 392 bp (RF00018) and

655 bp (RF00023) in Figure 15 show, TRANSAT is capable of

highlighting sequence regions which are likely to be bound by

other molecules or which are required to be single-stranded for

proper functioning. These regions correspond to sub-sequences

Figure 14. For several RFAM families, the TRANSAT predictions propose a pseudo-knotted configuration, see the S-adenosyl-L-
homocysteine ribo-switch (left, top, RF01057), the glmS glucosamine-6-phosphate activated ribozyme (left, bottom, RF00234), the
small nucleolar RNA U3 (right, top, RF00012) and the U12 minor spliceosomal RNA (right, bottom, RF00007). For a p-value threshold of
10{3, TRANSAT predicts the helices of the known structures correctly and also provides strong statistical evidence (p-value v10{4) for additional
helices that would render the known secondary structure pseudo-knotted, see the blue bottom-arcs for all four RNA families. Note that for the U12
minor spliceosomal RNA (right, bottom), the newly predicted helix is in competition with the most 59 helix that is part of the known RNA secondary
structure. See the text or the caption of Figure 9 for more information on arc-plots.
doi:10.1371/journal.pcbi.1000823.g014
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where TRANSAT detects no conserved helices of statistical

significance.

Comparison of the TRANSAT predictions to the Boltzmann

ensemble of RNA structures in thermodynamic equili-

brium. It is interesting to investigate if the helices predicted

by TRANSAT are similar to the structural features that would be

present in thermodynamic equilibrium. For this, we use the

program RNAALIFOLD [17] with the ‘‘-p’’ option in order to

calculate the probabilities of individual base-pairs in the

Boltzmann distribution of all possible (pseudo-knot free) RNA

secondary structures that are expected to be present in

thermodynamic equilibrium. As TRANSAT, RNAALIFOLD P takes

as input a fixed multiple-sequence alignment. We then compare

these probabilities (i.e. those estimated by RNAALIFOLD P for

individual base-pairs) to the p-values assigned by TRANSAT to

individual helices. Using the same strategy as we used for TRANSAT

Figure 15. For some RFAM families, TRANSAT highlights regions which are devoid of transient structures, thereby indicating regions of
the RNA sequence which may be bound by other molecules early on in the folding process. Shown here are two examples, the CsrB/
RsmB RNA family (left, RF00018) and the bacterial tmRNA (right, RF00023) for a p-value threshold value of 10{3 (left and right, top) and 10{4 (right,
bottom). The CsrB/RsmB RNA is known to be bound by multiple copies of the CsrA protein. The RNA’s known structure comprises only short range
helices and TRANSAT predicts only two transient structures for the entire 392 bp long alignment. Both findings support the hypothesis that protein
binding occurs early during the folding of this RNA. The helices of the pseudo-knotted known structure for the bacterial tmRNA are correctly
predicted by TRANSAT for a p-value threshold of 10{3 (right, top). TRANSAT predicts several additional helices, but the region of the tmRNA sequences
that contains the reading frame which ends in a translation stop signal is devoid of statistically significant transient helices (right, bottom) supporting
the hypothesis that the sequence in that region of the has been chosen to remain single-stranded and readily accessible. See the text or the caption
of Figure 9 for more information on arc-plots.
doi:10.1371/journal.pcbi.1000823.g015
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for deriving a sensible p-value threshold, we derive the threshold

value which maximizes the performance for the RFAM data set in

terms of F-measure by comparing all base-pairs predicted by

RNAALIFOLD P to those of the known reference structures. This

results in a probability threshold of 5% which we use to compare

the predictions by RNAALIFOLD P to those of TRANSAT, see

Figure 16 to Figure 20 as well as Figures 3 to 10 in Text S1 (the file

with supplementary information).

As opposed to TRANSAT, the structural features of the thermo-

dynamic ensemble predicted by RNAALIFOLD P are not able to

capture the cases where more than a single functional RNA

secondary structures exist, see Figure 16 and Figure 17. If

RNAALIFOLD P predicts new base-pairs that are not part of the

known reference structure(s), these tend to extend a known helices

by one or two base-pairs to either side of the helix rather than

correspond to entirely new helices as TRANSAT does, see Figure 16,

Figure 17, Figure 18 and Figures 6, 7 and 8 in Text S1. There are

several cases where the thermodynamic ensemble predicted by

RNAALIFOLD P misses entire helices of the known RNA secondary

structure(s), see Figure 16, Figure 17, Figure 18, Figure 19, Figure 20

and Figures 3, 4 and 9 in Text S1, and does not capture the pseudo-

knotted structures well, see Figure 18, Figure 20 and Figure 3 in

Text S1. In the few cases where RNAALIFOLD P predicts novel

helices, see Figure 19 and Figure 6 in Text S1, they are similar to a

new helix predicted by TRANSAT. Their ranking in terms of base-

pairing probability, however, is often not in line with the p-value

ranking of TRANSAT and there exist cases where they differ from

what TRANSAT predicts, see Figures 7 and 10 in Text S1.

Overall, we thus conclude that the presence of multiple

functional RNA secondary structures as well as of pseudo-knotted

structures is better modelled using TRANSAT than assuming a

structural ensemble in thermodynamic equilibrium as predicted by

RNAALIFOLD P.

Discussion

We devised TRANSAT as a method to detect the statistically

significant, conserved helices of functional RNA structures,

including the helices of transient, pseudo-knotted and alternative

structures as they are known to exist in vivo. As we explain in detail

in the introduction, it is currently not possible to model the kinetic

Figure 16. Comparison of TRANSAT (top figure) and RNAALIFOLD P
(bottom figure) for the hok data set. In each figure, the x-axis
represents the hok alignment. Each arc corresponds to a base-pair
between the respective positions in the alignment. Arcs above the x-
axis correspond to known base-pairs, whereas arcs below correspond to
new base-pairs predicted by the respective program, i.e. they
correspond to base-pairs that do not involve the same pair of
nucleotide positions as any base-pair in the known structure(s). In the
top figure, base-pairs predicted by TRANSAT have non-black colours
which indicate their reliability as estimated by TRANSAT (v10{5 green,
v10{4 blue, v10{3 orange) using a p-value threshold of 10{3 . These
base pairs can either be found above the x-axis, if they agree with a pair
in the reference structure(s), or below, if they are new. In the bottom
figure, base-pairs predicted by RNAALIFOLD P have non-black colours
which indicate their base-pairing probability in the Boltzmann
ensemble of pseudo-knot free RNA secondary structures that we would
expect in thermodynamic equilibrium (§75% green, §50% blue,
§25% orange and w5% red) using a pairing probability threshold of
5%. These base-pairs can either be found above the x-axis, if they agree
with a pair in the reference structure(s), or below, if they are new.
TRANSAT predicts most helices of the known structures as well as three
statistically significant conserved helices which may guide the structure
formation, whereas RNAALIFOLD P predicts only part of the known
structures and contributes only a few novel base-pairs which extend a
known helix by one or two base-pairs on either side, see also Figure 9.
doi:10.1371/journal.pcbi.1000823.g016

Figure 17. Comparison of TRANSAT (top figure) and RNAALIFOLD P
(bottom figure) for the trp-attenuator data set. In the top figure
showing the TRANSAT predictions, base-pairs predicted by TRANSAT have
non-black colours which indicate their reliability as estimated by TRANSAT

(v10{5 green, v10{4 blue, v10{3 orange and v10{2 red) using a p-
value threshold of 5:10{2 . The bottom figure shows the RNAALIFOLD P
predictions, see the caption of Figure 16 for more information on arc-
plots. TRANSAT predicts all helices of the known structures and several
new helices, albeit with relatively high p-values between 10{2 and
10{3), whereas RNAALIFOLD P captures only two of the helices and
proposes an single new base-pair which extends of the known helices,
see also Figure 10.
doi:10.1371/journal.pcbi.1000823.g017
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folding of RNA structures in vivo as function of the time as we not

only lack many crucial details on the cellular environment that

may influence the folding pathways (i.e. which molecules bind the

RNA sequence in question when and where), but also because we

currently have no adequate theoretical framework that would

allow us to efficiently simulate the complex cellular environment

using computational methods. We circumvent these conceptual

problems by devising TRANSAT as a comparative prediction

method which takes a fixed multiple-sequence alignment of

homologous RNA sequences and a tree quantifying their

evolutionary relationship as input and detects evolutionarily

conserved helices and estimates their statistical significance. By

employing this comparative approach, we lose the ability to

predict structural features of the cellular folding pathway(s) as

function of the time and to detect species-specific structural

features which may also be functionally important, but gain the

ability to highlight statistically significant, functional helices that

have been conserved without actually having to model the cellular

environment nor its evolution over time.

Our comprehensive performance evaluation of TRANSAT for a

large and diverse data set (comprising 1126 multiple sequence

alignments ranging from 100 to 1247 bp and comprising between

6 and 712 sequences) shows that TRANSAT not only reliably detects

the helices of known unique RNA reference structures, but that it

also able to capture known pseudo-knotted structures as well as

known alternative structural configurations. In addition to these

known structural features, TRANSAT predicts a number of distinct,

novel helices of statistical significance. These may, for example,

correspond to well-conserved structural features of a co-transcrip-

tional folding pathway in vivo supporting the notion that

homologous RNA sequence not only assume similar functional

RNA structures, but also fold in a similar way. For some examples,

the additional helices suggest a pseudo-knotted functional

configuration, where only a pseudo-knot free RNA structure has

been annotated so far. As we show for two examples, the

predictions by TRANSAT can also help identifying regions of an

RNA sequence that are bound by other molecules and thus single-

stranded because these are regions which are devoid of statistically

significant helices. Detailed investigations show that TRANSAT’s

predictions are robust with respect to alignment errors and

modifications of the input tree and that its performance is fairly

independent of the alignment length. TRANSAT’s performance is

more correlated with the length of the input tree which is not

surprising given that a certain degree of evolutionary diversity is

required to observe pairs of co-varying alignment columns, where

the base-pairing potential, but not necessarily the nucleotides

forming the base-pairs has been conserved. We also find that the

dominant structural features predicted by TRANSAT typically do

not coincide with those of the Boltzmann distribution of (pseudo-

knot free) RNA secondary structures if we assume thermodynamic

equilibrium. In particular, we find that the presence of known

pseudo-knotted reference structures and of known alternative,

functional RNA structures cannot be inferred from the Boltzmann

distribution, i.e. by assuming thermodynamic equilibrium. This

Figure 18. Comparison of TRANSAT (top figure) and RNAALIFOLD P
(bottom figure) for the Cripavirus internal ribosomal entry site
(IRES), RF00458. TRANSAT predicts the helices of the pseudo-knotted
known structure correctly and also predicts several new helices,
whereas RNAALIFOLD P captures only part of the known structure and
predicts three new base-pairs which extend three known helices, see
also Figure 10. Please refer to the caption of Figure 16 for more
information on these arc-plots.
doi:10.1371/journal.pcbi.1000823.g018

Figure 19. Comparison of TRANSAT (top figure) and RNAALIFOLD P
(bottom figure) for the S-adenosyl-L-homocysteine ribo-
switch, RF01057. TRANSAT predicts the helices of the known structures
correctly and also provides strong statistical evidence (p-value v10{4)
for additional helices that would render the known secondary structure
pseudo-knotted, see the blue bottom-arcs. RNAALIFOLD P predicts only
part of the known structure correctly, but proposes a similar new helix,
see also Figure 14. Please refer to the caption of Figure 16 for more
information on arc-plots.
doi:10.1371/journal.pcbi.1000823.g019
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discrepancy may be partly attributed to the fact that the

Boltzmann distribution does not include pseudo-knotted RNA

structures, but overall confirms our expectation that there is a priori

no good reason to assume that RNA sequences in vivo are in

thermodynamic equilibrium or unbound by other molecules.

The TRANSAT software is available from people.cs.ubc.ca/

,irmtraud/transat/. This web-page also contains information on

the input and output files of this analysis as well as detailed

documentation on how to use TRANSAT. Users of TRANSAT can

rank the predicted helices according to their p-values with lower

values implying higher statistical significance. Lab scientists

seeking to confirm specific helices in dedicated experiments can

prioritize their experiments by starting with the statistically most

significant helices.

Figure 20. Comparison of TRANSAT (top figure) and RNAALIFOLD P (bottom figure) for the bacterial tmRNA, RF00023. The helices of the
pseudo-knotted known structure for the bacterial tmRNA are correctly predicted by TRANSAT. TRANSAT also predicts several additional helices, but the
region of the tmRNA sequences that contains the reading frame which ends in a translation stop signal is devoid of statistically significant transient
helices supporting the hypothesis that the sequence in this region in the 59 half of the RNA has been chosen to remain single-stranded and readily
accessible. RNAALIFOLD P predicts only a few of the helices of the known pseudo-knotted structure and no additional structural features, see also
Figure 15. Please refer to the caption of Figure 16 for more information on arc-plots.
doi:10.1371/journal.pcbi.1000823.g020
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We hope that the predictions by TRANSAT will enable more

comprehensive and systematic studies of RNA folding pathways

and alternative structural configurations and that they will provide

useful input to the design and interpretation of future experiments.

Whether the near future will bring more experimental insight into

how RNA sequences fold in vivo depends to a large extent on the

development of new experimental techniques that would allow us

to observe an RNA sequence in its cellular environment.

TRANSAT currently focuses on highly conserved structural

features that are statistically significant, but ignores those that

are functional, but only present in a small fraction of the input

sequences. One possibility for future work is thus to extend

TRANSAT in order to also capture structural features that are only

present in a few of all input sequences. As TRANSAT already

explicitly models the evolutionary relationship between all input

sequences and the evolution of unpaired and base-paired

nucleotides, this should be relatively straightforward to do.

Another, more challenging possibility for future work is to take

TRANSAT beyond the required fixed input alignment. This is partly

what the program SIMULFOLD [32] addresses, but would need to

done for individual helices and complemented by a corresponding

procedure for estimating p-values.

Supporting Information

Text S1 Supplementary Information and Figures

Found at: doi:10.1371/journal.pcbi.1000823.s001 (0.96 MB PDF)
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