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Previous studies document that cholinergic and noradrenergic drugs improve attention,
memory and cognitive control in healthy subjects and patients with neuropsychiatric
disorders. In humans neural mechanisms of cholinergic and noradrenergic modulation
have mainly been analyzed by investigating drug-induced changes of task-related neural
activity measured with functional magnetic resonance imaging (fMRI). Endogenous
neural activity has often been neglected. Further, although drugs affect the coupling
between neurons, only a few human studies have explicitly addressed how drugs
modulate the functional connectome, i.e., the functional neural interactions within the
brain. These studies have mainly focused on synchronization or correlation of brain
activations. Recently, there are some drug studies using graph theory and other new
mathematical approaches to model the brain as a complex network of interconnected
processing nodes. Using such measures it is possible to detect not only focal, but also
subtle, widely distributed drug effects on functional network topology. Most important,
graph theoretical measures also quantify whether drug-induced changes in topology or
network organization facilitate or hinder information processing. Several studies could
show that functional brain integration is highly correlated with behavioral performance
suggesting that cholinergic and noradrenergic drugs which improve measures of cognitive
performance should increase functional network integration. The purpose of this paper
is to show that graph theory provides a mathematical tool to develop theory-driven
biomarkers of pro-cognitive drug effects, and also to discuss how these approaches can
contribute to the understanding of the role of cholinergic and noradrenergic modulation
in the human brain. Finally we discuss the “global workspace” theory as a theoretical
framework of pro-cognitive drug effects and argue that pro-cognitive effects of cholinergic
and noradrenergic drugs might be related to higher network integration.
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INTRODUCTION
In the recent years there has been an intensive debate on how to
take advantage of brain imaging techniques, in particular func-
tional magnetic resonance imaging (fMRI) to investigate the role
of neurotransmitter systems in the human brain. fMRI measure-
ments basically capture blood oxygenation within brain regions
via the so-called blood oxygen level dependent (BOLD) contrast
which was shown to be related to the processing of neuronal
activity within brain regions (Logothetis, 2002). Pharmacological
fMRI approaches usually use an acute drug challenge before
volunteers undergo a cognitive task inside the scanner and subse-
quently compare task-related activity between placebo and drug
in every single voxel in the brain. Hence, most pharmacological
fMRI studies to date have analyzed neurochemical modulation of
focal brain activity that is induced by a specific task.

Recently, an increasing number of neuroimaging studies have
made use of graph-theoretical measures to interpret the inter-
actions of brain regions and to model the brain’s parallel and
distributed mechanisms of information processing (Singer, 1986,
2009; Shinkareva et al., 2008). Thereby, the brain is analyzed as
a complex network of interconnected processing nodes whose

overall behavior is determined by more than the sum of its parts
(Bassett and Gazzaniga, 2011). Some pharmacological studies
investigated effects of drugs on functional connectivity and the
functional interaction between brain regions, but only few of
them used graph theory and complex network analysis to ana-
lyze drug-induced changes in brain network topology. Within
the current article we discuss the advantage of graph-theoretical
and complex network approaches for analysis of human pharma-
cological fMRI data over classical task-activation and functional
connectivity analyses with specific emphasis on the noradrenergic
and cholinergic neurotransmitter system.

CHOLINERGIC AND NORADRENERGIC DRUG EFFECTS
ON BRAIN ACTIVATIONS
The noradrenergic system has often been studied in relation to
attention and recently in relation to cognitive control (Coull
et al., 2001, 2004; Chamberlain et al., 2009; Graf et al., 2011)
while studies in the cholinergic system focused on modulation
of attention- and memory-related brain activity (reviewed in
Bentley et al., 2011). For example, Coull et al. (2001, 2004) pro-
vide evidence that the α2 agonist clonidine reduced neural activity
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in parietal and prefrontal cortices, the location of activity reduc-
tion was however dependent on the attentional subcomponent
investigated and on the underlying level of arousal. Prefrontal and
parietal activity reductions with reduced noradrenergic neuro-
transmission are in contrast to many findings with the cholinergic
agonist nicotine. Here, increasing cholinergic neurotransmission
led primarily to reduction of neural activity in several brain
regions including prefrontal and parietal cortex (Thiel et al.,
2005; Giessing et al., 2006; Thiel and Fink, 2008; Hahn et al.,
2009). Again, the locations of the modulatory effects of the drug
were dependent on the attentional subcomponent investigated,
underlining the frequent finding that the location of drug effects
in pharmacological fMRI studies are task-specific (Hahn et al.,
2009).

Even though existing pharmacological fMRI studies which
have used standard data analysis approaches have increased our
understanding on how specific neurotransmitter systems modu-
late specific cognitive functions and focal neural activity in the
human brain, a comparison of neurotransmitter systems may
benefit from an analytical approach that goes beyond specific
local, drug-induced changes and addresses the question how
drugs influence global network topology and the organization of
brain networks. In contrast to existing approaches to investigate
drug effects on brain networks, graph theoretical analyses provide
a wide range of analytical tools to precisely describe also subtle,
widely distributed drug effects on functional network topology.
Thereby, these changes in network topology are directly related to
the network’s general efficiency and capacity to process informa-
tion (Bassett and Bullmore, 2006; Achard and Bullmore, 2007).
Thus, combining pharmacological imaging with graph analysis
offers a new method to understand the biological basis of drug
effects on information processing and cognition.

DRUG EFFECTS ON ENDOGENOUS BRAIN MODES
Changes in BOLD signal due to cognitive or motor tasks are
rarely more than 5–10% in comparison to resting state and have
only small influences on overall activation levels (Rao et al.,
1996; compare also Burton et al., 2004). There is strong evidence
that trial-to-trial variability in the magnitude of event-related
BOLD signals unrelated to changes of the environment has func-
tional relevance for human perception and performance. Prior
studies have documented that the variability in BOLD signal
independent of changes in task or stimulus input is correlated
with the individual behavior in an Eriksen flanker task (Mennes
et al., 2011), individual perception of visual and auditory stim-
uli (Hesselmann et al., 2008a,b; Sadaghiani et al., 2009), working
memory performance (Pessoa et al., 2002), and the preferred
problem solving strategy (Kounios et al., 2008). Fox et al. (2007)
investigated task-unrelated spontaneous activations within a sim-
ple finger tapping task and found that task-unrelated spontaneous
activity predicts a significant fraction of BOLD signal variabil-
ity in brain regions directly related to task processing. They
suggested that task-related and spontaneous activations are lin-
early superimposed and that both in combination contribute to
the individual behavioral outcome. Burton et al. (2004) even
suggest that the brain largely operates intrinsically and that sen-
sory input modulates intrinsic processes rather than determining

brain functions per se (compare also Buckner and Vincent,
2007).

It is a common finding that behavioral effects of drugs differ
inter- and intraindividually (Bondy, 2005). The study by Coull
et al. (2004), which reported that effects of clonidine were depen-
dent on arousal level, supports the view that endogenous brain
activity does not only impact on stimulus-evoked neural activity
but also on the way drugs modulate this stimulus-evoked activity.
Further, there is also a wealth of evidence from behavioral stud-
ies that interindividual variation of endogenous brain modes may
explain the individual variability observed in many drug studies.
For example, only a fraction of patients with Alzheimer’s disease
benefit from acetylcholineesterase inhibitors (Mehta et al., 2005)
and the norepinephrine reuptake inhibitor desipramine showed
different neural and behavioral effects in the forced swim test in
rats with high vs. low novelty-seeking behavior (Jama et al., 2008).
The variability of effects of cholinergic and noradrenergic drugs
were shown to depend on a variety of factors such as genetics,
gender, or cognitive performance levels (Perkins, 1999; Perkins
et al., 1999; Newhouse et al., 2004; Kabbaj et al., 2007; Winterer
et al., 2007). Thus, there is a huge range of inter- and intraindi-
vidual behavioral variability which suggest a complex interaction
between exogenous, task-related neural processes and endogenous,
self-organized personal characteristics or brain states (Reed, 1998;
Fox et al., 2006; MacDonald et al., 2006; Adelstein et al., 2011).

To date, the majority of pharmacological neuroimaging stud-
ies ignore these endogenous brain states and analyze drug
induced changes of task-related neural activity (Furey et al., 2000;
Lawrence et al., 2002; Kumari et al., 2003; Bentley et al., 2004;
Thiel et al., 2005; Giessing et al., 2006). However, task perfor-
mance is affected by neural networks directly involved in task
processing as well as brain modes which reflect longer-lasting
endogenous states (Greicius and Menon, 2004; Buckner and
Vincent, 2007) and it is reasonable to assume that drugs will inter-
act with both. First evidence for this interaction was also found
on neuronal level. Activity of both, cholinergic and noradrener-
gic neurons can be categorized into a tonic, task-unrelated, and a
phasic, task-related mode which were shown to interact (Devilbiss
and Waterhouse, 2004; Parikh and Sarter, 2008). Thus an inves-
tigation of drug effects on both, task-related and task-unrelated
BOLD signals will add valuable information on how drugs impact
on intrinsic and stimulus induced neural activity. A few stud-
ies have already started to analyze drug effects on endogenous
functional connectivity during resting state conditions.

MEASURING DRUG INDUCED CHANGES IN TOPOLOGY
OR FUNCTIONAL BRAIN ORGANIZATION
EFFECTS OF CHOLINERGIC AND NORADRENERGIC DRUGS
ON FUNCTIONAL CONNECTIVITY
There are now many fMRI studies which investigate functional
or effective connectivity between brain regions during task per-
formance or in the resting state. Most of these analyses have
tried to investigate the linear or non-linear functional interactions
between predefined brain regions and used different measures of
statistical dependency like simple linear or partial correlations,
mutual information, Granger causality, or coherence (Smith et al.,
2011).
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Analyses of functional or effective connectivity have been only
used in few pharmacological fMRI studies. We here shortly sum-
marize the existing studies in the cholinergic and noradrenergic
system. Wink et al. (2006) investigated the muscarinic receptor
antagonist scopolamine on functional connectivity in a resting
state condition and focused their analysis on connectivity of
the hippocampus with six, large brain regions including tem-
poral, parietal and frontal cortex. They found that scopolamine
enhanced the connectivity between the frontal cortex and hip-
pocampus, brain regions which were also affected by ageing.
Effects of the cholinergic agonist nicotine have also been inves-
tigated in the resting state. Tanabe et al. (2011) focused their
analysis on brain regions belonging to the so-called default mode
network and on extrastriate regions. They provide evidence that
nicotine reduced neural activity in the default mode network,
and increased activity in the extrastriate resting state network
in non smokers. The coupling between the default mode net-
work and an executive resting state network was analyzed in
smokers under placebo and nicotine by Cole et al. (2010). Their
findings show both, nicotine-induced increases and decreases in
coupling of those two networks with different brain regions.
Others have focused their connectivity analyses on brain regions
such as the cingulate cortex and have shown enhanced func-
tional resting state connectivity of the cingulate cortex with
several fronto-parietal brain areas under acute nicotine (Hong
et al., 2009). A different approach was taken by Balsters et al.
(2011) who combined EEG/fMRI with donepezil administra-
tion to investigate cholinergic modulation of oscillatory brain
activity which was then related to changes in the BOLD sig-
nal. Behaviorally donepezil impaired performance. Neurally drug
effects were evident as reductions in alpha and increases in beta
and delta power. These maladaptive oscillatory changes were
associated with BOLD signal changes within the hippocampus,
fronto-parietal brain regions and the so-called default mode brain
network.

While connectivity studies in the cholinergic system were
exclusively performed in the resting state, most of the studies on
the noradrenergic system analyzed changes in connectivity during
task performance. Wang et al. (2011) used an effective connec-
tivity analysis to assess the effects of the selective noradrenaline
reuptake inhibitor reboxetine in stroke patients within a finger
tapping task. They found that reboxetine increased the connectiv-
ity between supplementary motor areas and the primary motor
cortex. Increases in effective connectivity after reboxetine were
also reported in healthy volunteers in a visuomotor control task.
Here regions showing increased connectivity were the right visual,
intraparietal and superior frontal cortex (Grefkes et al., 2010).
McCabe and Mishor (2011) investigated the effects of reboxe-
tine within a resting state condition and focused their analysis on
regions of the limbic system. Their data provides evidence that
reboxetine reduced the striatal–orbitofrontal cortex connectivity.

Hermans et al. (2011) analyzed the effects of stress and of
propranolol, a beta-adrenergic receptor blocker, and found that
propranolol reduced functional connectivity in a salience network
but not visual network during subjects saw aversive cinemato-
graphic material and feared mild electrical shock. Coull et al.
(1999) analyzed the effects of clonidine (a2 adrenoceptor agonist)

on effective connectivity during a rest condition and during the
performance of a visual attention task. During the rest con-
dition they found decreased connectivity between the frontal
cortex to thalamus and in pathways to and from visual cortex.
In contrast, during the attentional task, clonidine increased the
functional connectivity from and to the parietal cortex. These
findings resemble the opposing effects of reboxetine found by
Wang et al. (2011) and Grefkes et al. (2010) during task perfor-
mance as opposed to those found by McCabe and Mishor (2011)
in the resting state and indicate again the necessity to differentiate
between effects of drugs during task performance vs. rest.

Due to the diversity of the administrated drugs, task conditions
and applied analysis techniques which often focused on certain
brain regions only, it is difficult to integrate the reported results.
Furthermore, drug-induced increases or decreases of functional
connectivity in specific brain regions can induce quite different
changes in functional brain topology and it is unclear whether
these changes improved or hindered the brains’ capacity for
information processing.

A NEW APPROACH: BRAIN NETWORK TOPOLOGY
Recently, an increasing number of studies extended connectiv-
ity analyses by using graph-theoretical measures (see Box 1) to
interpret the interactions of brain regions (Achard and Bullmore,
2007; Xia and He, 2011). In contrast to the above approaches
complex network- or graph analyses often investigate the whole
host of functional connections of the entire brain to describe the
topology or organization of functionally connected brain net-
works. Thereby, the brain is analyzed as a complex network of
highly interconnected processing nodes. The nodes often rep-
resent anatomically-defined brain regions and edges embody
the functional interaction between them. In contrast to normal
functional connectivity analyses, graph theory provides a full
range of measures to describe drug-induced changes in topol-
ogy. Thus, with graph theoretical measures it is possible to detect
not only focal, but also subtle, widely distributed drug effects
on functional network topology. Most important, graph theo-
retical measures also quantify whether drug-induced changes in
topology or network organization facilitate or hinder information
processing (Bassett and Gazzaniga, 2011) and thus provide a bio-
logical explanation for drug effects on behavioral performance.
For example, while Furey et al. (2000) hypothesized in their
seminal study that cholinergic neurotransmission increases the
efficiency of information processing based on focal activity within
extrastriate and prefrontal cortex, a graph analytical approach
would enable to quantify processing efficiency with mathemati-
cal measures. Currently few studies have used graph and complex
network analysis to investigate drug effects on functional brain
networks.

QUANTIFYING DRUG INDUCED IMPROVEMENTS OF
FUNCTIONAL BRAIN ORGANIZATION: NETWORK
INTEGRATION AS PERFORMANCE CORRELATE
EMPIRICAL EVIDENCE: NETWORK INTEGRATION AND
PERFORMANCE
There is strong empirical evidence that variation in network
integration and network efficiency correlates with cognitive

Frontiers in Behavioral Neuroscience www.frontiersin.org August 2012 | Volume 6 | Article 53 | 3

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Giessing and Thiel Drugs modulate brain network topology

Box 1 | Essential principles of graph theory.

The basic principles of graph theory have been described elsewhere (He and Evans, 2010). In short, the approach can be used for structural
MRI, diffusion MRI, functional MRI, and EEG/MEG. For resting state fMRI data graph network analysis includes the following steps
(Poldrack et al., 2011, p. 156):

1. Brain parcellation and data extraction: The brain is parcellated in different brain regions and the fMRI time course is extracted from
each brain region (Zalesky et al., 2010). Each brain region is represented by one node.

2. Compute the functional connectivity and network adjacency matrix: A measure of statistical dependency is computed for each pair of
node to estimate the strength of relation between nodes. In simplest case an n (number of nodes) x n correlation matrix is computed
to estimate the adjacency between nodes. In many studies, the adjacency matrix is thresholded to exclude edges which reflect noise
and to receive binary entries representing the presence or absence of an edge between two nodes.

3. Characterize the network topology: Based on these binary adjacency matrices the network graphs are visualized and graph-
theoretical measures which describe the topology of the brain network are computed and compared between different groups
or conditions.

Glossary

Complex system: A system of interconnected parts whose overall behavior is more than the sum of its parts and cannot be predicted by
its individual elements (compare also Bassett and Gazzaniga, 2011).
Custering coefficient: Networks with high clustering are characterized by many connections between the nearest neighbors of any given
node.
Global workspace theory : A theory first proposed by Baars (Baars, 1988, 2002, 2005) and further developed by Dehaene and others
(Dehaene et al., 1998; Dehaene and Naccache, 2001) to explain the relationship between consciousness and effortful processing and brain
network integration (see Figure 1 for further information).
Graph theory : A branch of math that analyses graphs, an abstract representation of objects where some of the objects share
a relationship or interact with each other. These interactions are represented by edges and the objects are called nodes or
vertices.
Long-distance and short-distance connections: In neuroscience, nodes often represent brain regions which have two different kinds of
distances. Within a graph the node-to-node distance is defined by the path length or number of edges that are needed to connect two
nodes. However, we use this term to describe the physical distance of brain nodes within the three-dimensional space of the scull.
Modularity: A system is described as modular if it can be decomposed into different subsystems or modules. These modules can have
different functionality and can be recombined to match the external demands.
Network efficiency : In an efficient network most pairs of node are connected by a short path way. Network efficiency is also an estimator
for the network’s capacity for parallel information transfer.
Network integration: A state of a network that has low modularity and in which the mean of the shortest path ways between all pairs of
nodes is small.
Network topology : A schematic description of the structure or layout how the objects in a network are connected or interact with each
other.
Small world networks: A network that combines two characteristics: (1) a modular or cliquish structure that consists of
highly connected sub-networks and (2) small shortest-path-lengths with few edges between nodes (Watts and Strogatz,
1998).

performance. This correlation has been shown, for example, for
higher IQ (Hampson et al., 2006; Li et al., 2009; van den Heuvel
et al., 2009) and working memory performance (Bassett et al.,
2009) and shorter reaction times in a Go/NoGo task (Zhou et al.,
2012a). Further support for a relationship between brain net-
work topology and behavioral performance derives from studies
which investigated the network topology in elderly volunteers.
These studies found that brain networks of elderly participants
have less efficient and more modular brain topology with fewer
long-distance and more short-distance connections which might
explain age-related performance declines in multiple cognitive
functions (Achard and Bullmore, 2007; Meunier et al., 2009;
Wang et al., 2010). Recently, we could also show that experi-
mentally induced changes in task performance correlates with
the efficiency of brain networks. While the cholinergic agonist
nicotine improved behavioral performance in a sustained atten-
tion task and network efficiency in the resting state, time-on-task
and cognitive fatigue increased reaction times and induced higher

modularity within the network (Giessing et al., unpublished data;
Breckel et al., unpublished data). Most of the studies reported
above investigated endogenous resting state data supporting the
assumption that endogenous functional brain network topol-
ogy interacts with task performance and it can be assumed that
endogenous functional brain network topology also interacts
with task-related neural processing.

THEORETICAL PERSPECTIVE: NETWORK INTEGRATION AND
PERFORMANCE
The reported empirical correlations between functional brain
network topology and behavioral performance fit with con-
temporary network theories of information processing in the
brain, like the “brainweb” (Varela et al., 2001) or “workspace”
theories (Dehaene et al., 1998; Baars, 2002). Baars et al. pro-
posed the workspace theory of conscious perception of cognition
(Baars, 1988, 2002, 2005; Shanahan and Baars, 2005) which has
since been developed as global neuronal workspace theory by
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FIGURE 1 | Effects of pro-cognitive drugs on network integration in

functional brain graphs. Left column: functional brain graphs are
constructed based on thresholded maps of functionally connected brain
regions. If plotted within the physical space of the brain, functional
connections between brain regions span different Euclidean distances.
Right column: functional brain graphs describe the functional architecture of
brain topology, and edges and distances between nodes reflect their
functional dependencies. Thereby, functional brain graphs consist of different
functional modules in which nodes show many connections (edges) to other
nodes of the module, but only few edges to nodes of different functional
modules. Lower row vs. upper row: two networks with different network
integration. Previous empirical work suggest that pro-cognitive drug effects

are related to increased integration of functional brain graphs, less serial
processing and higher capacity for parallel information transfer. During
pro-cognitive states nodes of different modules should be connected by
shorter path lengths/fewer edges and brain modules are less clustered.
Within the anatomical space brain modules are connected by an ensemble of
functional connections with long physical distances (Alexander-Bloch et al.,
2012; Vertes et al., 2012; lower left side: yellow edges). The global workspace
theory of Dehaene and others (Dehaene et al., 1998; Dehaene and Naccache,
2001; Dehaene and Changeux, 2005, 2011) suggests that the pyramidal cells
of the prefrontal cortex and their long cortico-cortical axons may be regarded
as “workspace neurons” and play an important part in binding of different
brain modules (Dehaene et al., 1998).

Dehaene and others (Dehaene and Naccache, 2001; Bartolomei
and Naccache, 2011; Dehaene and Changeux, 2011). This the-
ory predicts that conscious performance of demanding tasks
requires the integration of otherwise segregated brain modules.
The integration of segregated brain modules results from an
ensemble of “workspace neurons” which is anatomically dis-
tributed throughout the brain (Dehaene and Naccache, 2001;
Baars, 2005). It has been suggested that synchrony in the gamma
band is important for the global neuronal workspace and that
this gamma synchrony is regulated by GABAergic interneurons
which are modulated by acetylcholine and dopamine (Changeux
and Lou, 2011). Other theories like the “brainweb theory” also
emphasize that behavioral performance is largely dependent on
the integration of functionally specialized brain regions and
that the synchronization or correlation of brain regions is a
key mechanism for large-scale integration of brain networks
(Varela et al., 2001). Recent evidence in humans by Bauer

et al. (2012) indicated that the cholinesterase inhibitor physostig-
mine is able to modulate synchronization in the alpha and
beta band but no evidence was found for a modulation in the
gamma band. In their study, Bauer et al. (2012) have shown
that the drug speeded performance and enhanced spatial atten-
tion effects on synchronization in visual cortex. In summary,
the reported theories predict that higher cognitive performance
goes along with higher functional integration of brain net-
works and at least for the cholinergic system there is first
evidence that cholinergic drugs may promote the functional inte-
gration of brain networks by modulating synchronous brain
activity.

DRUG EFFECTS ON BRAIN NETWORK TOPOLOGY
Only a few studies have used complex network analyses to inves-
tigate drug effects. We will thus mention also studies outside the
cholinergic and noradrenergic system to underline the feasibility
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of graph analytical approaches in understanding drug effects.
Complex network analyses have been previously used to par-
tition functional brain networks into communities of densely
interconnected nodes after drug challenge (Schwarz et al., 2008,
2009; Bifone et al., 2010). The authors compared dopamin-
ergic, serotonergic and cholinergic drugs. After nicotine chal-
lenge they found two networks, one including sensorimotor
cortex, thalamus, hypothalamus, hippocampus, and inferior col-
liculus, the other including cingulate, pre- and orbitofrontal
cortex, striatum, amygdale, piriform, and entorhinal cortex as
well as visual and parietal regions. For the human brain, previ-
ous results revealed that the efficiency and capacity for parallel
information transfer of brain networks are affected by nor-
mal aging and by pharmacological blockade with the dopamine
receptor antagonist sulpiride (Achard and Bullmore, 2007).
These results suggest that the dopaminergic antagonist declines
the efficiency of small world networks similar to the effects
of aging. For the cholinergic system we could recently show
that the cholinergic agonist nicotine increased the efficiency,
reduced the modularity and clustering of brain network and
drove brain functional networks to a more integrated workspace
configuration (Giessing et al., unpublished data). We would
assume that improvements in attention and/or cognitive con-
trol with noradrenergic drugs should similarly increase network
efficiency.

Even though different drugs or other experimental condi-
tions might have similar effects on network topology on the
global, whole brain level, the underlying mechanisms might be
quite different. For example, Achard and Bullmore (2007) showed
that ageing and the dopamine antagonist sulpiride impaired
network efficiency, but both effects were differentially localized
within the brain. While the effects of ageing were found in
several brain regions including the frontal and temporal neo-
cortex, the dopamine blockade reduced efficiency mainly in
the dorsal cingulate and lateral temporal cortical areas. Thus
it may be reasonable to assume that even though cholinergic
and noradrenergic drugs will both increase global network inte-
gration since both have pro-cognitive effects, the localization
of effects may be different. In Box 2 we suggest an experimen-
tal approach to study the interaction between task-related and
resting state functional connectivity in pharmacological fMRI
studies.

FUTURE PERSPECTIVES: FROM FUNCTIONAL TO
EFFECTIVE CONNECTIVITY GRAPHS
Functional connectivity analyses have to deal with indirect or
mediated correlations: a correlation between the time series of
brain regions X1 and X2 can be mediated by a second com-
mon source X3 without any direct correlation between X1 and X2
(Erhardt et al., 2011). This problem becomes even more evident
when connectivity and graph analyses are performed during task
performance (Buckner et al., 2009; Wang et al., 2010; Park et al.,
2012) where several brain regions react with large signal changes
to external stimuli. Even though in bioinformatics sophisticated
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FIGURE 2 | A study design to measure drug effects on brain network

topology in fMRI studies. (A) To measure the effects of drugs, tasks and
drug-by-task interactions on endogenous brain network topology we
suggest a design with four different fMRI scans. Within each fMRI scan
participants are measured during rest periods before and following a task
block in which participants perform one of two different task conditions.
Subjects are measured either following placebo or drug administration
within a double blind cross-over-design. (B) Using this design it can be
tested (1) how drugs change endogenous processing (by comparing the
resting state topologies in the drug and placebo conditions), (2) whether
task processing changes endogenous processing (by comparing the
topology of resting state period 1 with resting state period 2), (3) whether
the effects of task processing on the following resting state topology are
specific for a certain task or task-independent (by pooling the drug
conditions and comparing the slopes of the lines for task 1 and task 2) and
(4) whether these after-effects or task-by-resting state interactions change
in different drug conditions (by comparing the slopes in each drug and task
condition).

Box 2 | Measuring intermixed periods of rest and task processing—a study design for pharmacological fMRI network analyses.

Long-lasting endogenous brain states interact with task-related processing (Li et al., 2011) and it is reasonable to assume that noradren-
ergic and cholinergic drugs which improve cognitive processing influence both. Unfortunately, in most paradigms the frequency range
of task-induced BOLD signal changes overlaps with the frequency range (signal components below 0.1 Hz) that is analyzed in studies
of endogenous processing (Achard and Bullmore, 2007). The reason for this overlap is that higher frequency inputs are more severely
attenuated than low-frequency inputs by the hemodynamic response function (Friston et al., 1994, p. 163). Thus, in most paradigms it is
not possible to separate endogenous activity from task processing.
To investigate drug effects on endogenous and task processing we suggest to measure both processes during different time periods (see
Figure 2A). Previous results of Barnes et al. (2009) documented that task processing has long-lasting effects on resting state networks and
that both interact over a time period of several minutes. This design allows to investigate the drug effects on endogenous and task-related
processing. Within Figure 2B a fictional data set is illustrated with a drug-specific and a task-unspecific effect on functional resting state
topology. Within the placebo condition the performance of both tasks have similar effects on the following resting state periods. However,
within the drug condition only the effect of task 1 on the following resting state topology is affected.
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measures have been developed to distinguish direct connections
from mediated connections, only few fMRI studies have used
these techniques (for example Rissman et al., 2004; Marrelec et al.,
2007, 2009; Schrouff et al., 2011). Future analyses of drug effects
on complex networks would profit from new approaches that use
complex network analysis on graphs that only represent the direct
influences between neural elements.

CLINICAL APPLICATIONS—NETWORK PHARMACOLOGY
In healthy individuals as well as in many patient groups the
effects of pro-cognitive drugs have been described to be mod-
est (Husain and Mehta, 2011). However, two approaches that
use functional brain network integration as a biomarker might
contribute to improve pro-cognitive drug effects. First, without
the need to measure behavioral performance different pharma-
cological substances can be screened for possible pro-cognitive
drug effects in humans and animals using brain network inte-
gration during resting state periods as a biomarker. Second,
effects of pro-cognitive drugs seem to be larger for individu-
als with lower performance levels and less optimal brain states
before drug administration (Perkins, 1999; Newhouse et al.,
2004; Giessing et al., 2007). Analyses of brain network topology
might identify latent subgroups with less optimal brain network
architecture and higher responsiveness to the cognitive enhanc-
ing drugs. Moreover, drug responsiveness can also change over
the time course of a disease. Recently, it has been documented
for Alzheimer’s disease that network topology analyses can be

used to identify the starting point, the evolution of the disease
and the paths in the brain on which neurodegenerative dis-
ease spreads over the entire brain (Raj et al., 2012; Zhou et al.,
2012b). This approach is an important step forward to under-
stand the dynamics of neurodegenerative diseases. On the other
side, there are new approaches to drug development, known as
network pharmacology, that try to influence the entire disease-
causing brain network instead of targeting specific parts of the
system only (Elgoyhen et al., 2012). It will be a challenging
task in the development of drugs to combine both approaches
and to take the dynamic of the changing brain system into
account.

On behavioral level, there is the first evidence that long-term
nicotine treatment improves cognitive performance in patients
with mild cognitive impairment (Newhouse et al., 2012) which in
many cases has been shown to be a prodromal stage of Alzheimer’s
disease (Petersen, 2000a,b; Grundman et al., 2004). This is also
reflected in changes in network topology which are intermedi-
ate between healthy controls and Alzheimer’s patients (Yao et al.,
2010). It is an open question whether nicotine-induced changes
in behavior in patients with mild cognitive impairment prevent
further dysfunctional changes in network topology.
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