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Background: With the development of messenger RNA (mRNA)-based therapeutics for malignant tumor, 
mRNA vaccines have shown considerable promise for tumor immunotherapy. Immunophenotypes can reflect 
the tumor microenvironment, which might have a significant influence on the effect of immunotherapy. This 
study seeks to discover and validate effective antigens that can be employed to develop mRNA vaccines for 
hepatocellular carcinoma (HCC) and to construct immunophenotypes and immune landscapes to identify 
potential beneficiaries.
Methods: RNA sequencing (RNASeq) data, mutation information, and clinical information were 
obtained from HCC patients and control cases from The Cancer Genome Atlas - Liver Hepatocellular 
Carcinoma (TCGA-LIHC), International Cancer Genome Consortium - Liver Cancer (ICGC-LIRI) and 
Gene Expression Omnibus (GEO) cohorts. Gene Expression Profiling Interactive Analysis (GEPIA2.0), 
cBioPortal for Cancer Genomics (cBioPortal), Tumor IMmune Estimation Resource (TIMER2.0), and 
immunohistochemistry (IHC) were employed to discover tumor antigens. ConsensusClusterPlus was 
employed to perform consistency matrix building and immunophenotypic clustering. Single sample gene set 
enrichment analysis (ssGSEA), ESTIMATE and monocle2 were employed to map immune cell distribution. 
Weighted correlation network analysis (WGCNA) was employed to identify potential gene modules that 
influence the efficacy of mRNA vaccines.
Results: Six antigen targets were discovered in the TCGA cohort, including AURKA, CDC25C, KPNA2, 
MCM3, NEK2 and TUBG1, which were associated with antigen-presenting cell infiltration and poor 
prognosis. IHC scores of AURKA, CDC25C and MCM3 were higher in tumor tissues, and high scores of 
AURKA and CDC25C indicated poor prognosis in the validation cohort. Five immunophenotypes derived 
from TCGA-LIHC and ICGC-LIRI cohorts were consistent. Furthermore, increased expression of blue and 
black modules may reduce vaccine responsiveness.
Conclusions: AURKA, CDC25C, KPNA2, MCM3, NEK2 and TUBG1 may be potential targets for 
mRNA vaccine development for HCC, especially AURKA and CDC25C. HCC patients with IS1 and IS5 
subtypes perhaps present an autoimmunosuppressed state, then IS2 and IS3 subtypes perhaps the potential 
beneficiaries.
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Introduction 

Hepatocellular carcinoma (HCC) is the fourth most 
frequent cause of cancer-related death among all tumor-
related deaths in China, accounting for 75–85% of primary 
liver cancer (1-3). It is widely known that hepatitis B virus-
related and alcohol-related cirrhosis are the two major 
high-risk factors for HCC, and most cases of HCC have 
an insidious onset and progress rapidly (4,5). More than 
one-thirds of patients are in the middle and late stages at 
diagnosis, thus forfeiting the chance for immediate radical 
surgery (1,6). Comprehensive treatment for HCC has 
shown encouraging efficacy in early-stage liver cancer, but 
the efficacy for advanced HCC is still insignificant (7,8).

Immunotherapy for HCC has made great progress in 
recent years, bringing hope to many patients who cannot 
immediately undergo radical surgery, especially the immune 
checkpoint inhibitors (ICIs) therapy. It is often combined 
with other treatment modalities, such as targeted therapy 
and topical therapy, but its serious side effects limit the 
degree of benefit. With the continuous emergence of new 
therapeutic targets, tumor vaccines may be one of the 
development directions of HCC immunotherapy. 

Tumor vaccine therapy often targets one or more tumor-
associated antigens. It treats cancer by reprogramming the 

immune system to activate or enhance the body’s ability 
to attack cancer cells. Due to the advantages of relatively 
non-toxicity, high specificity, and the ability to stimulate 
lasting immune memory, tumor vaccines have the potential 
to overcome drug resistance and reduce adverse reactions, 
and ultimately achieve more ideal therapeutic effects (9). 
Peptides, cells, DNA, and RNA can be carrier of vaccines. 
Requiring customization based on individual patients and 
genetic analysis of the tumor, peptide vaccine is time-
consuming and may postpone the patient’s treatment, thus 
they may not be suitable for treating HCC. Dendritic cells 
(DC), the most significant antigen-presenting cells (APCs), 
have shown satisfactory responses to stimulate T cell effect 
in pre-clinical trials as vaccines, but the outcomes in clinical 
trials have been disappointing. The limited immunogenicity 
and the risk of insertional mutations also limit the 
development of DNA vaccines (9-11).

In contrast, messenger RNA (mRNA)-based vaccines 
are tolerable and do not integrate into the host genome. 
Non-infectious mRNA molecules can induce both humoral 
and cellular immunity in mRNA vaccines without needing 
pathogenic viral preparations (11,12). Since tumor antigens 
are expressed at high levels in malignant tumor cells, 
mRNA vaccines can reach tumor cells through antigen 
presenting cells, triggering an immune waterfall response, 
and activated effector immune cells are like airborne 
troops targeting tumor cells, selectively killing them, but 
can reduce the killing of normal cells as much as possible. 
In addition, activated memory immune cells can become 
immune reserves, achieving long-lasting tumor killing (13).  
Combination therapy with mRNA vaccines and other 
immunotherapies are already used in lung cancer, pancreatic 
cancer and advanced melanoma, which promise even more 
encouraging therapeutic effects (14-16). The phase Ib 
clinical trial of Awad et al. showed that the personalized 
neoantigen vaccine NEO-PV-01 in combination with 
pemetrexed, carboplatin, and pembrolizumab has good 
safety and immunogenicity as a first-line treatment for 
advanced non-squamous non-small cell lung cancer 
(NSCLC) (16). In February 2023, the Food and Drug 
Administration (FDA) announced that the mRNA-4157 
vaccine combined with pembrolizumab for treating high-
risk melanoma has become a breakthrough treatment 
option, making it the first mRNA cancer vaccine to receive 
this designation worldwide. 

Our research focuses on the selection and preliminary 
validation of tumor antigens for the preparation of mRNA 

Highlight box

Key findings
• Six genes (AURKA, CDC25C, KPNA2, MCM3, NEK2 and TUBG1) 

with high mutation and antigen-presenting cell infiltration can 
be utilized to develop messenger RNA (mRNA) vaccine for 
hepatocellular carcinoma (HCC).

• Immune-hot patients may exhibit characteristics of immune 
exhaustion, while immune-cold patients are potential beneficiaries 
of mRNA vaccines. However, high expression of blue and black 
immune gene modules is detrimental to the effectiveness of mRNA 
vaccines.

What is known and what is new? 
• In the immune-hot phenotype, TP53 mutations are more 

prevalent, while in the immune-cold phenotype, CTNNB1 
mutations are more predominant. 

What is the implication, and what should change now? 
• This research workflow provides insights into the preparation and 

application of mRNA vaccines for HCC. 
• The differences in core mutation genes among different 

immunophenotypes suggest that exploratory studies related to 
them, such as TP53 and CTNNB1, may potentially enhance 
patients’ responsiveness to mRNA vaccines.
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vaccines for HCC, constructing the immune landscape 
of HCC to select potentially beneficial patients, and 
exploring genes that potentially suppress tumor antigen 
immunity. We selected 6 antigen targets associated with 
poor prognosis and APC enrichment scores among genes 
with overexpression and high mutation frequency in HCC. 
Based on the clustering analysis and immune landscape 
plotting with immune gene collections, the patients in The 
Cancer Genome Atlas - Liver Hepatocellular Carcinoma 
(TCGA-LIHC), International Cancer Genome Consortium 
- Liver Cancer (ICGC-LIRI) databases were divided into 
two phenotypes, immunocold and immunohot, and the two 
subtypes showed different clinical, molecular and cellular 
characteristics, patients with immunocold phenotypes were 
more likely to become beneficiaries of mRNA vaccines, 
while patients with immunothermal phenotypes showing 
autoimmune antagonism had inefficient response to 
mRNA vaccines, and the results of the two databases had a 
considerable degree of consistency. In conclusion, this study 
provides a detailed theoretical analysis for the development 
of mRNA vaccine for HCC, in anticipation of bringing 
more treatments to patients with intermediate and advanced 
stages and improving their survival time and quality of life.

Methods

Data collection and preprocessing

Clinical information and RNA sequencing (RNASeq) 
data for patients and control cases were extracted from 
the TCGA-LIHC cohort (TCGA, https://www.cancer.
gov/tcga) and IGCG-LIRI cohort (ICGC, https://www.
icgc-argo.org), including 421 LIHCs samples and 260 
LIRIs samples. Standard sample data and tumor sample 
data lacking clinical information were first eliminated. 
Samples with 0 transcripts per million (TPM) of more 
than 50% of genes were also eliminated. Ultimately, 330 
LIHCs samples and 231 LIRIs samples were selected. Chip 
sequencing data for 14 pairs of tumor and normal tissues 
were obtained from GSE84402 (17). Chip sequencing data 
of 24 tumor tissues and 8 normal tissues were obtained from 
GSE101685. A total of 1,793 immune genes were obtained 
from the Immport database (https://www.immport.org/
home) (18,19). R packages “DESeq2” was used to extract 
upregulated immune genes common to TCGA and ICGC 
cohorts (parameter: |log2FC| >1 and q-value <0.01) (20), 
resulting in a collection of immune genes including 129 
genes for subsequent analysis (available online https://cdn.

amegroups.cn/static/public/tcr-23-1237-1.xlsx). Surgical 
specimens and clinical data of 52 patients were recruited 
from Sun Yat-sen Memorial Hospital. The studies involving 
human participants were reviewed and approved by the 
Ethics Committee of Sun Yat-sen Memorial Hospital (ID: 
SYSKY-2023-1003-01) and were conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
patients/participants provided their written informed 
consent to participate in study.

Antigen targets exploration

GEPIA2.0 (http://gepia2.cancer-pku.cn) was employed 
to perform differential analysis (parameter: |log2FC| >1 
and q-value <0.01) and survival analysis on LIHC samples. 
The Kaplan-Meier curve analysis explored overall survival 
(OS) and recurrence-free survival (RFS) with a log-rank 
test providing a P value (21). The cBioPortal (http://www.
cbioportal.org) was employed to compare genetic mutation 
information from LIHC samples (22). The TIMER2.0 
(https://cistrome.shinyapps.io/timer) was employed to 
visualize relationship of gene expression and immune cells 
in LIHC samples (23).

Immunohistochemistry (IHC)

Tissue microarrays (TMAs) were made using pathological 
specimens collected from 52 patients with HCC collected 
from Sun Yat-sen Memorial Hospital, including tumor 
tissue and adjacent tissues. AURKA, CDC25C, KPNA2, 
MCM3 and TUBG1 antibodies were purchased from Abcam 
(ab52973, ab32444, ab289858, ab128923, ab179503, CN, 
Shanghai) and diluted into 1:100, 1:1,250, 1:2,500, 1:100, 
1:100, and NEK2 antibodies were purchased from Pygcn 
(NEK2 Polyclonal antibody, CN, Wuhan), and diluted 
into 1:400. The average optical density value calculated by 
IamgeJ was used as the observation index of IHC. Three 
fields of view for each tissue were selected, the average 
optical density value of its score was calculated, and the 
average of the three was taken as the result (mean). The top 
26 patients with high expression scores were defined as high 
expression groups (available online https://cdn.amegroups.
cn/static/public/tcr-23-1237-2.xlsx; https://cdn.amegroups.
cn/static/public/tcr-23-1237-3.xlsx).

Discovery and validation of immunophenotypes

Immunophenotypes were obtained by clustering samples 
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according to the expression matrix of 129 immune 
genes in LIHC samples and LIRI samples. R package 
“ConsensusClusterPlus” was responsible for clustering 
and selecting the optimal classification by cumulative 
distribution function (CDF) and delta area (DA) (24). The 
relevant parameters were set to a K value with a range 
of 2–10, 1,000 resamplings with 80% project resampling 
(pItem) and 100% gene resampling (pFeature).

Construction of immune landscape

R package Single sample gene set enrichment analysis 
(ssGSEA) was used to calculate the immune enrichment 
score of each sample, which could measure the immune 
infiltration status. R package “estimate” was used to 
assess each patient’s immune score and stromal score. R 
package “Monocle2” was used to visualize the distribution 
of immunophenotypes of LIHC samples (parameter: 
maximum component =3) (25,26). Finally, the immune 
landscape dimensionality reduction was visualized as a 
trajectory map composed of different immunophenotypes 
color-coded. The gene sets used in the enrichment analysis 
can be found in available online https://cdn.amegroups.cn/
static/public/tcr-23-1237-4.xlsx; https://cdn.amegroups.cn/
static/public/tcr-23-1237-5.xlsx.

Weighted immunogenic gene co-expression network of LIHC

R package weighted correlation network analysis (WGCNA) 
was used to construct a correlation network of 1,339 
immune-related genes (soft threshold =5) and obtain 
different modules in the network. The characteristic 
genes of each module were calculated, and modules with 
prognostic values for OS were identified (P<0.05) (27). The 
correlation between genes within the predictive module 
and the characteristic genes was calculated, and genes with 
correlation >0.9 and P value <0.05 were identified in Cox 
regression analyses to construct a risk model. R package 
“DAVID” was used for functional annotation of each gene 
module through the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis (28,29). 
The entire genes contained in each module can be found in 
available online https://cdn.amegroups.cn/static/public/tcr-
23-1237-6.xlsx.

Statistical analysis 

R software (version 4.1.0 and 4.2.2) was responsible for all 

statistical analyses and the Bonferroni corrected P value 
(P<0.05/n) was used to measure significant differences.

Results

Discovery of antigen targets for HCC

First of all, 1,482 overexpressed genes that may have the 
potential to be antigen targets were screened in LIHC 
(Figure 1A, available online https://cdn.amegroups.cn/
static/public/tcr-23-1237-7.xlsx). Most patients exhibited 
a low overlap count in terms of fraction genome alteration 
and mutation count, which may indicate that HCC itself 
has low immunogenicity (Figure 1B,1C). Then, by analyzing 
gene expression of altered genome fragments and mutation 
counts in samples, 4,452 mutated genes that may express 
tumor-specific antigens were selected (Figure 1D). Mutation 
analysis showed that the highest ten in the altered genome 
fragments group were tumor protein p53 (TP53), titin 
(TTN), mucin 5B (MUC5B), pecanex 2 (PCNX2), obscurin 
(OBSCN), dystrobrevin beta (DTNB), solute carrier family 8 
member A1 (SLC8A1), anoctamin 1 (ANO1), MYC binding 
protein 2 (MYCBP2) and serine protease 38 (PRSS38). 
The highest ten in the mutation counts group were titin 
(TTN), obscurin (OBSCN), tumor protein p53(TP53), 
mucin 16 (MUC16), AHNAK nucleoprotein 2 (AHNAK2), 
ryanodine receptor 2 (RYR2), dynein axonemal heavy 
chain 2 (DNAH2), piccolo presynaptic cytomatrix protein 
(PCLO), DExH-box helicase 9 (DHX9) and catenin beta 
1 (CTNNB1), of which TP53, TTN, and OBSCN were in 
the top ten of both groups (Figure 1E,1F). Overall, 223 
overexpressed and frequently mutated antigen targets were 
discovered (Figure 1C).

Identification of tumor antigens associated with HCC 
prognosis and antigen presenting cells

Screening for tumor antigens linked to a poor prognosis, 
six genes were found to be associated with shorter OS 
and RFS: AURKA, CDC25C, KPNA2, MCM3, NEK2 and 
TUBG1 (Figures 1C,2A). In summary, the six candidate 
genes are critical to the development and progress of 
LIHC. In addition, elevated expression levels of AURKA, 
CDC25C, KPNA2, MCM3, NEK2 and TUBG1 were 
positively associated with the infiltration of macrophages, 
dendritic cells, and B cells in tumor tissues (Figure 2B). 
It suggests that these tumor antigens can be delivered to 
T cells through APCs and trigger an immune response  
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Figure 1 Discovery of antigen targets for hepatocellular carcinoma. Chromosomal distribution of up-regulated genes in LIHC as indicated 
(A). Overlap count of patients in the mutation count group (B) and altered genome fractions group (C). Discovery process of six tumor-
specific antigen (D). The most frequent genes altered genome fractions group (E) and in the mutation count group (F). *, P<0.05. LIHC, 
liver hepatocellular carcinoma; MUT, mutated genes; CNV, copy number variation; OS, overall survival; RFS, relapse free survival; Min, 
minimum; Max, maximum.

The distribution of over-expressed genes on chromosomes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Over-expressed genes

150

100

50

50

40

30

20

10

0

70

60

50

40

30

20

10

0

TP
53

*

TT
N*

M
UC5B

*

TP
53

*

OBSCN

AHNAK2*

TT
N

OBSCN*

PCNX2*

M
UC16

*

DTN
B*

RYR2*

SLC
8A

1*

DNAH2*

ANO1*

PCLO
*

M
YCBP2

DHX9*

PRSS38

CTN
NB1*

150

100

50

(A) [min,40) 

(B) [40,80) 

(C) [80,120) 

(D) [120,160) 

(F) [160,200) 

(G) [200,max]

(A) [min,0.15) 

(B) [0.15,0.30) 

(C) [0.30,0.45) 

(D) [0.45,0.60) 

(F) [0.60,0.75) 

(G) [0.75,max]

O
ve

rla
p 

co
un

t

O
ve

rla
p 

co
un

t

MUT (7,934)

CNV (14,087)
OS (500)

RFS (500)
Over expressed (1,482)M

ut
at

io
n 

co
un

t

A
lte

re
d 

ge
no

m
e 

fr
ac

tio
ns

The gene positions are based on GRCh38.p2(NCBI). 1,482 Genes.

A

B

E

F

C D

A
lte

ra
tio

n 
ev

en
t f

re
qu

en
cy

, %
M

ut
at

io
n 

fr
eq

ue
nc

y,
 %



Wang et al. Research on mRNA vaccines for HCC178

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):173-190 | https://dx.doi.org/10.21037/tcr-23-1237

Figure 2 Connection between antigen targets and abundance of antigen-presenting cells. (A) Kaplan-Meier curves showing OS of HCC 
patients stratified on the basis of AURKA, CDC25C, KPNA2, MCM3, NEK2, TUBG1 expression levels. (B) The correlation between the 
expression levels of AURKA, CDC25C, KPNA2, MCM3, NEK2, TUBG1 and infiltration of macrophages, dendritic cells, and B cells in HCC 
tumors. OS, overall survival; HR, hazard ratio; TPM, transcripts per million; TIMER, tumor immune estimation resource; Rho, correlation; 
HCC, hepatocellular carcinoma.
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in vivo through mutual recognition with B cells. The elevated 
expression of the above six candidate genes in tumor 
tissues was verified in the two Gene Expression Omnibus 
(GEO) validation cohorts GSE84402 and GSE101685  
(Figure S1A,S1B).

IHC

The feasibility of the six candidate genes were further 
verified by immunohistochemical analysis. We observed that 
the IHC scores of three genes were upregulated in tumorous 
tissues, among which AURKA staining concentrated in the 
cytoplasm, MCM3 staining concentrated in the nucleus, 
CDC25C staining concentrated in the cytoplasm and 
nucleus (Figure 3A,3B). Survival analysis was employed to 
evaluate the correlation between IHC scores and prognosis. 
High IHC scores of AURKA (P=0.038) and CDC25C 
(P=0.03) indicated poor prognosis (Figure 3C,3D). 

Identification of potential immunophenotypes of HCC

Immunophenotypes reflect the specific immune situation 
and clinical characteristics of HCC patients, helping to select 
potential beneficiaries. We analyzed the RNA-Seq data of 
129 differential immune genes (Figure 4A) from 330 LIHC 
samples in LIHC cohort and 231 LIRI samples in ICGC 
cohort, and five stable immunophenotypes were obtained 
based on the CDF and DA result (k=5) of the two cohorts 
(Figure 4B-4H). The prognosis of IS2 and IS5 was better, 
while the prognosis of IS4 was worse (Figure 4E). Similarly, 
immunophenotypes were also associated with prognosis in 
the LIRI cohort (Figure 4I). The distribution relationship 
between immune subtypes and stage of LIHC and LIRI 
cohorts also showed certain similarities (Figure S2).  
In conclusion,  immunophenotypes can assess the 
microenvironment of tumors and evaluate the prognosis of 
HCC and can be used as a complement to tumor behavior 
assessment.

Cellular characteristics of immunophenotypes

The immune status of tumors often affects the effectiveness 
of mRNA vaccines, so we further used 28 previously 
reported immune cell genes to assess the immune 
situation of two cohorts of these subtypes with ssGSEA. 
Through the heatmap visualization of the ssGSEA score, 
we found that the distribution of immunity scores for 
IS1 and IS5 was similar, and IS2 and IS3 were identical, 

and interestingly this result was consistent across LIHC  
(Figure 5A) and LIRI (Figure 5B). Then we further 
compared the immune cell composition of each subtype and 
found a wide range of significant differences in expression. 
Therefore, IS1 and IS5, IS2 and IS3 were merged 
respectively. We discovered that Activated B cells, Activated 
CD4+ T cells, Activated CD8+ T cells, macrophage, 
myeloid-derived suppressor cells (MDSCs), and Regulatory 
T cells in IS1 and IS5 had higher enrichment scores, Type 
1 T helper cells, Type 2 T helper cells, and Type 17 T 
helper cells had lower enrichment scores (Figure 5C,5D). 
Thus, IS1 and IS5 were immunologically hot accompanied 
by autoimmunosuppression, while IS2 and IS3 were 
immunologically cold. These results suggested that 
immunophenotypes reflect the immune status of HCC and 
can provide theoretical support for selecting appropriate 
beneficiaries. The mRNA vaccines can stimulate immune 
cell responses in immunologically cold IS2 and IS3 
tumors for better therapeutic outcomes. In addition, the 
higher immune score and stromal score of IS1 and IS5 
verified the reliability of our immunophenotypes, showing 
that the IS1 and IS5 subtypes may have a resistance to 
immunotherapy.

The immune landscape of HCC

We constructed the immune landscape of  LIHC 
using the 129 immune gene sets previously built for 
immunophenotypes,  and each point on the graph 
represented a patient with a unique immune status  
(Figure 6A). A significantly positive correlation was found 
between the horizontal axis (principal component one, 
PCA1) and ssGSEA scores of immune cell modules, 
such as MDSC, Activated DCs, Activated CD8+ T cells, 
Activated CD4+ T cells, Activated B cells, Regulatory T 
cells, Mast cells, and Macrophages, whereas the vertical axis 
(PCA2) was significantly negatively associated with them  
(Figure 6B). Based on the positions of patients, IS1, IS2, 
and IS3 were split into two subtypes (Figure 6C), and the 
new immunophenotypes also showed significant prognostic 
outcomes (Figure 6D). Compared to other sub-clusters, IS2a 
and IS3a had notably lower scores on activated immune cell 
modules. Thus, LIHC patients with IS2a and IS3a may be 
the most likely potential beneficiaries of mRNA vaccines. In 
summary, immunophenotyping-based immune landscapes 
can illustrate the infiltration of immune cells in each patient, 
forecast the prognosis of those patients, and facilitate the 
individualized selection of mRNA vaccines.

https://cdn.amegroups.cn/static/public/TCR-23-1237-Supplementary.pdf
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Figure 3 Antigen targets immunohistochemistry and prognosis analysis. Representative immunohistochemical staining images in cancerous 
and adjacent normal tissues. The staining image of AURKA in cancerous tissues and in normal tissues. The staining image of CDC25C in 
cancerous tissues and in normal tissues. (A) The staining image of MCM3 in cancerous tissues and in normal tissues. (B) Histogram of tumor 
tissue versus normal tissue immune score in 52 HCC patients. The OS curves based on the IHC scores of AURKA, CDC25C and MCM3 in 
HCC patients. Y-axis represents the average optical density value of the tissue section. (C) The OS comparison of patients in low-AURKA 
group and high-AURKA group. (D) The OS comparison of patients in low-CDC25C group and high-CDC25C group. Bar: left (200 μm), 
right (40 μm). *, P<0.05; ***, P<0.001. HCC, hepatocellular carcinoma; OS, overall survival; IHC, immunohistochemistry.
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Figure 4 Construction and prognostic analysis of immunophenotypes. (A) Acquisition of differentially expressed immune genes for 
immunophenotyping. (B,C) Cumulative distribution function curve (B) and delta area (C) of immune-related genes in TCGA cohort.  
Sample clustering heatmap (D). Kaplan-Meier curves showing OS of HCC immunophenotypes in TCGA cohort (E). (F,G) Cumulative 
distribution function curve (F) and delta area (G) of immune-related genes in ICGC cohort. (H) Sample clustering heatmap. (I) Kaplan-
Meier curves showing OS of HCC immunophenotypes in ICGC cohort. ICGC, International Cancer Genome Consortium; TCGA, The 
Cancer Genome Atlas; CDF, cumulative distribution function curve; OS, overall survival; HCC, hepatocellular carcinoma.

ICGC (4,267)
Consensus matrix k =5

Consensus matrix k =5

IS1
IS2
IS3
IS4
IS5

IS1
IS2
IS3
IS4
IS5

IS1
IS2
IS3
IS4
IS5

IS1
IS2
IS3
IS4
IS5

ImmPort (1,793)

2,215

129

53

1,847 76

1,5351,212

TCGA (3,241)

0.0 0.2 0.4 0.6 0.8 1.0
Consensus index

 0.0 2.5 5.0 7.5 10.0
Time, years

 0 1 2 3 4 5 6
Time, years

 0 1 2 3 4 5 6
Time, years

 0.0 2.5 5.0 7.5 10.0
Time, years

 118 36 12 4 0
 99 33 15 3 1
 46 17 6 1 0
 46 10 3 0 0
 21 7 3 0 0

 87 72 47 24 7 1 1
 68 60 41 23 9 0 0
 24 21 13 3 0 0 0
 37 34 20 8 2 1 0
 15 14 10 3 1 0 0

Number at risk

Number at risk

Cluster=IS1 
Cluster=lS2 
Cluster=lS3 
Cluster=IS4 
Cluster=IS5

Cluster=IS1 
Cluster=lS2 
Cluster=lS3 
Cluster=IS4 
Cluster=IS5

P=0.0026

P=0.0430.0 0.2 0.4 0.6 0.8 1.0
Consensus index

 2 4 6 8 10
k

 2 4 6 8 10
k

Consensus CDF

Consensus CDF

Delta area

Delta area

2
3
4
5
6
7
8
9
10

2
3
4
5
6
7
8
9
10

1.0

0.8

0.6

0.4

0.2

0.0

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

1.0

0.8

0.6

0.4

0.2

0.0

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0.0

C
D

F

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

C
D

F
R

el
at

iv
e 

ch
an

ge
 in

 a
re

a 
un

de
r 

C
D

F 
cu

rv
e

R
el

at
iv

e 
ch

an
ge

 in
 a

re
a 

un
de

r 
C

D
F 

cu
rv

e

0.0

A D

H I

E

B

C

F

G



Wang et al. Research on mRNA vaccines for HCC182

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):173-190 | https://dx.doi.org/10.21037/tcr-23-1237

Figure 5 Cellular characteristics of immunophenotypes. (A,B) Differential enrichment scores of 28 immune cell signatures among HCC 
immunophenotypes in TCGA cohorts (A) and ICGC cohorts (B). (C,D) Differential enrichment scores of T cell related signatures in 
TCGA (C) and ICGC cohorts (D). **, P<0.01; ***, P<0.001. HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; ICGC, 
International Cancer Genome Consortium; EXP, immune cell enrichment fraction.
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Figure 6 Immune landscape of HCC. (A) Every point represents a patient and the immunophenotypes are color-coded. (B) The horizontal 
axis represents the PCA1 and the vertical axis represents the PCA2. Immune landscape of the subsets of HCC immunophenotypes. 
(C) Heatmap of two principal components with 28 immune cell signatures. (D) Kaplan-Meier curves showing OS of HCC new 
immunophenotypes. HCC, hepatocellular carcinoma; PCA, principal component; Cor, correlation; OS, overall survival.
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Association between immunophenotypes and immune 
modulators

Immune checkpoints (ICPs) and immunogenic cell death 
(ICD) regulators are related to tumor immunogenicity and 
responsiveness to immunotherapy, and we next analyzed 
the expression level of known ICP and ICD regulators 
in immunophenotypes of HCC. Expression levels of 45 
previously reported ICPs genes and 26 ICD modulators 
genes were detected in different subtypes of HCC. In the 
LIHC cohort, 37/45 of the ICPs were higher in IS1 and 
IS5, and 16/26 of the ICD regulators were higher in IS3. In 
the LIRI cohort, 38/45 of the ICPs were more expressed in 
IS1 and IS5, and 19/26 of the ICD regulators were higher 
in IS3 (Figure S3A-S3D). Therefore, immunophenotypes 
can reflect the immunoreactivity of HCC patients to 
a certain extent and can provide a theoretical basis for 
selecting beneficiaries. Patients with IS1 and IS5 subtypes 
may have a stronger ability of tumor immune evasion, and 

patients with IS3 subtypes have greater immunoreactivity 
and may be potential beneficiaries of mRNA vaccines.

Association of immunophenotypes with mutational status

Higher tumor mutation burden (TMB) and somatic 
mutation rates often predict more substantial immune 
effects against tumors. Therefore, the MuTect2 Annotation 
mutation dataset from TCGA-LIHC was employed to 
assess the TMB and number of mutant genes for these five 
subtypes. In addition, the 10 most commonly genomically 
altered immune-related genes (Figure S4A,S4B) were 
demonstrated, and it showed that the high proportion of 
mutated genes in different immunophenotypes is different. 
TP53 mutations account for a higher proportion in IS1 
and IS5, which means that these two subtypes have a lower 
probability of responding effectively to DNA damage, and 
thus have a higher risk of tumorigenesis. In IS2 and IS3, 

https://cdn.amegroups.cn/static/public/TCR-23-1237-Supplementary.pdf
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CTNNB1 mutations account for a high proportion, which 
can lead to the activation of the Wnt/β-catenin signaling 
pathway, inhibit apoptosis, thereby increasing the growth 
and spread capacity of tumors. In short, patients with 
different immunoisotypes had different tumor mutation 
landscapes, which provided new ideas and insights for 
tumor immunotherapy.

Association between immunophenotypes and tumor 
markers

Alpha-fetoprotein (AFP) is a clear prognostic and diagnostic 
marker for HCC and may indicate cancer progression, poor 
prognosis, and recurrence. The level of AFP expression 
in IS1 versus IS5 subtype expression is upregulated  
(Figure S4C), which is consistent with the poor prognosis 
of IS1 subtype in the LIHC cohort (Figure 4E). PDCD1 
and CD274 encode two immunomodulatory proteins, 
programmed cell death protein 1 (PD1) and programmed 
cell death-ligand 1 (PD-L1), respectively, and their high 
expression is highly correlated with immune evasion by 
hepatoma cells, resulting in immunotherapy resistance. 
The upregulation of PDCD1 and CD274 expression levels 
in IS1 and IS5 subtypes reflects their potential rejection 
effect on immunotherapy, resulting in low immunogenicity 
of mRNA vaccines. The expression trends of AFP, PDCD1 
and CD274 in the LIRI immunophenotype were similar 
to those of the LIHC cohort (Figure S4D). In summary, 
immunophenotypes have certain value in predicting 
HCC prognosis and immune response effects, which can 
supplement traditional predictive markers at the genetic 
level and guide immunotherapy.

Identification of immune gene co-expression modules

WGCNA was used to perform clustering analysis  
(Figure 7A) and construct an immune gene co-expression 
network for LIHC cohort, with a soft threshold of 4  
(Figure 7B,7C). We used the average linkage hierarchical 
clustering method to merge closed modules into new 
modules, with criteria including a height cut-off of 0.20, 
a deep split distance of 5, and a minimum module size of 
30, and then we obtained 7 co-expression modules and 
1,339 transcripts (Figure 7D). The Eigengenes of the black 
module were strongly correlated with those of the blue, 
brown, and red modules (Figure 7E). Further analysis of the 
distribution of 5 immunophenotypes in the 6 module genes 
revealed significant differences in all modules, with IS2 

showing the lowest feature genes in the black, blue, brown, 
blue, red, and yellow modules, and IS1 showing the highest 
feature genes in the black, blue, brown, and red modules 
(Figure 7F). Therefore, we observed that IS2 corresponds to 
the immunologically cold subtype and IS1 corresponds to 
the immunologically hot subtype, which is consistent with 
the results of previous immune infiltration analyses.

Further prognosis-related analysis showed that the 
black and blue modules were significantly associated with 
the prognosis of LIHC (Figure 8A). In addition, the blue 
and black modules were enriched in immune cell receptor 
pathways and malignant tumor regulatory pathways such as 
MAPK signaling and T-cell receptor signaling and showed 
consistent negative correlations with PCA2 of the immune 
landscape (Figure 8B-8E). Analysis of prognosis-related 
genes in the black and blue modules showed that higher 
expression scores correlated with poor LIHC prognosis 
(Figure 8F,8G).

Discussion

The mRNA vaccine is deemed as an epoch-making 
innovation. It does not need to inject inactivated or 
deactivated virus into the human body, but through 
artificial gene fragments to mimic viral attack, mobilizing 
the body’s immune response, and its effect depends on the 
immunogenicity of the antigen (30,31). In order to obtain 
ideal targets for HCC, we first considered the following 
factors. First, we screened for neoantigens with upregulated 
expression and poor prognosis to ensure that the vaccine 
targeted the chance of hits. Second, candidate genes should 
be distributed in patients with high variability to ensure that 
more potential beneficiaries are identified. Third, it needs to 
correlate with APC abundance to ensure that antigen entry 
into major histocompatibility complex (MHC) triggers 
an immune cascade that elicits an immune response in T 
cells (12). Finally, we screened six tumor-specific antigens, 
AURKA, CDC25C, KPNA2, MCM3, NEK2 and TUBG1, 
and we also observed upregulation of their expression in 
tumor tissues in two GEO databases.

These six candidate genes had been previously reported 
to have potential in the preparation of mRNA vaccines. 
Overexpression of AURKA is associated with distant 
metastasis and chemotherapy resistance in HCC (32-34).  
In addition, its capacity to induce HCC metastasis 
is demonstrated by its ability to control epithelial-
mesenchymal transition and cancer stem cell-like 
characteristics (32). CDC25C is a gene encoding a cell cycle 

https://cdn.amegroups.cn/static/public/TCR-23-1237-Supplementary.pdf
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Figure 7 Identification of immune gene co-expression modules of HCC. (A) Sample clustering. (B) Scale-free fit index for various soft-
thresholding powers (β) and Mean connectivity for various soft-thresholding powers. (C) Dendrogram of all differentially expressed genes 
clustered based on a dissimilarity measure. (D) Gene numbers in each module. (E) Adjacency heatmap of different modules eigengene. (F) 
Differential distribution of feature vectors of each module in HCC subtypes. ***, P<0.001. ME, module; HCC, hepatocellular carcinoma; 
Module_Eigengenes, comprehensive expression of genes in this module.
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Figure 8 Potential biological characteristics of co-expression gene modules. (A) Forest maps of univariate survival analysis and multivariate 
survival analysis of 6 modules of HCC. (B,C) Correlation between black module (B) and blue module (C) feature vector and PCA2 in 
immune landscape. (D,E) Bubble plot showing 10 KEGG terms in the black module (D) and blue module (E). (F,G) Differential prognosis 
in black module (F) and blue module (G) with high and low mean. HR, hazard ratio; CI, confidence interval; KEGG, Kyoto Encyclopedia 
of Genes and Genomes; ME, module; HCC, hepatocellular carcinoma; R, correlation.

0.10 0.15 0.20 0.25 0.30
GeneRatio, %

0.075 0.100 0.125 0.150 0.175 0.200
GeneRatio, %

 0.0 2.5 5.0 7.5 10
Time, years

 0.0 2.5 5.0 7.5 10
Time, years

 −0.1 0.0 0.1
MEblack

 −0.1 0.0 0.1
MEblue

P
C

A
2

P
C

A
2

 0.0 2.5 5.0 7.5 10
Time, years

 0.0 2.5 5.0 7.5 10
Time, years

 159 (100) 42 (26) 13 (8) 3 (2) 1 (1)

 171 (100) 61 (36) 26 (15) 5 (3) 0 (0)

 168 (100) 47 (28) 15 (9) 4 (2) 1 (1)

 162 (100) 56 (35) 24 (15) 4 (2) 0 (0)

Number at risk: n (%)

Number at risk: n (%)

Log-rank 
P<0.0001

Log-rank 
P<0.0001

Blue module risk=high risk=low

Blue module risk=high risk=lowKEGG enrichment of black

Univariate analysis 
MEblack 
MEblue 

MEbrown 
MEgreen 
MEred 

MEyellow 
Multivariate analysis 

MEblack 
MEblue 

MEbrown 
MEgreen 
MEred 

MEyellow

39
364
622
69
66
120

39
364
622
69
66
120

6.66e–05 
0.0077 
0.2572 
0.0074 
7e–04 
0.9509 

0.025 
0.0056 
0.41 
0.19 
0.4 
0.14

687.29 (27.73–17037.22) 
128.92 (36.2–4593.45) 

6.64 (0.25–175.78) 
0.03 (0.003–0.39) 
57.88 (5.5–609.26) 
0.9 (0.03–27.68) 

120 (1.8–7400) 
500 (6.1–40000) 
0.14 (0.0014–15) 

0.085 (0.0021–3.5) 
3.9 (0.16–92) 

0.024 (0.00018–3.2)

Gene module Gene number P value

0 500 1000 1500

Gene number

KEGG enrichment of blue

0.03 
0.02 
0.01

3e–13 
2e–13 
1e–13

3
4
5

25
30
35
40
45
50
55

6
7
8

P value

P value

Gene count

Gene count

Proteasome 

Toll-like receptor signaling pathway 

Natural killer cell mediated cytotoxicity 

Hepatitis B 

B cell receptor signaling pathway 

T cell receptor signaling pathway 

 

MAPK signaling pathway 

Apoptosis 

ErbB signaling pathway

PD-L1 expression and PD-1 checkpoint 
pathway in cancer

MAPK signaling pathway 

PI3K-Akt signaling pathway 

T cell receptor signaling pathway 

Th17 cell differentiation 

ErbB signaling pathway 

Natural killer cell mediated cytotoxicity 

 

EGFR tyrosine kinase inhibitor resistance 

JAK-STAT signaling pathway 

TNF signaling pathway

PD-L1 expression and PD-1 checkpoint 
pathway in cancer

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

2

1

0

−1

−2

−3

2

1

0

−1

−2

−3

risk=high

risk=low

risk=high

risk=low

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

B CA

D

E

F

G



Translational Cancer Research, Vol 13, No 1 January 2024 187

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(1):173-190 | https://dx.doi.org/10.21037/tcr-23-1237

regulatory protein, and the protein it encodes is a protein 
kinase phosphatase that primarily regulates the progress 
of the cell cycle (35). It may participate in CHD1L/TCTP/
CDC25C/CDK1-pathway leading to canceration of liver 
cells, which accelerates mitotic progression and generates 
a phenotype of aneuploidy (36). Drug experiments have 
shown that aloperine can induce G2/M cell cycle arrest 
and produce anti-tumor effects in vitro by downregulating 
CDC25C (37). KPNA2 encodes a nuclear transport protein, 
also known as transportin alpha-1 (Trnα1), which regulates 
nucleocytoplasmic transport (38). A KPNA2-miR139 axis 
exists in the development of HCC, and overexpression of 
KPNA2 inhibits the therapeutic effect of miR139, leading 
to tumor progression (39). The protein expressed by 
the MCM3 gene plays a key role in the process of DNA 
replication, participating in the regulation of the cell cycle. 
Its abnormal expression is related to the poor prognosis 
of HCC and may become a new diagnostic marker (40).  
Nude mouse experiments have found that MCM3 
promotes radioresistance by activating the NF-κB pathway, 
enhancing the role of MCM subunits in tumor progression, 
which may provide a new target for treating HCC (41). 
NEK2 is upregulated in HCC, especially in late-stage  
HCC (42). It can activate PAKT/NF-κB signaling pathway 
to mediate tumor growth, drug resistance, angiogenesis, 
and metastasis (43). Cell experiments have found that 
NEK2 induces sorafenib resistance through β-Catenin (44).  
Interestingly, we found that NEK2 has similar biological 
functions with AURKA, and together with FOXM1, they 
lead to the progression and poor prognosis of HCC 

(43,45). TUBG1  encodes γ-microtubule-associated 
protein (GMAP), which is essential for cell division and 
morphological maintenance. TUBG1 plays an important 
role in a variety of malignancies, but its relationship with 
HCC has not been widely studied (46). In our experiments, 
we found that AURKA and CDC25C had higher expression 
in tumor tissues and suggested a worse prognosis, which 
validates bioinformatics analysis to some extent, but it 
requires deep validation to further support. In addition, 
some studies have shown that high expression of candidate 
antigen targets is associated with disease progression and 
poor prognosis in other malignancies, such as prostate 
cancer (47), lung cancer (48), and breast cancer (49,50). 
The findings of pan-carcinoma-related research further 
support the feasibility of antigen targets.

Due to the limited population benefiting from mRNA 
vaccines, we divided HCC into 5 immunophenotypes based 
on the specific immune gene collection to select appropriate 

recipients. In the LIHC and LIRI cohorts, patients with 
IS2 and IS5 tumors had better prognoses, indicating that 
immunophenotypes can be used to forecast the prognosis of 
HCC patients. The significant upregulation of AFP in IS1 
and IS5 tumor patients corresponds to poor prognosis in 
IS1 subtypes, and our immunophenotype can complement 
traditional tumor markers to predict tumor progression and 
prognosis more accurately. Programmed cell death 1 (PD-1)  
is an immunomodulatory protein encoded by the PDCD1 
gene. In the immune system, PD-1 binds to its ligand,  
PD-L1 to inhibit the activity of T cells, thereby regulating 
the immune response and preventing excessive immune 
responses from causing damage to their own tissues (51). 
The expression levels of PDCD1 and CD274 in the IS1 and 
IS5 subtypes were up-regulated, reflecting their potential 
rejection effect on immunotherapy, which in turn led to 
low immunogenicity of mRNA vaccines, reducing vaccine 
efficacy.

Patients with higher TMB and somatic mutations may 
be more responsive to mRNA vaccines. Although TMB 
did not show significant differences between the two 
combined immunophenotypes (Figure S4B), the proportion 
of distinct mutant genes also revealed different mutational 
characteristics of different immunophenotypes. In IS1 
and IS5, TP53 mutations account for a higher proportion. 
In IS2 and IS3, CTNNB1 mutations account for a higher 
proportion. Calderaro et al. explained that CTNNB1 
and TP53 mutations were mutually exclusive from a 
pathological point of view and defined two groups of HCCs 
with different characteristics according to it (52). A previous 
study has shown that when the CTNNB1 mutated, the 
β-catenin protein might escape degradation, accumulate in 
the cell, and enter the nucleus, activate the Wnt/β-catenin 
signaling pathway, promote the proliferation of tumor 
cells, inhibit apoptosis, and thus increase tumor growth and 
spread (53). However, the effect of different case subtypes 
on tumor immunotherapy is still unclear, especially in the 
field of immunogenicity and immune reactivity of mRNA 
vaccines. 

It is worth noting that immunophenotypes can predict 
the therapeutic effect of mRNA vaccines. For the expression 
of immune modulators in different types, we speculate that 
IS1 and IS5 have inhibitory tumor microenvironments, 
which may lead to low responsiveness of mRNA vaccines. 
In addition, the immune landscape shows significant 
differences in immune composition among different 
patients, which is detrimental to the development of mRNA 
vaccines that requires large-scale production. Interestingly, 
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IS1 and IS5 patients are enriched with effector T cells and 
immunosuppressive cells, and this antagonistic cellular 
action may cause patients to form a depleted state of 
effector T cells, making mRNA vaccination less effective. 
A negative correlation between the upregulation of gene 
expression in the blue and black module and PCA2 in the 
immune landscape implies that high expression of these 
genes may lead to inadequate responsiveness of mRNA 
vaccines. 

In conclusion, our research discovered potential antigens 
for mRNA vaccines at first, and AURKA and CDC25C 
were identified as the most promising targets. In order 
to find potential beneficiaries, we divided HCC into five 
stable immunophenotypes, and IS2 and IS3 patients are 
considered to be immunologically cold according to the 
degree of immune cell enrichment, who are more likely 
to be potential beneficiaries of mRNA vaccines. Finally, 
we explored the influencing factors of mRNA vaccine 
effectiveness, WGCNA results showed that high expression 
of blue and black module genes may have an inhibitory 
effect on mRNA vaccine reactivity. This study aims to 
explore a new way out of immunotherapy for HCC. Its 
shortcomings are mostly based on theoretical exploration 
and the validation cohort of relatively small sample size. 
The follow-up experimental analysis of this study will be 
continued in the future.

Conclusions

AURKA, CDC25C, KPNA2, MCM3, NEK2 and TUBG1 
may be potential targets for mRNA vaccine development 
for HCC, especial ly AURKA  and CDC25C .  HCC 
patients with IS1 and IS5 subtypes perhaps presents an 
autoimmunosuppressed state, then IS2 and IS3 subtypes 
perhaps potential beneficiaries.
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