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Effective treatments for COVID-19 are urgently needed. However,
discovering single-agent therapies with activity against severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been
challenging. Combination therapies play an important role in
antiviral therapies, due to their improved efficacy and reduced
toxicity. Recent approaches have applied deep learning to identify
synergistic drug combinations for diseases with vast preexist-
ing datasets, but these are not applicable to new diseases with
limited combination data, such as COVID-19. Given that drug
synergy often occurs through inhibition of discrete biological
targets, here we propose a neural network architecture that
jointly learns drug−target interaction and drug−drug synergy.
The model consists of two parts: a drug−target interaction mod-
ule and a target−disease association module. This design enables
the model to utilize drug−target interaction data and single-
agent antiviral activity data, in addition to available drug−drug
combination datasets, which may be small in nature. By incor-
porating additional biological information, our model performs
significantly better in synergy prediction accuracy than previ-
ous methods with limited drug combination training data. We
empirically validated our model predictions and discovered two
drug combinations, remdesivir and reserpine as well as remde-
sivir and IQ-1S, which display strong antiviral SARS-CoV-2 synergy
in vitro. Our approach, which was applied here to address the
urgent threat of COVID-19, can be readily extended to other
diseases for which a dearth of chemical−chemical combination
data exists.
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Combination therapies have been shown to be more effec-
tive than single drugs for multiple diseases such as HIV

(1) and infections caused by Mycobacterium tuberculosis (2).
Synergistic combinations can improve both therapeutic potency
and efficacy, either achieving stronger therapeutic effects and/or
decreasing the required dose, thereby reducing side effects. To
address the COVID-19 pandemic, and future pandemics, find-
ing useful combinations of approved molecules has an additional
benefit over discovering and developing an entirely novel single-
agent therapy: reduced time to clinical adoption. Approved
drugs are readily available at scale, have well-studied toxic-
ity profiles, and may be used off-label in extenuating circum-
stances. Collectively, these considerations highlight the benefits
of discovering new synergistic drug combinations for treating
COVID-19.

Exploring the space of combinations via high-throughput
screening of even midsized chemical libraries is prohibitive due
to the exceedingly large number of unique chemical combina-
tions. Therefore, in silico screening based on various computa-
tional methods is an appealing alternative (3, 4). For example,
Bobrowski et al. (5) used knowledge-based methods to gener-

ate candidate drug combinations and experimentally validated
their antiviral severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) synergies. Cheng et al. (6) developed a biological
network proximity measure to predict drug synergy for hyperten-
sion and cancer. Prior work has applied various machine learning
techniques for synergy prediction (7–9), including deep learning
approaches (10–12). Indeed, Preuer et al. (10) trained a deep
neural network on a large oncology screen (13) and demon-
strated the advantage of deep learning over standard machine
learning models such as RFs and SVMs.

Unfortunately, there are two primary challenges that prevent
one from applying existing deep learning approaches to predict
therapeutic chemical combinations for emerging pathogens such
as SARS-CoV-2. First, deep neural networks require a large
amount of training data with measured synergy scores. While
such data are readily available for some diseases such as cancer
(13) (more than 20,000 combinations), the amount of SARS-
CoV-2 drug combination data (5) is very limited (less than 200
combinations). Second, even the largest combination screen for
cancer (14) covers only around 100 different molecules, since
the number of pairwise combinations grows quadratically. This
significantly limits a model’s ability to generalize to new chemi-
cal spaces outside of the training set. Therefore, we posit that a
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model should incorporate additional information besides molec-
ular structures in order to accurately predict new synergistic drug
combinations.

The main contribution of this paper is a deep learning archi-
tecture, which we call ComboNet, that jointly models molecular
structure, as well as biological targets, for the purpose of pre-
dicting synergistic drug combinations. Our hypothesis is that,
by explicitly modeling interactions between drugs and biolog-
ical targets, we can significantly decrease the dependence on
combination synergy data. Indeed, uniquely, relative to previ-
ous approaches (3, 4, 9, 15, 16) using drug−target interaction
(DTI) as fixed descriptors, ComboNet learns to predict DTI from
molecular structures, which is advantageous since a large propor-
tion of compounds in our training dataset have incomplete DTI
information.

The ComboNet architecture consists of two components. The
first component is a graph convolutional network (GCN) (17)
that learns a continuous representation of a molecule. This rep-
resentation contains both structural features of the molecule and
predicted targets (i.e., what biological targets may interact with
the molecule). Specifically, the biological targets in our train-
ing dataset include SARS-CoV-2 3CL protease, angiotensin-
converting enzyme 2 (ACE2), and 31 host targets that phys-
ically interact with viral proteins (18). The GCN learns to
predict the most likely targets, using data collected from the
Chemical Database of European Molecular Biology Laboratory
(ChEMBL) (19) and US National Center for Advancing Trans-
lational Sciences (NCATS) OpenData portal (20). The 31 host
targets included in ComboNet are only a subset of the 332 targets
that physically interact with SARS-CoV-2 (18). Other targets
were excluded because they lack available DTI data.

The second component of ComboNet models target−disease
association. It is a linear function that learns how biological
targets and structural features of molecules are related to antivi-
ral activity and synergy. It is trained on NCATS single-agent

SARS-CoV-2 cytopathic effect (CPE) assay data (21) and avail-
able drug combination assays (22). In short, ComboNet predicts
drug combination synergy by modeling structural features of
both compounds and biological targets.

Herein, we evaluated ComboNet on a hold-out test set (5) of
71 drug combinations with measured anti−SARS-CoV-2 synergy
in vitro. Our model achieves 0.82 receiver operating charac-
teristic−area under the curve (ROC-AUC) using ∼200 drug
combination data for training, with specificity = 0.75 and sen-
sitivity = 0.80. We additionally applied ComboNet to in silico
repurposing of existing drugs and experimentally tested 30 drug
combinations. From this empirical set of 30 tested combinations,
we discovered two drug combinations (remdesivir and reserpine;
remdesivir and IQ-1S) with strong synergy in vitro. In gen-
eral, ComboNet represents an advance toward predicting novel
chemical−chemical synergy for instances where minimal combi-
nation training data exist.

Results
Fig. 1 provides an overview of the network architecture. It is
composed of a DTI network and target−disease association net-
work. These are trained to accomplish three tasks: 1) predict
the interaction between a drug and a set of K biological tar-
gets {t1, . . . , tK} related to the disease of interest, 2) predict a
drug’s intrinsic antiviral activity, and 3) predict the synergy of
two drugs. The latter two tasks depend on both the predicted
biological targets and structural features of input molecules.

Drug−Target Interaction Prediction. The DTI network is trained
to predict whether a drug binds to a biological target. The DTI
training data are compiled from ChEMBL, including K biolog-
ical targets related to the indication or pathogen of interest—in
our case, SARS-CoV-2. Each DTI dataset consists of a list
of molecules and their binary DTI labels (positive/negative).
A positive label means the binding affinity (e.g., half-maximal

A

B

Fig. 1. ComboNet for synergistic drug combination discovery. (A) ComboNet is composed of two networks: a DTI and a target−disease association network.
The antiviral effect of a single drug pA is predicted from its representation zA. The vector zA characterizes the DTI features of drug A. (B) The antiviral effect
of a combination is predicted from its representation zAB, which is computed from the molecular representations of each individual drug zA, zB. ComboNet
is trained on drug combination synergy, single-drug antiviral activity, and DTI data.
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effective concentration [EC50]) of a molecule to a target is below
a certain threshold. In terms of SARS-CoV-2 biological targets,
we consider both viral proteases and host proteins involved in
viral infection. The replication of SARS-CoV-2 requires the pro-
cessing of a chymotrypsin-like protease (3CLpro). It is known
that SARS-CoV-2 entry into host cells depends on ACE2 and
TMPRSS2 (23). Furthermore, Gordon et al. (18) identified 332
human proteins that physically interact with SARS-CoV-2.

The DTI training data for these targets are collected from
various sources. NCATS conducted a high-throughput screen
of 10,442 compounds with measured 3CLpro enzymatic activity
(24). NCATS also released two high-throughput screens of 3,285
molecules with measured ACE2 enzymatic activity (25) and inhi-
bition against Spike−ACE2 protein−protein interaction (26).
Among the 332 human proteins, we selected 31 targets based on
their DTI data availability in ChEMBL (19). Other targets were
excluded due to a lack of existing DTI data.

We parameterize the DTI network as a directional message
passing neural network (DMPNN) (17). Each compound is char-
acterized as a graph, whose nodes and edges correspond to its
atoms and bonds. The DMPNN applies a series of message pass-
ing steps to aggregate information from neighboring atoms and
bonds to build a continuous vector representation zA of drug
A. We divide zA into two vectors zA = zcovidA ⊕ zstructA (⊕ repre-
sents vector concatenation). The zcovidA represents the predicted
interaction between drug A and biological targets related to
SARS-CoV-2. Each element zcovidA,i ∈ [0, 1] indicates the proba-
bility of drug A interacting with a target ti . The zstructA represents
the structural features of drug A learned automatically from its
molecular structure. Each element zstructA,i ∈ [0, 1] is output from
a sigmoid activation function.

We propose to include these structural features to increase
the modeling power when target information is incomplete.
Among the 332 human proteins, only 31 of them have associ-

ated DTI data, and the other 300 targets cannot be included in
the model. Moreover, our biological understanding of emerg-
ing pathogens is continuously involving. Including these struc-
tural features allows the model to complement any miss-
ing biological information needed for antiviral activity and
synergy prediction. Indeed, we observe a decrease in syn-
ergy prediction accuracy when these structural features are
removed (Fig. 2).

Single-Agent Activity Prediction. We train the entire ComboNet
to predict the antiviral activity of single drugs. The single-
agent training set is a collection of molecules with their antivi-
ral activity labels (positive/negative). A positive label indicates
that a drug inhibits the viral replication. The DTI network
is trained to extract useful features from molecular structures
for antiviral activity prediction. The target−disease association
network f learns how to associate the biological targets and
learned structural features of molecules to antiviral activity. It
is parameterized as a simple linear layer with sigmoid activa-
tion function σ(·). The antiviral activity of a single drug A is
predicted as

pA = f (zA)=σ(w>zA + b). [1]

The model is trained on SARS-CoV-2 single-agent antiviral
activity data using a CPE assay (21) in VeroE6 cells. It contains
∼8,800 compounds with 320 hits (EC50 ≤ 10 µM).

Synergy Prediction. In addition, we train the entire ComboNet
to predict drug−drug synergy. The training set for this task is a
list of pairwise drug combinations and their synergy labels (syn-
ergistic/nonsynergistic). Different from the previous two tasks,
inputs to the model become two molecules instead of one.
Given a pairwise drug combination (A,B), the DTI network out-
puts a continuous vector representation zAB by combining their

A

C D E

B

Fig. 2. In silico evaluation of ComboNet (A) The training, validation, and test set composition for SARS-CoV-2. (B) Results on SARS-CoV-2 drug combination
test set. Our full ComboNet model outperforms all other baselines. (C) ROC-AUC plot of ComboNet ensemble on the entire test set. (D) ROC-AUC plot of
ComboNet ensemble on the hard drug combinations with at least one new drug. (E) Statistical characteristics of ComboNet ensemble for all the datasets,
where “screen” refers to the top 30 candidates we experimentally tested.
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individual representations zA, zB . The combined vector charac-
terizes how the two drugs interact via their individual biological
targets. It is then fed into the target−disease association network
to predict its synergy based on Bliss scores (27).

We adopt the Bliss score (27) to predict synergy of a drug
combination (Fig. 1B). Suppose the individual antiviral effect of
drugs A and B are pA, pB . The expected activity of a combination
(A,B) is defined as eAB = pA + pB − pApB . A drug combination
is determined to be synergistic if its actual activity pAB > eAB .
Thus, we define its synergy score as

sAB = pAB − eAB = pAB − pA− pB + pApB , [2]

where the antiviral activity pAB of a drug combination (A,B) is
predicted as

pAB = f (zAB )=σ(w>zAB + b). [3]

The remaining question is how to compute the molecular rep-
resentation zAB for a drug combination. Since we model drug
synergy using Bliss scores, we introduce a Bliss layer to com-
pute the representation of a drug combination. Let zA, zB be the
learned features of drugs A and B . The representation zAB of a
combination (A,B) is defined as

zAB = zA + zB − zA� zB , [4]

where� stands for element-wise multiplication. With this aggre-
gation scheme, a drug combination benefits the most when two
drugs interact with different targets. For instance, suppose only
drug A interacts with target ti (e.g., zA,i =0.9, zB,i =0); the
combination still interacts with target ti as zAB,i =0.9.

The SARS-CoV-2 drug combination training data came
from three data sources. NCATS performed two combination
assays (5, 22) in VeroE6 cells, which contained 160 two-drug
combinations in total. Riva et al. (28) also analyzed synergy
between remdesivir and 20 hit molecules identified from their
high-throughput screen in VeroE6 cells.

Multidisease Training. The drug combination data of emerg-
ing pathogens are inherently limited. To address the low-
resource challenge, it is helpful to utilize data from multiple
diseases as a source of supervision. For example, we can uti-
lize existing HIV drug combination data to improve the model
performance. Indeed, prior work (18) has shown significant
interactome similarity between HIV and SARS-CoV-2. With
multidisease training, the molecular representation zA contains
three parts zcovidA , zhivA , zstructA . Features in zhivA correspond to the
interaction between drug A and HIV-relevant biological targets.
Since each disease operates on different targets, we create two
target−disease association networks, f covid and f hiv. The SARS-
CoV-2 and HIV antiviral activity is computed as f covid(zcovidA ⊕
zstructA ) and f hiv(zhivA ⊕ zstructA ), respectively (⊕ represents vector
concatenation).

In terms of HIV targets, we consider three viral proteases
(HIV-1 protease, integrase, and reverse transcriptase) and three
host proteins involved in viral entry (CCR5, CXCR4, and CD4)
(29). We compiled DTI data for these six targets from ChEMBL.
The HIV single-agent activity data came from a National Can-
cer Institute (NCI) anti-HIV assay (30). It includes ∼35,000
compounds with 309 active hits (EC50≤ 1 µM). The HIV com-
bination data (1) contain 114 drug combinations with measured
synergy outcomes against HIV.

Training Objective. The ComboNet is trained to minimize a
weighted average of three losses L=λDTI`DTI +λS `S + `C ,
where λDTI,λS are hyperparameters, and `DTI, `S , `C are the
training losses on the DTI, single-agent, and drug combination

data. The weighted loss allows us to optimize the entire model
with a single forward−backward pass in each gradient update.

Model Evaluation. We evaluate our model’s performance at pre-
dicting SARS-CoV-2 chemical synergy. Our training, validation,
and test sets are summarized in Fig. 2A. Specifically, our vali-
dation set contains 20 drug combinations from Riva et al. (28),
and our test set contains 71 drug combinations from Bobrowski
et al. (5). The training set contains 88 SARS-CoV-2 drug com-
binations from NCATS (22) as well as the DTI and single-agent
antiviral activity data for SARS-CoV-2 and HIV. We note that
63.4% (45/71) of the drug combinations in the test set involved
at least one new drug that did not appear in the training set.

Baselines. To test the effectiveness of ComboNet, we com-
pare our approach with seven baselines: a random forest
(RF), support vector machine (SVM), feed-forward neural
network (DNN), and four state-of-the-art graph neural net-
work architectures, including MPNN (31), DMPNN (17), graph
attention network (GAT) (32), and AttentiveFP (33). All
baselines are trained on SARS-CoV-2 combination data only,
while ComboNet is trained on additional HIV, DTI, and
single-agent data.

The input to RF and SVM is the sum of ECFP4 fingerprints
of the two drugs so that the model is permutation invariant; that
is, it outputs the same value for drug pairs (A,B) and (B ,A).
The DNN and graph neural network baselines predict the syn-
ergy of drugs A and B as pAB = g(φ(A)+φ(B)), where g is a
feed-forward network with one hidden layer. For DNN, the input
to φ is the ECFP4 fingerprint of drugs A and B . For MPNN,
DMPNN, GAT, and AttentiveFP, the input to φ is the molecular
graph of A and B . We sum the two vectors φ(A)+φ(B) instead
of concatenating them so that the model is permutation invari-
ant. We also use the same φ to encode drugs A and B to ensure
permutation invariance.

Moreover, we evaluate the following ComboNet variants to
study the importance of different training data: 1) ComboNet
(no HIV), a model trained without HIV data; 2) ComboNet (no
DTI), a model trained on all training data except the DTI data;
3) ComboNet (no struct), a model trained on all training data but
the structural features are disabled; and 4) ComboNet, a model
trained on all the training data.

Additional ablation studies and interpretability analysis are
provided as SI Appendix.

Synergy Prediction Accuracy. The results of synergy prediction
are shown in Fig. 2B. We compute the ROC-AUC of each
method averaged across five independent runs. The test ROC-
AUC of ComboNet is 0.773± 0.064, which is significantly higher
than the RF, SVM, DNN, and DMPNN baselines. Among all
baseline methods, AttentiveFP achieves the best ROC-AUC of
0.621± 0.050. The Wilcoxon P value between ComboNet and
AttentiveFP is 0.028.

We then took five independently trained ComboNet models
as an ensemble model. Ensembling is a standard machine learn-
ing technique to improve model performance, where we train
five copies of ComboNet with different random initialization and
average their predictions. The ensemble model achieves 0.821
ROC-AUC on the test set (Fig. 2C), which is higher than a single
ComboNet model.

We further adopt a “compounds out” strategy (34) to evaluate
the model in terms of novel combination prediction. Specifi-
cally, we select 45 combinations from the test set that involve
at least one new drug that has not appeared in the training
set. The average Tanimoto similarity between these 45 combi-
nations and the training set is low: ∼0.22. Thus, these instances
are significantly harder to predict, and require the model to
extrapolate beyond drugs in the training set. Remarkably, the
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ensemble model achieves similar performance on these difficult
instances, with ROC-AUC = 0.815 (Fig. 2D). This result shows
that ComboNet generalizes well to novel drug combinations.

Benefit of DTI and HIV Data. We further conduct ablation studies
to understand the importance of different model design choices
(Fig. 2B). We find the test ROC-AUC decreases to 0.658± 0.079
if the HIV data are removed (ComboNet, no HIV). Likewise,
the test ROC-AUC drops to 0.706± 0.088 when we remove the
DTI data (ComboNet, no DTI). This confirms the advantage of
training with DTI data and additional viral diseases.

Benefit of Structural Features. The test ROC-AUC decreases to
0.701± 0.017 if we remove the structural features (ComboNet,
no struct) (Fig. 2B). This highlights the advantage of using
structural features to complement missing biological targets.

Screening Predicted Drug Combinations. We applied the Com-
boNet ensemble to predict the synergy of novel drug combina-
tions in the NCATS compound library. We considered pairwise
combinations between 153 relatively potent drugs with half-
maximal inhibitory concentration (IC50) less than 30 µM. This
resulted in ∼11,600 combinations, which were ranked according
to predicted synergy scores. We selected the top 30 candi-
dates and experimentally tested them in a SARS-CoV-2 CPE
assay, which measures the ability of compounds to reverse the
viral-induced CPE in Vero E6 host cells. In this assay, viral
infection and replication lead to a loss of host cell viability. Com-
pounds with antiviral activity protect cells from the virus, thereby
maintaining viability.

The synergy of these combinations was assessed based on the
Delta Bliss Sum Negative (DBSumNeg) score (35). Excitingly,
from this set of 30 empirically tested predicted combinations, we
identified two drug combinations—remdesivir and reserpine, as
well as remdesivir and IQ-1S (Fig. 3A)—with strong synergy in
vitro (DBSumNeg≤−5). Importantly, we also verified that these
two drug combinations have low cytotoxicity (Fig. 3B). Their
dose–response and Bliss synergy matrices are reported in Fig.
3 C and D. The ComboNet ranking of the 30 drug combina-
tions is reported in Fig. 3E. As visualized in Fig. 3F, the chemical
spaces explored across the training/test sets and experimentally
validated combinations are quite similar.

Reserpine is Food and Drug Administration−approved drug
primarily used as a peripheral antihypertensive. It has a mod-
erate potency against SARS-CoV-2, with IC50 = 11.2 µM in
Vero E6 cells (21) and IC50 = 6.4 µM in HeLa-ACE2 cells (37).
IQ-1S is a JNK inhibitor with Kd = 87, 360, and 390 nM for
JNK3, JNK2, and JNK1, respectively. It demonstrated an IC50 =
6.3 µM against SARS-CoV-2 in a Vero E6 cell CPE assay.

Discussion
In this study, we developed ComboNet for chemical synergy pre-
diction against SARS-CoV-2. ComboNet has two components:
a DTI network and a target−disease association network. The
model architecture is designed to utilize additional DTI data and
single-agent antiviral activity data. Although our synergy training
set contains only 88 drug combinations, ComboNet achieves 0.82
test ROC-AUC, while standard deep learning methods struggle
to reach 0.6 ROC-AUC. We then performed virtual screening
on 11,600 candidate drug combinations using ComboNet, empir-
ically tested 30 of these predictions, and identified and validated
two drug combinations with strong synergy in vitro.

Recently, deep learning approaches have demonstrated suc-
cess in drug discovery (38). A common approach is to train a
deep neural network to perform virtual screening over chemi-
cal libraries in silico and prioritize compounds among the top
predictions for laboratory testing. In order to provide accurate
rankings, these models require a fair amount of training data

(e.g., more than 2,000 compounds) to predict biological activi-
ties. Unfortunately, such data are typically not available for an
emerging pathogen like SARS-CoV-2. Therefore, it is crucial to
leverage additional biological knowledge of these pathogens to
complement the limited task-specific data.

ComboNet is motivated by the recent success of GCNs in
molecular property prediction (17, 31, 39). Most of these mod-
els learn molecular representations based on chemical structures
alone and do not explicitly model biological interaction. On the
other hand, while traditional cheminformatics tools have mod-
eled DTI for property prediction (6, 40), most of these methods
do not leverage chemical structures like the GCNs. ComboNet
seeks to incorporate the merit of both approaches in a unified
deep learning architecture.

The role of the structural features learned by GCNs is to miti-
gate the incompleteness of biological information. An interesting
future direction is to make these structural features biologically
interpretable. For example, we can speculate that a structural
feature in molecular representation may correspond to a biolog-
ical target if they are activated (or inactivated) by the same set
of molecules. This may allow us to automatically identify new
targets related to a specific disease.

Materials and Methods
ComboNet Architecture. Our ComboNet implementation builds on the
Chemprop software (17). The atom features include atomic number,
degree, formal charge, chirality, number of bonded hydrogens, hybridiza-
tion, aromaticity, and atomic mass. The bond features include bond type
(single/double/triple/aromatic), conjugation, ring membership, and stereo-
chemistry. The model applies a series of message passing steps to learn
atom representations. In each step of message passing, each atom’s fea-
turization is updated by summing the incoming messages concatenating
the current atom’s featurization, and then applying a single neural net-
work layer with nonlinear activation. After a fixed number of message
passing steps, the learned atom representations are summed to produce
a single molecular representation zA. We set the dimension of vector repre-
sentation |z|= 100. The Chemprop software is open source and available at
https://github.com/chemprop/chemprop.

Baseline Implementation. We run the RF and SVM baselines using the
“sklearn train.py” script in Chemprop. The ECFP4 fingerprint is calcu-
lated using RDKit (41), with dimensions equal to 2,048. We run the
MPNN and DMPNN baseline using the “train.py” script in Chemprop with
“–atom messages” option. We implemented the GAT architecture in the
Chemprop software since it is not directly available. The AttentiveFP
implementation is copied from https://github.com/OpenDrugAI/AttentiveFP.

Biological Targets. The SARS-CoV-2 targets include 3CLpro, PLpro, ACE2
enzymatic assay, Spike−ACE2 protein interaction assay, and 31 host pro-
teins. The UniProt IDs of the SARS-CoV-2 host proteins are O60885,
O96028, P00750, P05556, P06280, P09884, P12268, P14735, P17612, P19784,
P21964, P25440, P26358, P27448, P33527, P48556, P55085, P55789, P62873,
P67870, Q13443, Q13546, Q7KZI7, Q8WTV0, Q92769, Q99720, Q9H773,
Q9H7Z7, Q9P0L2, Q9UHD2, and Q9UHI8. The HIV targets are HIV-1 pro-
tease (CHEMBL4296312), integrase (CHEMBL2366505), reverse transcriptase
(CHEMBL247, CHEMBL2366516), CCR5 (CHEMBL274), CXCR4 (CHEMBL2107),
and CD4 (CHEMBL2754).

Data Curation. The SARS-CoV-2 DTI data are downloaded from Gordon
et al. (18). The original DTI data are turned into a binary classification dataset
as follows. We define that a molecule interacts with a target if its binding
affinity is below a threshold τ . Following IDG’s activity thresholds, we set τ=
33 nM for kinases, τ= 100 nM for GPCR proteins, and τ = 1µM for other pro-
teins. We set τ = 10 µM for NCATS 3CLpro and ACE2 assays. The HIV DTI data
are downloaded from ChEMBL and binarized in the same way.

The COVID-19 single-agent data were downloaded from NCATS Open-
Data Portal. It contained ∼8,800 unique compounds. A compound is active
to SARS-CoV-2 if its EC50≤ 10 µM. The HIV single-agent data were down-
loaded from NCI (30). It includes ∼35,500 unique compounds. A compound
is active to HIV if its EC50≤ 1 µM.

The SARS-CoV-2 drug combination training data come from NCATS Open-
Data Portal. A drug combination is synergistic if its DBSumNeg score is
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Fig. 3. Discovery of synergistic drug combinations for SARS-CoV-2 (A) Two drug combinations are discovered by our model: remdesivir + reserpine and
remdesivir + IQ-1S. (B) Host cell viability matrices show the two drug combinations have low cytotoxicity. (C) Dose–response and Bliss synergy matrices of
remdesivir + reserpine. Numbers in the dose–response matrix stand for viral infection rate. Numbers in the Bliss synergy matrix stand for synergy score. Both
are the lower the better. (D) Dose–response and Bliss synergy matrices of remdesivir + IQ-1S. (E) The correlation between predicted ranking and DBSumNeg
score (lower DBSumNeg means more synergistic). (F) The t-distributed stochastic neighbor embedding visualization (36) of the chemical space explored
across the training set, test set, and experimentally validated combinations.

less than −4. The validation and test set come from Riva et al. (28) and
Bobrowski et al. (5), respectively. The synergy labels were already bina-
rized in the original data. The HIV drug combination data come from
Tan et al. (1), whose synergy label was already binarized by Bliss synergy
calculation.

All datasets are provided as SI Appendix.

SARS-CoV-2 CPE Assay. Vero E6 cells were premixed with SARS-CoV-2 virus
for 5 min to 10 min, and then dispensed into assay-ready plates (predis-
pensed with compounds and controls). Cells and virus were incubated with
compounds for 72 h, and then viability was assayed by Vero E6 host cell ATP
content (using Promega CellTiterGlo). Sixty nanoliters per well of each com-
pound in dimethyl sulfoxide (DMSO) was spotted into 384-well assay plates
by acoustic dispensing. Five microliters per well of media was dispensed into
plates (minimal essential medium, 1% Pen/Strep/GlutaMax, 1% Hepes, 2%
heat-inactivated fetal bovine serum).

We then dispensed 25 µ per well of Vero E6 cells inoculated with SARS-
CoV-2 (USA-WA1/2020) at a multiplicity of infection of 0.002 suspended in
media. Final cell density was 4,000 cells per well. Assay plates were incu-
bated for 72 h at 37 ◦C, 5% CO2, 90% humidity. Plates were incubated

for 10 min at room temperature, and luminescence signal was read on a
PerkinElmer Envision plate reader. Finally, data were normalized to the neg-
ative control (DMSO) and positive controls (cells without virus and Calpain
inhibitor IV) for each plate.

Data Availability. All study data are included in the article and SI Appendix.
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