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Abstract: Diabetic nephropathy (DN) is a common microvascular complication in the late 
stages of diabetes. Currently, the etiology and pathogenesis of DN are not well understood. 
Even so, available evidence shows its development is associated with metabolism, oxidative 
stress, cytokine interaction, genetic factors, and renal microvascular disease. Diabetic 
nephropathy can lead to proteinuria, edema and hypertension, among other complications. 
In severe cases, it can cause life-threatening complications such as renal failure. Patients with 
type 1 diabetes, hypertension, high protein intake, and smokers have a higher risk of 
developing DN. Fibroblast growth factor (FGF) regulates several human processes essential 
for normal development. Even though FGF has been implicated in the pathological devel-
opment of DN, the underlying mechanisms are not well understood. This review summarizes 
the role of FGF in the development of DN. Moreover, the association of FGF with 
metabolism, inflammation, oxidative stress and fibrosis in the context of DN is discussed. 
Findings of this review are expected to deepen our understanding of DN and generate ideas 
for developing effective prevention and treatments for the disease. 
Keywords: fibroblast growth factor, diabetic nephropathy, signaling pathways, 
pharmacological action, renal fibrosis

Introduction
Diabetes mellitus (DM) is a metabolic disorder associated with chronic microvas-
cular and macrovascular complications. Diabetes leads to numerous serious com-
plications including diabetic retinopathy, diabetic foot ulcers and diabetic 
nephropathy (DN).1 DN is one of the most common and severe chronic micro-
vascular complications associated with diabetes, and the leading cause of end-stage 
renal disease (ESRD) in the world.2 About 20–50% of people with diabetes may 
develop DN.3 In addition, about 50% of DN patients develop ESRD, which 
substantially increasing the mortality rate of patients with DN.4

The main pathological features of DN include morphological, ultrastructural, and 
functional changes in diabetic kidneys, glomerular hypertrophy, proteinuria, decreased 
glomerular filtration rate and renal fibrosis, all of which disrupt renal function.5 

Clinically, DN syndrome is characterized by microalbuminuria or albuminuria. The 
disease progresses through five stages: initial glomerular hyperfiltration and renal 
hypertrophy, post-exercise microalbuminuria, persistent microalbuminuria, renal dys-
function, and renal failure. The onset of DN is difficult to detect, and once albuminuria 
sets in, disease progression is irreversible. DN patients are 14 times more likely to 
progress to end-stage renal disease, relative patients with other kidney diseases.6 
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Presently, DN treatment relies on reducing cardiovascular 
risk and blood glucose, blood pressure management, and 
inhibition of angiotensin enzyme activity.7 In China, the 
prevalence of diabetes in recent years has parallelled the 
increase in diabetes-related chronic kidney diseases, distinct 
from those associated with glomerulonephritis.8 Although 
therapeutic interventions can delay development and pro-
gression of DN, numerous patients still develop ESRD. The 
enormous social and economic burden imposed by DN con-
tinues to increase year by year. The limited knowledge on the 
pathogenesis of DN has complicated control and treatment 
efforts against the disease. This underlines the need to 
explore the pathogenesis as well effective prevention and 
treatment of DN.

Fibroblast growth factor (FGF) family is a group of 
structurally identical and multifunctional signal molecules 
that regulate numerous developmental, physiological and 
pathological processes in humans. FGFs regulate numer-
ous biological and pathophysiological processes including 
angiogenesis, wound healing, embryonic development, 
and metabolism via the paracrine or endocrine system.9 

In recent years, research focuses on understanding the 
mechanism underlying the relationship between FGF and 
diabetes as well as associated complications. At present, 
the treatment of DN relies on hypoglycemic drugs, which 
often results in serious side effects such as hypoglycemia. 
Given that FGF cannot cause hypoglycemia, it is poten-
tially a safe therapeutic candidate for diabetes treatment. 
Previous studies have shown that FGF can alleviate 
inflammation, regulate lipid metabolism, reduce oxidative 
stress and improve insulin resistance. On the other hand, 
these factors are essential in the development of diabetes 
and related complications. However, the mechanism 
underlying this relationship remains to be validated.10–13 

Overall, this paper reviews research progress on the rela-
tionship between FGF in DN.

Fibroblast Growth Factor Family
The FGF family consists of 23 members (FGF1-FGF23). 
In humans, only 22 FGFs have been described. FGF15 
has not been reported in humans, similar to FGF19 
which is also absent in rodents such as mice and rats. 
FGF19 is thought to be homologous to FGF15 in 
vertebrates.14 Among the 22 FGFs in mammals, FGF11 
subfamily (FGF11, FGF12, FGF13, FGF14) are intracel-
lular proteins that do not bind to FGF receptors 
(FGFRs).15 According to the sequence homology and 
phylogeny, remaining 18 FGFs can be divided into six 

subfamilies, including subfamily FGF1 (FGF1, FGF2), 
FGF4 (FGF4, FGF5, FGF6), FGF7 (FGF3, FGF7, 
FGF10, FGF22), FGF 8 (FGF8, FGF17, FGF18), FGF9 
(FGF9, FGF16, FGF20) and FGF19 (FGF19, FGF21, 
FGF23), who all regulate the endocrine system.16 In 
mammals, FGF signaling pathway regulates binding, 
activation and interaction of tyrosine kinase FGFRs 
with four signal molecules (FGFR1, FGFR2, FGFR3 
and FGFR4). But the FGF11 subfamily does not secrete 
signals and has no definite interaction with FGFRs. It is 
a cofactor for voltage-gated sodium channels and other 
molecules17 (Table 1).

FGF signaling pathway regulates numerous fundamen-
tal cellular processes in different fashions based on the cell 
type and maturation stage. Initially, FGFs were thought to 
exclusively regulate proliferation of fibroblasts. However, 
emerging evidence shows that proliferation of fibroblasts 
is regulated by numerous cells including keratinocytes, 
immature osteoblasts, oligodendrocyte precursor cells, 
and endothelial cells. That aside, FGF also participates in 
differentiation and apoptosis of numerous cells,18 growth 
and development and protects tissues against fibrosis.19–21 

Numerous studies have shown that FGF regulates almost 
all human growth and developmental as well as several 
physiological processes.

FGFR activates several signal transduction pathways 
such as embryonic development, tumor growth, angiogen-
esis, wound healing, and physiology during growth and 
developmental stages of mammals. Activation of FGFR is 
regulated by heparin, heparan sulfate or other glycosami-
noglycans following specific binding between FGF and 
FGFRs.22 Unlike other growth factors, activation of 
FGFRs and induction of pleiotropic response is mediated 
synergistically by heparin and heparin sulfate proteoglycan 
(HSPG).23 Receptor dimerization is central to FGF signal 
transduction. Receptor dimerization activates its intrinsic 
tyrosine kinase to phosphorylate several tyrosine residues 
on the receptor. The resultant signal complex is assembled 
and recruited to the active receptor after a series of 
phosphorylation.24 Heparin plays a significant role in the 
process of receptor dimerization. FGF and helper heparin 
molecule preferentially bind to the open and dimerized 
complex, which shifts the equilibrium to the FGFR 
dimer, resulting in autophosphorylation and stimulation 
of tyrosine protein kinase (PTK) activity. Without heparin, 
the FGF-mediated and direct receptor–receptor interaction 
are insufficient to produce significant dimerization, 

https://doi.org/10.2147/JIR.S334996                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2021:14 5274

Deng et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


underlining the critical role heparin cofactor plays in FGF 
signal transduction and regulation.23,25,26

Klotho family of proteins are other key cofactors in FGF 
signal transduction. Because heparin-binding domain is 
absent in endocrine FGFs, they have a low affinity for 
heparan sulfate. As such, Klotho protein cofactor is essential 
in endocrine FGFs for the formation of FGF-FGFR-Klotho 
ternary complex.27,28 The Klotho family is composed of α 
and β-Klotho proteins. FGF19 and FGF21 binds β-Klotho 
protein, whereas FGF23 binds the α-Klotho protein. The 
FGF-Klotho endocrine axis regulates several physiological 
processes such as phosphate, glucose, fatty acid and bile acid 
metabolism, energy production, circadian rhythm and sym-
pathetic activity as well as stress and aging. Accordingly, 
Klotho endocrine axis is a potential therapeutic target for 
treatment of multitudinous chronic diseases29,30 (Figure 1).

Development and Progression of 
DN
Microvascular and macrovascular complications and neu-
ropathy are the main disorders associated with diabetes. 

They significantly disrupt the normal daily life of dia-
betics, and can even lead to disability or death. There are 
numerous diabetes-related complications, characterized by 
complex etiologies. The common pathologies are however 
related to blood glucose, inflammation, protein modifica-
tion and turnover, gene regulation, redox imbalance, dys-
lipidemia, blood pressure, and many other factors. Even 
so, the pathogenesis of diabetes-related complications is 
not well understood.31 DN is the major complication 
related to diabetes and the main cause of ESRD. The 
clinical pathological manifestations of DN are mainly 
renal fibrosis and albuminuria. The major histological 
feature of classical diabetic nephropathy is diabetic glo-
merulosclerosis. Widening of the glomerular basement 
membrane, mesangial matrix accumulation, podocyte 
foot process widening and effacement, and loss of podo-
cytes all occur (Figure 2). Mechanism underlying occur-
rence and development of DN are very complex, but 
include glomerular insulin resistance, glucose and lipid 
metabolism disorder, oxidative stress, inflammation, podo-
cyte injury, and vascular endothelial dysfunction.32–34

Table 1 FGFs and Its Specific FGF Receptors

FGF Subfamily FGF Cofactor FGF Receptor Activity

Paracrine Subfamily FGF1 subfamily FGF1 HS All FGFRs
FGF2 FGFR1c,3c>2c,1b,4

FGF4 subfamily FGF4 FGFR1c,2c>3c,4
FGF5 FGFR1c,2c>3c,4
FGF6 FGFR1c,2c>3c,4

FGF7 subfamily FGF3 FGFR2b>1b
FGF7 FGFR2b>1b

FGF10 FGFR2b>1b
FGF22 FGFR2b>1b

FGF8 subfamily FGF8 FGFR3c>4>2c>1c≫3b
FGF17 FGFR3c>4>2c>1c≫3b

FGF18 FGFR3c>4>2c>1c≫3b

FGF9 subfamily FGF9 FGFR3c>2c>1c,3b≫4
FGF16 FGFR3c>2c>1c,3b≫4

FGF20 FGFR3c>2c>1c,3b≫4

Endocrine Subfamily FGF19 subfamily FGF19 β-Klotho FGFR1c,2c,3c,4
FGF21 FGFR1c,3c
FGF23 α-Klotho FGFR1c,2c,3c,4

Non-signal FGFs Subfamily FGF11 subfamily FGF11 Is not combined with FGFRs
FGF12

FGF13

FGF14
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Inflammation and the Development of 
DN
Increasing evidence shows that glomerular and tubuloin-
terstitial inflammation plays a fundamental role in the 
development of DN. Therefore, exploring the 

relationship between renal inflammation and the occur-
rence and development of DN can uncover ways of 
preventing the occurrence of DN.35,36 Prolonged inflam-
mation resulting from sustained renal injury may pro-
mote DN development. Glomerular endothelial cell 

Figure 1 An overview of the FGF signaling pathways. (A) Activation of FGFRs by FGFs via the paracrine pathway, mediated by HS cofactor. (B) Activation of FGFR by FGF- 
Klotho-FGFR ternary complex. The complex formation is regulated via the Endocrine pathway, mediated by Klotho protein cofactor. (C) Regulation of functioning of various 
signal transduction pathways such as growth and development in the human body by FGF-activated FGFR.

Figure 2 Pathological characteristics of DN. The first clinical manifestation of classical DN is the increase of urinary albumin excretion. The glomerular filtration rate is 
normal or even increased before urinary albumin excretion, but the glomerular filtration rate decreases after continuous urinary proteinuria, and eventually even developed 
into ESRD. And with increased urinary albumin excretion and an independent decline in glomerular filtration function, the patient’s risk of cardiovascular disease increases. 
According to the Tervaert classification of DN, the glomerular lesions of DN can be divided into four grades. I: Irregular thickening of the glomerular basement membrane 
was observed under an electron microscope. II: Mesangial hyperplasia and mesangial dilatation occur. III: There is at least one recognized tuberous sclerosis. IV: Advanced 
diabetic glomerulosclerosis of glomeruli.
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injury is often accompanied by the expression of adhe-
sion molecules and chemokines, resulting in infiltration 
of macrophage into renal tissues.37

Numerous studies show that moderate but chronic 
inflammation activates the innate immunity, which med-
iates the DN pathogenesis. Cytokines are the main reg-
ulatory and effector molecules in the inflammatory 
process. Meanwhile, inflammation is a critical process 
in the occurrence and development of diabetes and 
related complications. Several molecules and pathways 
related to inflammation participate in the occurrence and 
development of DN.38 Additionally, mild but prolonged 
inflammation and associated disorders including insulin 
resistance, high oxidative stress, endothelial dysfunction 
and increased urinary albumin excretion participate in 
DN development.39 Kidney cells synthesize pro- 
inflammatory cytokines. Interestingly, chemokines and 
adhesion molecules are over-expressed in kidney cells 
of diabetic patients and animals. These molecules can 
attract circulating leukocytes such as monocytes, neu-
trophils and lymphocytes to the renal tissue, which 
causes mild renal injury. Cytokines and other inflamma-
tory mediators secreted by the infiltrating immune cells 
exacerbate the renal injury, and sustain inflammatory 
response.40 Given the intricate relationship, therapeutic 
options for DN targeting inflammatory disease have 
been widely explored.

Oxidative Stress: Important Factor for 
DN
Numerous studies have shown that oxidative stress parti-
cipates in the development of diabetic microvascular and 
cardiovascular complications. In particular, super-oxides 
activate several key pathways linked to diabetes 
complications.41 In DN, oxidative stress activates renin- 
angiotensin-aldosterone system (RAAS), polyol pathway, 
protein kinase C (PKC), advanced glycation end products 
(AGEs) and other pathways that damage the kidney. 
Oxidative stress that damage the kidney can be induced 
by other pathways such hyperglycemia, autophagy, 
inflammation.42 Accordingly, antioxidants are promising 
therapeutic potential against DN resulting from oxidative 
stress. However, the high renal perfusion rate limits the 
delivery and application of antioxidants.43 Nevertheless, 
anti-oxidative stress is still an important research direction 
in the treatment of DN.

Insulin Resistance
Insulin regulates glucose metabolism and biological func-
tion of specific cells and tissues. Insulin resistance and 
relative deficiency causes hyperglycemia, which partici-
pates in the development of diabetes and associated 
complications.44 For instance, insulin resistance is closely 
related to occurrence and progression of DN, through 
unclear mechanisms.45,46

The Main Pathogenesis of DN
DN development is mainly regulated via three pathways: 1) 
polyol and activation of PKC pathway is central to DN 
development DN. Particularly, the activation of PKC path-
way increases capillary permeability, induces cellular stress 
and expression of both extracellular matrix (ECM) and trans-
forming growth factor β1 (TGF-β1), aggravating kidney 
injury.47 Besides, activation of the polyol pathway disrupts 
the intracellular tension, increases glycation, reduces anti- 
oxidation and enhances oxidative cell damage through varied 
mechanisms.48 2) Production of AGEs in a high-glucose 
environment disrupts glomerular functioning and activates 
the macrophages. Binding of AGEs and AGE receptors 
(RAGE) in kidney tissue induces oxidative stress and chronic 
inflammation, which ultimately damage the kidney.49 3) 
Hyperglycemia causes glomerulus glomerular hyper filtra-
tion and intraglomerular hypertension by activating the local 
RAAS. The high blood pressure in the glomerulus acceler-
ates renal vascular complications. Moreover, angiotensin II 
produced by the RAAS can cause podocyte injury by increas-
ing the production of reactive oxygen species (ROS).50

DN is a complex process involving numerous but specific 
cells and molecules. Hyperglycemia drives progression of 
DN into ERSD. In hyperglycemia, complex changes in cell 
function, extracellular activity and hemodynamic effects pro-
duction of AGES, hexosamine, polyol, ROS, and angiotensin 
II through different metabolic pathways. The molecules trig-
ger several serious events which activate PKC, ERK, p38, 
JNK/SAPK, AGE-RAGE signaling pathways, as well as 
production of monocyte chemoattractant protein-1 (MCP-1) 
and TGF-β1 to a crosstalk network. These processes lead to 
DN, characterized by kidney enlargement, mesangial matrix 
dilatation, glomerular basement membrane thickening, podo-
cyte reduction, basement membrane thickening, interstitial 
fibrosis and eventually proteinuria.51 However, accumulating 
evidence shows that genes related to DN pathology are not 
just regulated through classical signaling pathways, but also 
epigenetically.52
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The aforementioned mechanisms only represent 
a small fraction of the complex DN pathogenesis. At 
present, DN treatment mainly targets the aforemen-
tioned pathways. In clinical trials, the relationship 

between FGF and insulin resistance, fibrosis, RAAS, 
chronic kidney disease has been studied. However, 
there is still a lack of clinical drug research on FGF 
in DN (Table 2).

Table 2 Ongoing Human Clinical Trials of FGF

Status Study Sponsor Condition Intervention Phase

Recruiting FGF23 and Angiotensin-(1-7) in 
Hypophosphatemia (GAP)

Wake Forest 
University 

Health Sciences

Hypophosphatemia; 
X-linked 

Hypophosphatemia; 

Renin-angiotensin 
System; 

Left Ventricular 

Hypertrophy

Diagnostic Test: Ang II 
and Ang-(1-7) 

Diagnostic Test: FGF23 

and klotho

NA

Completed Phosphate Intake’s Effect on the 

Skeletal System - Pilot

University of 

California, San 
Francisco

Healthy; 

Kidney Failure, 
Chronic

Behavioral: dietary 

phosphorus

NA

Completed Modulation of Insulin Sensitivity 

by Betaine Upregulation of 

FGF21

UNC Nutrition 

Research 

Institute

Insulin Sensitivity Dietary Supplement: 

Betaine 

Dietary Supplement: 
Dextrose

NA

Active, not 
recruiting

A Study of Experimental 
Medication BMS-986036 in 

Adults With Nonalcoholic 

Steatohepatitis (NASH) and 
Stage 3 Liver Fibrosis 

(FALCON 1)

Bristol-Myers 
Squibb

Liver Fibrosis; 
Nonalcoholic Fatty 

Liver Disease 

(NAFLD); 
Nonalcoholic 

Steatohepatitis

Drug: BMS-986036 
(PEG-FGF21) 

Other: Placebo

Phase II

Recruiting Effect of Weekly High-dose 

Vitamin D3 Supplementation 

on the Association Between 
Circulatory FGF-23 and A1c 

Levels in People With Vitamin 

D Deficiency: A Randomized 
Controlled 10-weeks Follow-up 

Trial.

Applied Science 

Private 

University

Diabetes Mellitus, 

Type 2 Kidney 

Diseases

Dietary Supplement: 

Soft gelatin capsules 

each contains 50,000 IU 
VD3 (cholecalciferol) 

equivalents to 1.25 mg.

NA

Unknown Safety Study of Topical Human 

FGF-1 for Wound Healing

Phage 

Pharmaceuticals, 

Inc.

Diabetic Foot 

Ulcers

Drug: FGF-1141 Phase I

Completed FGF-23 and Endothelial 

Dysfunction in Diabetic 
Proteinuric Patients

Gulhane School 

of Medicine

Proteinuria; 

Diabetic 
Nephropathy; 

Chronic Kidney 

Disease

Drug: Ramipril Phase IV

Note: Sources: www.clinicaltrials.gov. 
Abbreviation: NA, not applicable.
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The Relationship Between 
Fibroblast Growth Factor and 
Diabetic Nephropathy
FGFs maintain the general dynamic homeostasis by 
regulating autocrine, paracrine and endocrine systems 
that participate in numerous processes that mediate the 
development of diabetes and related complications 
including angiogenesis, oxidative stress, immune inflam-
mation, tissue repair and islet resistance.53–57 

Consequently, FGFs are potential therapeutic targets 
for diabetes and related complications. Overall, the cur-
rent consensus is that FGF participates in DN 
development.

FGF1
Initially classified under mitogens of brain and pituitary 
fibroblasts, FGF1 is released by damaged cells or via 
endoplasmic reticulum-Golgi independent exocytosis path-
ways. FGF1 is widely expressed in developing and mature 
tissues and regulates numerous biological activities.58 It 
can interact with heparin or heparan sulfate proteoglycan, 
bind to four tyrosine kinase FGF receptors, and participate 
in the regulation of various physiological processes such 
as development, angiogenesis, wound healing, lipogenesis 
and neurogenesis. FGF performs these functions by reg-
ulating multiple signaling pathways including RAS/Raf/ 
MEK/ERK, JNK and p38 MAPK, STAT3 and NF-κB 
pathways.59

FGF1 are potential therapeutic targets for diabetes.60 

For instance, Jonker et al found that a high-fat diet induces 
over-expression of FGF1.61 Contrarily, FGF1 gene knock-
out results in severe diabetes in mice, accompanied by 
abnormal swelling after feeding on following high-fat 
diet. These findings demonstrate that FGF1 improves 
lipid metabolism and suppresses the development of dia-
betes. In Jonker’s experiments, luciferase activity and chip 
sequence analyses further confirmed that increase in FGF1 
expression following a high-fat diet intake is regulated by 
peroxisome proliferator-activated receptor γ (PPAR γ) via 
the PPAR response element in the promoter region of 
FGF1 gene. PPAR γ maintains metabolic homeostasis by 
selectively binding FGF1 on adipocytes. In a related study, 
it was found that prolonged intake of recombinant FGF1 
(rFGF1) leads to persistent hypoglycemia, systemic insulin 
sensitivity and under secretion of several inflammatory 
cytokines including eosinophil chemokines, inflammatory 
proteins and interleukin (IL). FGFR1-mediated signal 

transduction is necessary for hypoglycemic and insulin- 
sensitization by FGF1. In addition, the hypoglycemic 
effect of rFGF1 is insulin dose-dependent and does not 
lead to hypoglycemia. Compared with current insulin sen-
sitization therapies, continuous hypoglycemic and insulin 
sensitization using rFGF1 does not result in serious 
adverse side effects such as body weight gain, liver stea-
tosis and loss of bone mass.62 In a related research, FGF1 
treatment was found to significantly improve secretion of 
inflammatory cytokines induced by obesity and tumor 
necrosis factor-α (TNF-α), modulate inflammation and 
improve induced pancreatic islet resistance. FGF-1 per-
forms these functions by weakening JNK signal transduc-
tion, inhibiting TNF-α secretion and regulating 
phosphorylation of C-Jun N-terminal kinase (JNK). 
These processes are mediated by transforming growth 
factor β-activated kinase 1(TAK1)-TAK1 binding protein 
1(TAB1).63 However, it is not clear whether these path-
ways are the primary mechanisms with which FGF1 ame-
liorates DN.

FGF1 potentially protects against renal dysfunction. 
Bioinformatics analyses have revealed that FGF1is under- 
expressed in the kidney of DN patients.64 Aqueous extract 
of Phyllanthus niruri leaves modulates the expression of 
FGF1 in the renal tubules and FGF in the kidney of DN 
patients.65 FGF1 is a therapeutic candidate for DN. FGF1 
reduces urinary albumin excretion, glomerular sclerosis, 
expression of proteins related to fibrosis in renal tissues, 
expression of high glucose-induced podocyte pro- 
inflammatory cytokine tumor necrosis factor-ɑ (TNF-ɑ) 
and interleukin-6 (IL-6) as well as glomerulonephritis in 
type 1 and type 2 diabetes. It is thought FGF1 relieves 
renal inflammation in DN patients by inhibiting JNK 
activity and hyperglycemia-induced NF-κB expression.66

Wang et al found that FGF1 knockdown inhibits inflam-
mation and oxidative stress during DN development.67 These 
findings suggest that FGF1 knockdown inhibits oxidative 
stress and inflammatory response by over activating GSK- 
3β/Nrf2 signaling pathway but inhibiting ASK1/JNK1 signal-
ing pathway, both of which are regulated by PI3K/AKT sig-
naling. Possibly, AKT is an upstream regulator of oxidative 
stress and inflammation in chronic nephropathy. Furthermore, 
treatment with FGF1 can inhibit over-expression of NADPH 
oxidase (NOX)2 in DN, reduce the production of peroxide and 
reverse down-regulated expression of signal nuclear factor E2 
related factor 2 (Nrf2) following anti-inflammatory and oxida-
tive damage in diabetics. Overall, these processes alleviate 
diabetes induced oxidative stress in kidneys.68
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FGF1 is an effective treatment of kidney injury. It 
can prevent renal hypertrophy and DN without causing 
adverse side effects such as loss of body weight and 
hyper/hypoglycemia. FGF1 also prevents DNA damage, 
cellular stress, production of vasoactive factors and 
angiotensinogen and dysregulated expression of 
endothelial NO after diabetes. Even if FGF1 does not 
inhibit the expression of TGF-β1, it prevents renal fibro-
sis by inhibiting production of fibronectins.69 To sum 
up, FGF1 can effectively prevent kidney injury, inhibit 
renal inflammation and oxidative stress, and prevent 
development of DN independent of hypoglycemic activ-
ity (Figure 3).

FGF2
FGF2 is over-expressed in the serum of patients with any 
DN.70 FGF2 is a growth factor that regulates angiogen-
esis and participates in hyperglycemia-induced vascular 
dysfunction in diabetics.71 Substantial evidence suggests 
that FGF2 participates in the epithelial–mesenchymal 
transition (EMT) of renal tubular epithelial cells and 
renal fibers. EMT is one of the key events in the process 
of renal interstitial fibrosis.72,73 Over-expression of FGF2 
stimulates proliferation of fibroblasts, and to some extent, 
extracellular matrix production, which promotes renal 
tubulointerstitial damages in diabetes.74 FGF2 can also 
induce EMT by stably activating the PI3K/AKT pathway. 
Heparanase-1 (HPSE) mediates FGF2-induced EMT. 

HPSE is also a precursor for stable activation of PI3K/ 
AKT pathway by FGF2.75 Moreover, albuminuria as well 
as AGE and FGF2 activation via the PI3K/AKT pathway 
upregulates HPSE expression.76,77 HPSE is essential for 
the signaling of TGF-β1. HPSE-deficiency inhibits 
FGF2-mediated expression of TGF-β1 in renal tubular 
cells. Also, HPSE down-regulates expression of trans-
membrane HS proteoglycan syndecan-1, which regulates 
FGF2 signaling.78 Therefore, HPSE and FGF2 are poten-
tial targets for DN treatment. Inhibiting HPSE from 
blocking EMT has been used for the treatment of chronic 
kidney diseases.77 Also, FGF2 can exacerbate acute and 
chronic podocyte injury, which worsens glomerular 
damage.79

Interestingly, however, research shows that FGF2 can 
ameliorate both CKD and DN.49,80 Expression of Heparan 
sulfate proteoglycan glypican-5 (GCP5) is thought to pre-
dispose diabetic patients to DN. Meanwhile, over expres-
sion of GCP5, FGFR3 and FGFR4 under high glucose 
increases the accumulation of glomerular FGF2, leading 
to fibrosis.81 Although FGF2 is present in glomerular 
capillaries of normal mice, it is under-expressed in glo-
merular epithelial cells.82 Therefore, we speculate low- 
dose FGF2 can treat DN because it does not accumulate 
in the glomeruli. However, over-expression of FGF2 in 
DN patients accumulates FGF2 in the glomeruli, aggravat-
ing renal fibrosis (Figure 4).

Figure 3 Effect of FGF1 on DN. FGF1 can ameliorate cell stress, inflammation, fibrosis and kidney injury.
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FGF21
FGF21 is a member of the endocrine gene family mainly 
expressed in the liver, which is secreted by hepatocytes in 
response to a variety of stresses. Serum circulating fibroblast 
growth factor 21 levels in patients with chronic kidney dis-
ease (CKD) increase from the early stage of disease progres-
sion, and the progressive increase of FGF21 may be 
a response to survival stress. Although the increase of 
FGF21 increases the cardiovascular risk, it is necessary for 
the survival of CKD mice.54,83,84 Furthermore, the analysis 
results of clinical samples of diabetic patients with chronic 
kidney disease showed that when glomerular filtration rate 
was high, serum FGF21 levels increased with proteinuria but 
were relatively low in the kidneys. The elevated levels of 
FGF21 in patients with DN may be due to the increased 
secretion of the body for protection purposes under the 
stimulation of stress responses such as inflammation and 
oxidative stress. However, with the development of DN, 
renal function is decreased, leading to the accumulation of 
FGF21 in the body.85–87 Therefore, the circulating FGF21 
levels are considered as a potential biomarker for predicting 
the development of DN.86,88–90 Administration of FGF21 can 
reduce nephritis, oxidative stress, fibrosis and lipid accumu-
lation caused by diabetes, which reduce kidney cell apoptosis 
and protect the kidney.91–94

FGF21 ameliorates DN by improving insulin 
resistance.95,96 Prostaglandin (PGE1) protects renal tissues 
against hyperglycemia. For instance, PGE1 inhibits autop-
hagy-induced mitochondrial stress or dysfunction, up- 
regulates FGF21 expression induced by ATF4, improves 
renal tubular insulin resistance and prevents DN 
development.97,98

Regarding DN, the anti-fibrous mechanism of FGF21 
is very complex. It is thought that FGF21 exerts its anti- 
fibrosis effect in DN by inhibiting signal transduction 
and transcriptional activator (STAT) 5 signaling 
pathway.99 However, in a separate study, mice models 
revealed that FGF21 can effectively modulate nephropa-
thy and renal inflammation in type 1 diabetics with DN 
via the renal adenylate activated protein kinase (AMPK)- 
Sirtuin1 (SIRT1) pathway.93,100 AMPK activation inhi-
bits expression of NF-κB. On the other hand, FGF21 
inhibits the activation of NF-κB/NLRP3 inflammasomes. 
Meanwhile, NOD-like receptor 3 (NLRP3) inflamma-
somes are related to DN pathogenesis.101,102 FGF21also 
inhibits the activity of tumor suppressor protein p53 by 
activating PI3K/AKT/MDM2 signaling pathway and by 
inhibiting Smad2/3 nuclear transport. The protein also 
protects against kidney damage.103

Fenofibrate is a common lipid-lowering drug that pre-
vents renal dysfunction and pathological changes caused 
by diabetes, renal fibrosis, oxidative stress, inflammation, 
and apoptosis by activating PPAR α. Fenofibrate protects 
kidney damage by up-regulating the expression of FGF21, 
which activates the PI3K/Akt2/GSK-3β/Fyn-mediated 
Nrf2 and AMPK pathways104,105 (Figure 5).

FGF23
FGF23 is a protein secreted by bone cells and is a crucial 
hormone for regulating phosphate homeostasis. The primary 
targets of FGF23 are the kidney and parathyroid. It functions 
by binding FGFR using α-Klotho protein as a cofactor.106 

Both fundamental and clinical studies with CKD indicate that 
circulating levels of serum FGF23 begin to increase early in 

Figure 4 The effect of FGF2 on EMT in renal tubular epithelial cells. The effect of Albuminuria, AGEs and FGF2 on PI3K/AKT pathway mediated expression of HPSE. HPSE 
can hydrolyze HSPG to generate HS fragments and inhibit the overexpression of multiligand proteoglycan-1, essential for FGF2 activation of. In addition, HPSE regulate the 
expression and activity of TGF-β.
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CKD progression. Up-regulation of FGF23 is a risk biomar-
ker of progressive diabetic nephropathy. Excessive FGF23 is 
associated with rapid progression of CKD and increased risk 
of cardiovascular morbidity and mortality, making it 
a prognostic marker of CKD.107–111 Nevertheless, in order 
to maintain phosphate homeostasis, the FGF23-aKlotho 
endocrine axis is needed to reduce phosphate reabsorption 
and increase phosphate excretion. However, this compensa-
tory response may accelerate the progression of CKD. 
Phosphate excretion per nephron was positively correlated 
with the severity of the renal tubular injury and interstitial 
fibrosis. The increase in phosphate excretion per nephron 
increases the phosphate concentration in the renal tubular 
fluid. However, due to the decrease in renal function, the 
ability of the kidney to excrete urine phosphate is reduced, 
resulting in the accumulation of phosphate in the renal 
tubules, leading to tubular injury and interstitial fibrosis. 

Therefore, an increase in FGF23 is also considered a risk 
for renal tubular injury and interstitial fibrosis.112,113 

Compared with patients with CKD without diabetes, patients 
with diabetic kidney disease have higher levels of serum 
phosphate, PTH, and FGF23, and the disorder of mineral 
metabolism is more serious.114,115 In recent years, elevated 
FGF23 is not only considered as a predictor of cardiovascular 
risk and mortality in CKD and ESRD. However, it may also 
be a potential biomarker for early diagnosis of renal dysfunc-
tion and prediction of chronic complications and progression 
of DN.85,116,117

Numerous studies show that high FGF23 levels 
induces inflammation in DN patients.118–120 The competi-
tive antagonist of FGF23 (FGF23C-tail) ameliorates DN by 
reducing inflammation and fibrosis.121 Elsewhere, the 
renal impairment of FGF23 was reported to be associated 
with endothelial dysfunction. High FGF-23 levels reduce 

Figure 5 The therapeutic effect of FGF21 on DN. Endoplasmic reticulum stress activates ATF4, which induce FGF21 expression. FGF21 protects kidney damage by 
activating multiple signaling pathways. PI3K/AKT pathway is shown to the left, STAT5 pathway in the middle and AMPK/SIRT1 on the right.
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the risk of early development of kidney disease in patients 
with type 2 diabetes mellitus in the absence of other 
intervening risk factors.122 It is thought that FGF23 
induces inflammation by disrupting phosphate metabolism. 
Inhibition of FGF-23 relieves DN by increasing peripheral 
insulin sensitivity and enhancing subcutaneous glucose 
tolerance.123

FGF23 causes kidney endothelial dysfunction, 
a significant risk factor for renal disease and an established 
regulator of local angiotensin II in the kidney by inducing 
phosphate metabolism and inhibiting nitric oxide (NO) 
production.124 Angiotensin-converting enzyme (ACE) 
inhibitors protect against renal damage in DN patients 
partly by modulating levels of plasma FGF23 and secre-
tion of FGF23 in the kidney while up-regulating Klotho 
expression.125,126 Hesperidin modulates inflammation, 
hyperglycemia and promotes anti-oxidation. Also, rat 
models revealed that Hesperidin down-regulate FGF23 
levels in diabetics and up-regulate that of α-Klotho pro-
tein, thereby ameliorating DN. Even so, additional studies 
are needed to explore the relationship between blood.127

Others FGFs
FGF11 participates in renal injury in DN patients by 
promoting proliferation and fibrosis of mesangial cells. 
Even though overwhelming evidence shows that 
circRNAs-miRNA-mRNA axis is central to DN develop-
ment, it has also been linked with FGF.128,129 Circular 
RNA_0080425 is over-expressed in DN patients, and acti-
vates FGF11 expression. On the other hand, inhibition of 
FGF11 expression using miR-24-3p modulates prolifera-
tion and fibrosis of mesangial cells. However, impairing 
miR-24-3p function blocks the inhibition of FGF11 by 
small interference annular RNA_0080425, suggesting 
that competitive binding of cyclic RNA_0080425 to 
miR-24-3p induces FGF11 release. Even though this inhi-
bits miR-24-3p function, it exacerbates DN.130

In the latest research, Md Dom et al reported that 
angiopoietin-1 (ANGPT1), FGF 20, tumor necrosis factor 
ligand superfamily member 12 (TNFSF12) are related to 
protecting diabetic nephropathy from progressing to 
ESRD. The lower the concentration of these proteins, the 
higher the risk of progression to ESRD. Meanwhile, 
FGF20 can be used as biomarkers to predict the risk of 
DN progression to ESRD and delay or prevent ESRD.131 

FGF20 is selectively expressed in the brain and is almost 
absent in healthy peripheral tissues. There are few studies 
on it in the kidney, but some studies have found that 

FGF20 can maintain the stem cell characteristics of 
embryonic nephron progenitor cells and maintain normal 
kidney development.132,133 The protective effect of FGF20 
on the progression of DN to ESRD needs further 
investigation.

Interaction Between FGF and Other 
Signal Pathways in DN
During DN development, FGF regulates several inter- 
related signaling pathways such as STAT, AMPK and 
PI3K/AKT, among others. These findings pathways that 
the regulatory role of FGF in DN are not well understood.

FGF and the PI3K/Akt Signaling Pathway
Numerous studies have shown that FGFs perform their func-
tions in DN via the PI3K/AKT signaling pathway, which also 
regulates inflammation, oxidative stress, and EMT.134,135 As 
such, FGF alleviates inflammation, oxidative stress, and 
apoptosis by activating the PI3K/Akt signal transduction 
pathway.136,137 PI3K is a heterodimer composed of p85, 
a regulatory subunit and p110, a catalytic subunit. PI3K is 
ubiquitous in cytoplasm. Phosphatidylinositol kinase and 
serine/threonine protein kinase play a pivotal role in (PI3K/ 
Akt) pathway.138 Akt is a protein kinase encoded by 
a homolog of intracellular retrovirus. Because of its high 
homology with protein kinase A (PKA) and PKC, Akt is 
also known as protein kinase B (PKB). Tyrosine kinase 
activates PI3K to produce PIP3 in the plasma membrane. 
PIP3 then interacts with Akt PH domain, which aggregates 
Akt on the membrane. Thereafter, 3-phosphate inositol- 
dependent protein kinase 1 (PDK1) phosphorylates and acti-
vates Akt threonine (Thr) 308.

AKT is a downstream target of PI3K and participates in 
sundry cellular processes such as proliferation, migration and 
apoptosis of cells, glucose metabolism and transcription. 
Activated Akt inactivates GSK-3 β by phosphorylating its 
serine (Ser) 9 residue, which inactivates Fyn kinase. This 
relieves ubiquitin-mediated inhibited Nrf2 expression while 
also strengthening cellular defense mechanism.139,140 

Activated AKT also inhibits ASK1 activity, preventing glo-
merulosclerosis and glomerulonephritis progression, thus 
improving renal function.141,142 (Akt) is thought to perform 
its function by inhibiting p38/JNK signaling. ASK1 can pro-
mote inflammatory response and cell death by activating p38/ 
JNK signaling pathway. Inhibition of ASKI activation can 
suppress renal inflammation and fibrosis, reduce renal 
injury.143
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PI3K/AKT regulates EMT process. Hyperglycemia- 
induced ROS disrupts the TGF-β1/Smad/PI3K/AKT signaling 
pathway, in which the downstream mTOR signal promotes 
EMT of renal tubules, aggravating diabetic kidney 
injury.144,145 Whether renal fibrosis caused by FGF2 activating 
PI3K/AKT in DN patients is related to mTOR remains to be 
validated. However, PI3K/AKT activation by FGF21 inhibits 
TGF-β1/smad2/3 activation and reduces fibrosis in DN 
patients.103 The TGF-β1/Smad pathway is closely related to 
renal fibrosis. Meanwhile, p53 mediates functions of TGF-β1/ 
Smad pathway.146,147 Activated AKT phosphorylates MDM2, 
inhibits p53 activity, and disrupts renal protective effect of 
TGF-β1/Smad2/3.103,148 Previously, we have proposed that 
FGF21 can protect kidney by activating AKT2. However, 
the activation of PI3K/AKT by FGF2 aggravates the mechan-
ism of renal fibrosis, a which seems to be related to the 
activation of AKT3.The PI3K/AKT3 also regulates cell pro-
liferation and fibrosis. Even so, the described relationships 
need further investigation.105,149

FGF and the AMPK Pathway
Adenosine 5´-monophosphate (AMP)-activated protein 
kinase (AMPK) is a highly conserved serine/threonine 
kinase that regulates glucose and lipid metabolism. 
Inhibition of AMPK activity leads to insulin resistance.150 

SIRT1 is an NAD+-dependent lysine deacetylase, shown to 
protect kidney damage in DN patients.151 SIRT1 in prox-
imal tubules disrupts functioning of podocytes by increas-
ing the levels of nicotinamide mononucleotides around the 
glomerulus, thus preventing albuminuria in diabetics.152,153 

SIRT1 is the downstream effector of AMPK. Activated 
AMPK activates SIRT1 by up-regulate NAD+ expression. 
SIRT1 has something in common with AMPK in metabo-
lism and cell survival.154 SIRT1 regulates inflammatory 
responses by deacetylating target molecule, which down-
regulates transcription of inflammation-related genes by 
inhibiting the activity of transcription factor NF-κB.155 

Therefore, over-whelming evidence shows that AMPK/ 
SIRT1 activation reduces renal inflammation, oxidative 
stress and podocyte apoptosis in DN patients, thus protect-
ing against kidney damages.156,157

AMPK and SIRT1 are downstream kinases for FGF21. 
Activation of AMPK stimulates glucose metabolism and 
oxidation of fatty acids in patients with diabetes mellitus. 
AMPK activation protects against kidney damage by mod-
ulating NOX4/TGF-β1 signaling in DN, which reduces 
oxidative stress and fibrosis.150,157,158 FGF1 also activates 
AMPK by binding FGFR4, further activating the Nrf2- 

mediated anti-oxidation but inhibiting lipogenesis. These 
processes improve liver lipid metabolism in patients with 
diabetes while also modulating liver oxidative stress, 
inflammation, and fibrosis.159 The therapeutic potential of 
these interrelationships for DN treatment remains to be 
studied.

FGF and STAT5 Signaling Pathway
STAT5 is a transcription factor that participates in signal 
transduction pathways of minor hormones and cytokines. 
STAT5 has been implicated in the pathological process of 
glomerular mesangial cell injury in DN.160 Inhibition of 
STAT5 using FGF21 results in a negative feedback.161 

FGF21 can modulate the expression of platelet-derived growth 
factor (PDGF), vascular endothelial growth factor (VEGF), 
and connective tissue growth factor (CTGF). FGF21 performs 
its function by inhibiting the STAT5 signaling pathway, which 
improves hyperglycemia-induced mesangial cell fibrosis, thus 
reducing the expression of extracellular matrix (ECM).99 

STAT5 phosphorylation is up-regulated in patients with DN, 
thus alleviating renal interstitial fibrosis by inhibiting the 
STAT5 pathway.162,163 Besides, mice models show that 
STAT5 participates in glucose and lipid metabolism, promotes 
glycogen xenogenesis and reduces insulin sensitivity.164

Conclusion and Future Direction
Overwhelming evidence has demonstrated the close rela-
tionship between FGF and DN. Understanding the intricate 
pathogenesis and FGF changes during DN opens a new 
frontier into prevention and treatment of DN. FGF is 
a potential therapeutic target for DN management. DN 
increases the expression of serum FGF21 and FGF23 
levels, the two most important metabolism-related FGF 
family members, which positively correlates with gradual 
renal damage. As such, FGF21 and FGF23 are reliable 
biomarkers for predicting progression of renal disease, 
especially in the early stage of DN.

The pathogenesis of DN is a complex process involving 
numerous molecules. DN development is also regulated by 
multiple factors. FGFs manifold participates in many ways in 
the occurrence and development of DN. At present, drugs 
such as recombinant human fibroblast growth factor 21 
(rhFGF21) and mutant modified human acidic fibroblast 
growth factor targeting FGF have been shown to be effective 
against DN. FGF drugs can effectively regulate several DN 
processes such as inflammation, glucose and lipid metabo-
lism, oxidative stress and kidney injury. However, regarding 
limitations, the pharmacokinetics of FGF is lacking, it has 
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a very short half-life and it needs frequent administration. As 
such, the development of FGF drugs for DN can follow two 
aspects: 1) Construction of recombinant FGF with better 
pharmacokinetic characteristics, longer of half-life, plasma 
stability, and clinical efficacy. 2) Target regulation of activa-
tion and secretion of FGF. Even though non-coding RNA can 
regulate expression and activity of FGF, whether they can 
relieve DN remains unclear. Thus, future research can 
explore this perspective. Proper administration of FGFs can 
enhance their efficacy. Centrally administered FGF1 can 
enhance the hypoglycemic effect of FGF1 and ensure sus-
tained relief from diabetes. However, whether the route of 
administration can enhance the efficacy of other FGFs 
remains to be validated. Additionally, the role and mechan-
ism of FGF in DN are not very clear. Therefore, further 
studies should explore the mechanisms to reveal therapeutic 
avenues for the prevention and treatment of DN.
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