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Universal quantum gates for 
hybrid system assisted by atomic 
ensembles embedded in double-
sided optical cavities
A.-Peng Liu1, Liu-Yong Cheng2, Qi Guo3, Shou Zhang4 & Ming-Xia Zhao1

We propose deterministic schemes for controlled-NOT (CNOT), Toffoli, and Fredkin gates between 
flying photon qubits and the collective spin wave (magnon) of an atomic ensemble inside double-sided 
optical microcavities. All the gates can be accomplished with 100% success probability in principle 
and no additional qubit is required. Atomic ensemble is employed so that light-matter coupling is 
remarkably improved by collective enhancement. We qualified the performance of the gates and the 
results show that they can be faithfully constituted with current experimental techniques.

Quantum logic gates usually lie at the heart of quantum-information processing (QIP) tasks. As is well known, any 
n-qubit quantum operation can be decomposed into combinations of two-qubit gates and single-qubit operations1.  
So far, it has been well solved for the optimal synthesis of two-qubit gates, while it is more complex and still 
an open question for the case of multi-qubit systems. So it is of significance to find a simpler way for directly 
implementing multi-qubit gates. On the other hand, Toffoli and Fredkin gates are fundamental quantum gate for 
three-qubit systems, and they have attracted much attention since they can form a universal quantum computa-
tion architecture together with single-qubit operations2–7. Moreover, they play an important role in quantum algo-
rithms8, entanglement concentration and purification9–11, error correction12, and fault-tolerant quantum circuits13.  
Many proposals have been proposed to implement quantum logic gates with several physical systems theoretically 
and experimentally, such as the ion trap14, nuclear magnetic resonance15,16, quantum dot (QD)17–19, supercon-
ducting qubits20,21, nitrogen-vacancy (NV) centers22,23, and photon systems24,25.

For scalable quantum computation and QIP, quantum gates between two separated quantum nodes are indis-
pensable. So far, one convenient way to realize such gates is to use linked cavities, each of which contains single 
or several qubits in it. To constitute the critical two-qubit optical gate in a deterministic way, one can resort to 
Kerr nonlinearities. However, they are many orders of magnitude too small for efficient quantum computation 
for naturally occurring nonlinearities in the single-photon level26. Several proposals based on Kerr nonlinearities 
in fibers or crystals27, electromagnetically induced transparency22,28–30, and optical dipole-cavity system31,32 are 
developed. In the past decades, cavity quantum electrodynamics (cavity QED) that studies the coherent interac-
tion of matter with quantized fields has been a paradigm for QIP due to controllable interactions between dipole 
and photons31,33. As for the cavity-based scheme, the dipole embedded in the optical cavity interacts strongly with 
the input single photons, and the interaction between the dipole and the successive photons provides strong Kerr 
nonlinearities17,18,31,34.

In 2004, Duan et al.31 proposed a scheme for scalable photonic quantum computation based on cavity-assisted 
interaction between single-photon pulses. In 2005, Cho et al.32 proposed a scheme to implement a two-qubit 
controlled-phase gate for single atomic qubits based on the cavity input-output process. Based on a singly charged 
QD inside an optical resonant cavity, several schemes for entanglement generation and implementing of quantum 
logic gates are proposed17–19. Assisted with single photons, Zhou et al.35 provided the optimal approach to detect 
nonlocal atomic entanglement. On the other hand, based on the photonic Faraday rotation, they also described 
the complete logic Bell-state analysis36. With the dipole induced transparency of a diamond NV center, universal 
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hyperparallel hybrid photonic quantum logic gates were proposed in 201522. Recently, an magnon-cavity unit, 
e.g., an atomic ensemble confined in a double-sided cavity, was proposed by Li et al.34, in which the interaction 
between the collective spin wave (magnon) of an atomic ensemble and the successive photons provides strong 
Kerr nonlinearities.

In this paper, inspired by the above works, we investigate the possibility of achieving scalable photonic quan-
tum computation assisted by an atomic ensemble in a double-sided cavity. Our schemes are different from the 
work by Li et al.34 in which they present a scheme for two CNOT gates with the photonic qubits both in the spatial 
degrees of freedom (DOF) and the polarization DOF of each photon. By the nonlinear interaction between the 
moving photon and the magnon of an atomic ensemble in a double-sided cavity, we first present a deterministic 
scheme for constructing a CNOT gate on a hybrid system with the flying photon as the control qubit and the 
atomic ensemble as the target qubit. Besides, we construct the Toffoli and Fredkin gates on a three-qubit hybrid 
system in a deterministic way. In our work, the control qubit of our universal gates is encoded on the polarization 
states of the moving photon, while the target qubit is encoded on the state of atomic ensemble inside an optical 
microcavity. These three schemes for the universal gates require no additional qubit, and they only need some 
linear optical elements besides Kerr nonlinear interaction between the magnon and the photons. High fidelities 
and high efficiencies can be achieved in the strong coupling regime and are not sensitive to the frequency detun-
ing and coupling imbalance.

Results
Input-output relation for a single photon with a magnon-cavity coupling system. The configura-
tion of the atomic ensemble cavity coupling system considered here is exhibited schematically in Fig. 1. We first 
denote a highly excited Rydberg state as |r〉 . Assisted by the Rydberg state |r〉 , one can prepare the atomic ensemble 
into the magnon state and perform the single-qubit operation on the magnon qubit. A qubit is encoded in collective 
spin wave state or magnon state with a single atom in the states |g0〉  and |g1〉  of the atomic ensemble. If we define 
| 〉 = | …… … 〉+g g g g g, ,j

s
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the collective angular momentum operators with σ = −ˆ e e g gz n n n n n, , σ =−ˆ g en n n,  and σ =+ˆ e gn n n, . 
The transitions ↔g es s

0 0  and ↔g es s
1 1  with frequency ω0 are driven by orthogonal polarizations (H and V) of 

a photon with frequency ω. Meanwhile the two transitions are nearly resonantly coupled to the two degenerate 
cavity modes â0 and â1 with the corresponding coupling rates are λ0 and λ1, respectively. For the input photons with 
different polarizations, the transmission and reflection coefficients are determined by the state of the ensemble. If a 
polarized photon is injected into the cavity via either side of the cavity, it will pass through the cavity if it is decou-
pled from the driven cavity mode; otherwise it will interact with the atomic ensemble if it is coupled to the cavity 
mode and lead to the mode splitting. When the frequencies of the optical fields close to the cavity frequency ωa, we 
can take the coupling rates between an asymmetrical cavity and modes ωb̂ ( )j  and ωĉ ( )j  of ports B and C as real 
constant31. Here, to insure the photon pulse shape remains unchanged, we need a single polarized photon pulse with 
a finite bandwidth ([ω − ∆a , ω + ∆a ]), which is satisfied when κ∆  /2 (the cavity decay rate)17,18. If we take ωa 
as the carrier frequency, then δ′  =  ω −  ωa denotes the frequency detuning of the input photon with frequency ω. 
δ0 =  ω0 −  ωa measures the frequency difference between the dipole transition and the cavity mode. This system 
exhibits similar features with the Jaynes-Cummings model, and in the frame rotating with respect to ωa, the dynam-
ics of the system is governed by the following hamiltonian (ħ =  1)31,33,37
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Figure 1. Schematic diagram of the atomic ensemble cavity coupling system. 
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here γe j
 and λj denote the spontaneous emission rate of the single excited collective state ej

s  and the coupling rate 
between the atomic ensemble and the corresponding resonant cavity mode, respectively. With the help of Rydberg 
state38,39 or coherent Raman process40,41, one can pump the atomic ensemble to the magnon state gj

s , so that the 
input photon will drive the interaction between the atomic ensemble and the cavity mode. In the single excitation 
subspace, the system will evolve in the space spanned by the internal states of the atomic ensemble and the photon 
number states of the radiation modes (â j, b̂ j, and ĉ j), respectively. Suppose the initial state of the system is 
g , 1, 0, 0j

s , i.e., we choose the input photon in mode b̂ j, then the state of the system, at time t, will evolve to
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The Schrödinger equation for this system can be specified to be
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Along with the standard input-output relation κ= +ˆ ˆ ˆy y aj j y j,out ,in  (y =  b, c), we can see the birefringent 
character of the magnon-cavity system. Here ŷ j ,in and ŷ j ,out are the input and output field operators, respectively. 
Under the condition that the incoming field is very weak, i.e., we take σ〈 〉 ≈ −1z j, , the reflection and transmission 
coefficients of the system can be expressed as
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In the case the input photons uncoupled to the cavity, i.e., λj =  0, we get the reflection and transmission coef-
ficients for the system, then Eq. (4) reduces to
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As the backscattering is low in the optical fibers, the asymmetry of the two coupling constants is mainly caused 
by cavity intrinsic loss42. Suppose κ κ κ κ= −∆ c b min (κ κ κ= min { , }b cmin ), i.e., the difference of the cou-
pling rates between the cavity and the modes ωb̂ ( )j  and ωĉ ( )j  are small, one can replace the reflection and trans-
mission coefficients above for the asymmetrical cavity system with those for the symmetrical one with identical 
coupling rates, i.e., we set κ =  κb =  κc. With the symmetrical cavity, the corresponding reflection and transmission 
coefficients can be respectively simplified and given by
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for λ =  0 (cold cavity, described with the subscript 0). The reflection and transmission coefficients in Eqs (6) and 
(7) indicate that the output photon experiences a phase shift relying on the different states of the atomic ensemble 
in the double-sided cavity. When the Purcell factor λ2/κγ =  1/2, the reflection and transmission coefficients are 
r(ω) →  1 and t(ω) →  0. However, in the decoupling case (λ =  0), the reflection and transmission coefficients of the 
bare cavity are r0(ω) →  0 and t0(ω) →  − 1. Specifically, if the atomic ensemble is in the state | 〉g s

0  | 〉g( )s
1 , when the 

photon in |H〉  (|V〉 ) state is directed into the cavity, it will be reflected and get no phase shift. Otherwise, the pho-
ton will transmit the cavity and get a π phase shift. This exactly demonstrates the effective Kerr nonlinearity which 
can be used to constitute the hybrid multi-qubit gates in the following sections.

CNOT gate on a two-qubit hybrid system. The framework of our CNOT gate, which flips the target 
atomic ensemble qubit if the control photon polarization qubit is in the state |V〉 , is depicted in Fig. 2. The flying 
photon p and the atomic ensemble are prepared in arbitrary superposition states ϕ α β= +H Vp p p  and 
ϕ α β= +g gs s

s
s

s
0 1  (here α β α β| | + | | = | | + | | = 1p p s s

2 2 2 2 ), respectively.
For conciseness, we define single-qubit Hadamard operations Hp and Hs for one photon and one magnon 

qubit respectively as:
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First, the injected photon passes through a polarized beam splitter (PBS1), which transmits the photon in the 
polarization state |H〉  and reflects the photon in the state |V〉 . The part in the state |H〉  transmits PBS1 and gets 
into a delay line (DL), does not interact with the cavity, while the part in the state |V〉  passes a half-wave plate 
(HWP1), which is used to perform a Hadamard operation (Hp) on the photon. Then the photon passes a beam 
splitter (BS) and be injected into the cavity from either path a1 or a2. At the same time, we perform a Hadamard 
operation (Hs) on the atomic ensemble with the coherent Raman process or Rydberg-state-assisted quantum 
rotation. Then the state of the whole system composed of a photon and an atomic ensemble is changed from Ψ 0

 
to Ψ 1

. Here
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Considering the birefringent propagation of the input polarized photon, the output state of photon together 
with that of the atomic ensemble is

Figure 2. The quantum circuit for constructing a deterministic CNOT gate with a flying photon 
polarization as the control qubit and a collective spin wave (magnon) qubit as the target qubit. PBS: 
polarized beam splitter, HWP: half wave plate, BS: beam splitter, Pπ: phase shifter, DL: delay line.
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When the photon p passes through path a1, it will be split by PBS2, the H-polarized component takes a phase 
shift π (i.e., |H〉  →  − |H〉 ) after passing through the phase shifter Pπ. Then the photon passes PBS3 will take an Hp 
operation by HWP3. Meanwhile the photon passes through path a2 will take an Hp operation by HWP2. After the 
photon passes through PBS4 and HWP4, the state of the system becomes
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Then we apply an Hs operation on the atomic ensemble, the state of the hybrid system becomes
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One can see that the state of the atomic ensemble is flipped when the photon (the control qubit) is in the state 
|V〉 , while it does not change when the photon is in the state |H〉 , compared to the original state of the two-qubit 
hybrid system shown in Eq. (10). Therefore, the quantum circuit shown in Fig. 2 can be used to construct a deter-
ministic CNOT gate with a success probability of 100% in principle by using the photon as the control qubit and 
the atomic ensemble as the target qubit.

Toffoli gate on a three-qubit hybrid system. The schematic diagram for implementing a deterministic 
three-qubit Toffoli gate is depicted in Fig. 3, which performs a NOT operation on the second atomic ensemble (the 
target qubit) if and only if the photon is in the state |V〉  and the first atomic ensemble is in the state g s

1 . Suppose that 
the flying photon qubit is prepared in an arbitrary superposition state, ϕ α β= +H Vp p p , and each of the two 
independent atomic ensembles in cavities 1 and 2 is prepared in an arbitrary state as ϕ α β= +g gs s

s
s

s
1 1 0 1 1  and 

ϕ α β= +g gs s
s

s
s

2 2 0 2 1 . Here α β α β α β| | + | | = | | + | | = | | + | | = 1p p s s s s
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Figure 3. Scheme for implementing a three-qubit Toffoli gate with a flying photon polarization and a 
magnon qubit as the two control qubits and another magnon qubit as the target qubit. 
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First the photon reaches PBS1, the photon in the state |V〉  is injected into the cavity from path a2, while the 
photon in the state |H〉  does not interact with the atomic ensemble inside the cavity. With the same arguments as 
made for the CNOT gate above, we find that after the photon interacts with the atomic ensemble inside cavity 1, 
the state of the whole system evolves from Φ 0

 to Φ 1
. And

ϕ ϕ ϕΦ = ⊗ ⊗ , (15)p s s0 1 2
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Then the photon from path a1 goes into a DL, while the photon from path a2 passes HWP1 and BS, and then 
gets into cavity 2 from path a1 or a2. Meanwhile we apply an Hs operation on the atomic ensemble in cavity 2. 
Considering the interaction between the photon and the atomic ensemble in cavity 2, we find the state of the 
system evolves from Φ 1

 to Φ 2
, here
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After the photon passes the channel combination module (CCM), we perform an Hs operation on the atomic 
ensemble in cavity 2 again, then the state of the combined system becomes
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After the photon passes through the CCM, it is led back to cavity 1 from path ′a1, at the same time we lead the 
photon in path a1 into cavity 1 again (see the green lines), then the state of the system evolves into
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After the photon reaches PBS2, we can see that the state of the target magnon qubit in cavity 2 is flipped when 
the two control photonic qubit and the magnon qubit in cavity 1 are in the state |V〉  and g s

1 , respectively. 
Therefore the quantum circuit shown in Fig. 3 can be used to construct a Toffoli gate on a photon-magnon hybrid 
system in a deterministic way.

Fredkin gate on a three-qubit hybrid system. The three-qubit Fredkin gate implements a swap oper-
ation on two stationary atomic ensemble qubits in cavities 1 and 2 when the flying photon is in the state |V〉 . 
Suppose that the initial states of the flying photon and the two atomic ensembles confined in the two double-sided 
cavities are

ϕ α β ϕ α β ϕ α β= + = + = + .H V g g g g, ,p p p s s
s

s
s

s s
s

s
s

1 1 0 1 1 2 2 0 2 1

And α β α β α β| | + | | = | | + | | = | | + | | = 1p p s s s s
2 2

1
2

1
2

2
2

2
2 . As illustrated in Fig.  4, our scheme for a 

three-qubit Fredkin gate can be achieved with three steps.
Step 1. The injected photon is split by PBS1 into two wave-packets, the photon in state |H〉  dose not inter-

act with the atomic ensemble in cavity 1, while the photon in state |V〉  goes into path 2 and experiences the 
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nonlinearities (see the green lines). After the photon in the state |V〉  is injected into cavity 1, the state of the 
three-qubit hybrid system changes to

α α α α α β

α β α α β β

β α α β α β

β β α β β β
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+ +

− −

+ + .
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After the photon interacts with the atomic ensemble inside cavity 1, it emits from path 3 or 4 and then be led 
into cavity 2. After the photon interacts with the atomic ensemble inside cavity 2, Ω 1

 becomes
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It can be seen that, when the photon in |V〉  passes through the two cavities in succession, the output path of 
the photon is determined by the parity of the two magnon qubits.

Step 2. The photon at S will be led to path 8, while the photon emitting from path 6 be led into cavity 1 again. 
As discussed above, in this round, the photon in path 6 acts as the control qubit and performs NOT operations 
on the magnon qubits in cavities 1 and 2, respectively (see the grey lines, i.e., HWP1 →  BS1 →  Hs1 →  Cavity1 →  
CCM1 →  Hs1 →  HWP2 →  BS2 →  Hs2 →  Cavity2 →  CCM2 →  Hs2). For this purpose, Hs operations on the atomic 
ensembles in cavities 1 and 2 before and after the photon interacts with the corresponding magnon qubit respec-
tively are needed. When the photon emits from path 7, the output state of the system is
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Step 3. In this round, the photon emitting from path 7 or 8 will be led into cavities 1 and 2 successively again. 
As discussed in step 1, after the photon interacts with cavity 2 again, the state of the system evolves into
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After this round, the photon emitting from path 5 will pass through S and reach PBS2. After the photon from 
path 1 or path 9 reaches PBS2, Ω 4

 evolves into Ω 5
,

Figure 4. Schematic setup for a deterministic three qubit Fredkin gate with a flying photon polarization as 
the control qubit and two confined magnon qubits as the target qubits. S is an optical switch.
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From Eq. (24), one can see that the states of the two solidstate target qubits (the two atomic ensembles in cavi-
ties 1 and 2) are swapped when the photon qubit is in the state |V〉 , while they do not swap when the photon qubit 
is in the state |H〉 . The quantum circuit shown in Fig. 4 can be used to construct the Fredkin gate on a three-qubit 
hybrid system in a deterministic way.

Discussion
The key ingredient in our scheme is the combined magnon-cavity unit, such a system is a promising candidate for 
QIP since the birefringent propagation of the successively input photons acts as the effective Kerr nonlinearity. In 
this section, We quantitatively characterize the fidelities and efficiencies of our hybrid gates, respectively.

The fidelity of our Fredkin gate with respect to normalized photon detuning Δ /κ and the coupling rate λ/κ are 
shown in Fig. 5 when γ =  κ. In principle, the detuning Δ /κ can be arbitrarily reduced, if the input photon is tuned 
to be resonant to the cavity, and then one has FF =  97.2% when γ =  κ and λ/κ =  3; while when photon detuning 
κ∆ = ./ 0 2 and λ κ =/ 3, one has = .F 94 9%F . The fidelity FF approaches a steady value limited by the frequency 

detuning κ∆/ . The efficiencies of our universal quantum gates are shown in Fig. 6 when setting γ =  κ. For Δ  =  0, 
γ =  κ and λ κ =/ 3, η = .97 5%CNOT , η = .94 2%T , η = .86 6%F ; while when photon detuning κ∆ = ./ 0 2 and 
λ κ =/ 3, one has η = .95 6%CNOT , η = .89 9%T , η = .81 2%F . We can see that the performance of our universal 
quantum gates, to some extent, are not sensitive to the detuning Δ  and get better when the coupling rate λ/κ 
increases.

In fact, there might be some difference in the coupling rates between the cavity and modes b̂ j and ĉ j 
(κ κ κ= − ≠∆ 0c b ) in practice. In experiment, the difference of the two coupling constants κ κ∼ .∆ 0 2  has been 
demonstrated, which yields approximately the same fidelity for both transmission and reflection directions42. In 
the resonant case (ωc =  ω0 =  ω), there will be an additional error probability  in the single-photon scattering 
process by κ κ κ κ γ λ∼ +∆ ∆{ }max /( ) , /4b c ej j

2 2 2 2 2 . And this error can be improved for the cavity with almost iden-
tical mirrors43,44, which will lead to the ideal photon blockade45. To discuss the sensitivity of our schemes to κΔ, 
the fidelities and efficiencies of our gates are calculated with the similar procedure as those used in the symmetric 
case by using the reflection and transmission coefficients obtained with the asymmetrical cavity. The fidelities and 
efficiencies of our gates are shown in Fig. 7, here we choose κ κ= .∆ 0 1 b, γ =  κb and Δ  =  0. When setting λ/κ =  3, 
one has = .F 99 7%CNOT  with η = .97 5%CNOT , = .F 97 4%T  with η = .93 8%T  and = .F 92 0%F  with η = .86 7%F . 
Compared with those in the symmetric case, the little decreases of the fidelities and efficiencies in the asymmetric 
case prove that our universal quantum gates are robust to the cavity coupling imbalance.

As reported in refs 46, 47, the maximum coupling strength between a single atom and a single intracavity 
photon, along with the decay rate of the excited state and the cavity mode, are λ κ γ π = . .( , , )/2 (10 6, 1 3, 3)MHz. 
Thereby we can see that our hybrid quantum gates are robust against the practical imperfections. Recently, there 
have been plenty of other methods to couple an atomic ensemble with an optical cavity48,49, which might be 
another building block for our schemes. The fidelities of the spin wave rotation procedures of 99% have been 
reported50, and the collective spin wave operations in atomic ensembles have been well developed51. Besides, the 
atomic ensembles can store photons in a single atomic ensemble with several milliseconds52, so this manon-cavity 
unit is a good quantum memory system for photonic qubits, which is essential in scalable quantum networks. 
Therefore, our hybrid quantum gates may be achieved with the current QED setup. In addition, our hybrid quan-
tum gates are quite different from the previous ones based on the quantum dot embedded in microcavities6,7 and 
those assisted by NV centers embedded in photonic crystal cavities coupled to two wave guides30. We use the 
atomic ensemble approach, so that light-matter coupling is largely improved by collective enhancement53.  

Figure 5. The fidelity of our Fredkin gate with symmetric double-sided cavities. The blue solid line stands 
for the resonant case and the red doted line represents the case with Δ  =  0.2κ. Here γ =  κ is taken for practical 
microcavity.
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The control qubit of our gates is encoded on the polarization of the moving single photon and the target qubits are 
encoded on the magnon states of the atomic ensembles inside optical microcavities. As discussed in Sec. III, when 
the photon in |V〉  passes through the two cavities in succession, the output path of the photon is determined by 
the parity of the two magnon qubits, this makes the present schemes more succinct than the previous schemes6. 
In addition, because they do not require that the transmission for the uncoupled cavity is balanceable with the 
reflectance for the coupled cavity, our schemes are robust, this is different from the hybrid gates which are 
encoded on the atom confined in a single-sided cavity18,31.

Conclusion
In conclusion, we have designed the compact quantum circuits for implementing deterministic universal hybrid 
quantum gates, including the CNOT, Toffoli, and Fredkin gates, by means of the the effective Kerr nonlinearity 
induced by an atomic ensemble embedded in a double-sided cavity. The spontaneous emission and the cavity 
decay induce the different transmittance or reflectance coefficients between the hot cavity and the cold cavity in a 
magnon-cavity system. We have shown the schemes are robust to the variation of coupling rate λj and the detun-
ing Δ  involved in the practical experiments. High fidelities and efficiencies can be achieved in the strong coupling 
regime in our schemes. We hope this work will be useful in quantum computation and quantum networks with 
single photons.

Methods
Under the ideal case, suppose that the optical elements, such as PBS, HWP, Pπ, and optical switch, are per-
fect, both the success probability and the fidelity of the present schemes are 100% in principle. For a practical 
magnon-cavity unit, the spontaneous emission of the collective states and cavity decay may leading to photon 
loss, which will reduce the performance of our hybrid gates.

The fidelities of the gates. We introduce the gate fidelity, which measures the distance for quantum infor-
mation, is defined as54

ρ= Ψ Ψ†F U U , (25)t0 0

where Ψ0  is the input states, U is the ideal CONT (Toffoli or Fredkin) gate, and ρ = Ψ Ψt t t , with Ψt  being the 
final state after the realistic CONT (Toffoli or Fredkin) operation in the present scheme. Considering the rules for 
optical transitions in a realistic cavity system, combing the arguments made in Sec. III, we find that the state of the 
system described by Eq. (12) becomes

Figure 6. The efficiencies of our CNOT (a), Toffoli (b) and Fredkin (c) gates with symmetric double-
sided cavities. The blue solid lines stand for the resonant case and the red doted lines represent the case with 
Δ  =  0.2κ. Here γ =  κ is taken for practical microcavity.

Figure 7. The fidelities and efficiencies of our CNOT (a), Toffoli (b) and the Fredkin (c) gates with 
asymmetric double-sided cavities. The blue solid lines stand for the fidelities, the red doted lines represent the 
efficiencies. Here the cavity coupling rate difference is chosen as κΔ =  0.1κb, and we choose the detuning Δ  =  0 
and γ =  κ for practical microcavity.
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The terms with underlines indicate the states which take the bit-flip error. Then, the fidelity of the CNOT gate 
can be written as
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Similarly, we can calculate the fidelities for the Toffoli (FT) and the Fredkin (FF) gates discussed in Sec. III, 
respectively:
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Defining the efficiency of a quantum gate as the ratio of the number of the outputting photons to the inputting 
photons. The reflection and transmission coefficients of the magnon-cavity system will modify the output states 
of the quantum gates. According to the discussions made in Sec. III, the efficiencies of our gates can be written as
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Experimental realization of an atomic ensemble cavity system. The physical configuration that 
we consider in the present schemes can employ 87Rb55,56 atomic ensemble. In a real experiment, one can couple a 
Bose-Einstein condensate of 87Rb atomic ensemble to an optical Fabry-Perot cavity46,47. We choose the two stable 
hyperfine ground states |g0〉  and |g1〉  as the (F =  1, MF =  − 1) level and the (F =  1, MF =  1) level of the 5S1/2 state, 
while two metastable hyperfine excited states are the (F =  2, MF =  − 2) level and the (F =  2, MF =  2) level of 5P1/2. 
Meanwhile, a highly excited Rydberg state nS1/2 can be chosen as |r〉 .
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