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In a previous paper we have shown that, when DNA samples for cases and controls are prepared in different
laboratories prior to high-throughput genotyping, scoring inaccuracies can lead to differential misclassification and,
consequently, to increased false-positive rates. Different DNA sourcing is often unavoidable in large-scale disease
association studies of multiple case and control sets. Here, we describe methodological improvements to minimise
such biases. These fall into two categories: improvements to the basic clustering methods for identifying genotypes
from fluorescence intensities, and use of “fuzzy” calls in association tests in order to make appropriate allowance for
call uncertainty. We find that the main improvement is a modification of the calling algorithm that links the clustering
of cases and controls while allowing for different DNA sourcing. We also find that, in the presence of different DNA
sourcing, biases associated with missing data can increase the false-positive rate. Therefore, we propose the use of
“fuzzy” calls to deal with uncertain genotypes that would otherwise be labeled as missing.

Citation: Plagnol V, Cooper JD, Todd JA, Clayton DG (2007) A method to address differential bias in genotyping in large-scale association studies. PLoS Genet 3(5): e74. doi:10.

1371/journal.pgen.0030074

Introduction

Genome-wide association (GWA) studies are becoming
more common because of rapid technological changes,
decreasing costs and extensive single nucleotide polymor-
phism (SNP) maps of the genome [1,2]. However, a major
technological challenge is the fact that this ever-increasing
number of SNPs is necessarily reliant on fully automated
clustering methods to call genotypes. Such methods will
inevitably be subject to errors in assigning genotypes because
the clouds of fluorescence signals are not perfectly clustered
and vary according to many factors, including experimental
variation and DNA quality [3]. As it is no longer practical to
inspect each genotype call manually, identification of
unreliable calls requires a measure of clustering quality.
Failure to identify such SNPs leads to an increased false-
positive rate and, if a crude quality score is applied, loss of
data. Adapting the clustering algorithm to allow for cluster-
ing variation arising from the study design can reduce the
number of unreliably called SNPs and can minimise the false-
positive rate.

The decreasing genotyping costs of GWA studies is
permitting the use of larger sample sizes. An efficient design
to limit the blood sample collection and genotyping costs is
the use of a common control group for several case
collections [2]. To this end, the 1958 British Birth Cohort
(1958 BBC), an ongoing follow-up study of persons born in
Great Britain during one week in 1958 (National Child
Development Study), has been used to establish a genetic
resource [4] (www.b58cgene.sgul.ac.uk). The Wellcome Trust
Case-Control Consortium (WTCCC) has adopted such a
design utilising the 1958 BBC and additional blood donors
(www.wtccc.org.uk) as a common control group for case
collections of seven different diseases. A drawback of this

@ PLoS Genetics | www.plosgenetics.org

approach is that it can generate a differential bias in
genotype calling between case and control DNA samples that
originated from different laboratories [3]. This leads to an
increased false-positive rate.

In this paper, we compare the genotype calls of a type 1
diabetes (T1D) GWA study using the original clustering
algorithm [5] implemented for this genotyping platform and
anew algorithm adapted to take into account differential bias
in genotype scoring. This study consists of 13,378 non-
synonymous SNPs (nsSNPs) in 3,750 T1D cases and 3,480 1958
BBC controls using the highly multiplexed molecular
inversion probe (MIP) technology [6,7]. Previously, we found
that the original clustering algorithm [5] performed well
when the genotypes clouds were perfectly clustered. However,
when variability in the fluorescent signal caused the clouds to
be less distinct, we found that a differential bias between
cases and controls increased the false-positive rate [3]. The
cause of this problem was attributed to the different sources
for controls and cases DNA samples that resulted in different
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Author Summary

Genome-wide disease association studies are becoming more
common and involve genotyping cases and controls at a large
number of SNP markers spread throughout the genome. We have
shown previously that such studies can have an inflated false-
positive rate, the result of genotype calling inaccuracies when DNA
samples for cases and controls were prepared in different
laboratories, prior to genotyping. Different DNA sourcing is often
unavoidable in the large-scale association studies of multiple case
and control sets. Here we describe methodological improvements to
minimise such biases. These fall into two categories: improvements
to the basic clustering methods for calling genotypes from
fluorescence intensities, and use of “fuzzy” calls in association tests
in order to make appropriate allowance for call uncertainty.

locations for the genotyping clouds of fluorescent signal. We
addressed this issue by scoring separately cases and controls
[3]. We also explored surrogate measures of clustering quality
and employed stringent cut-offs to reduce the false-positive
rate and extended the concept of genomic control by
applying a variable downweighting to each SNP. However,
neither approach was optimal, particularly the use of
stringent cut-offs, which resulted in a considerable loss of
data.

Here, we adapted the methodology to address differential
bias between cases and controls in a GWA study. There are
three main improvements. Two modifications concern the
genotyping algorithm: we used a new scoring procedure that
enables cases and controls to be scored together and we
adopted a more robust statistical model. The third modifica-
tion was to use “fuzzy” calls in association tests in order to
deal appropriately with call uncertainty. This avoids bias
introduced by treating uncertain calls as “missing” when the
proportion of such missing calls vary between cases and
controls. We also propose a quality-control score for the
clustering. These improvements allowed us to significantly
increase the number of SNPs available for analysis and to
improve the overall data quality. These modifications are
generic and can be incorporated into any clustering-based
genotyping algorithm. We illustrate this point by applying
our algorithm to score the WTCCC control samples
(www.wtccc.org.uk), which were generated using the Affyme-
trix 500K (http://www.affymetrix.com).

Results

Genotyping Procedure

Our genotyping procedure follows the original algorithm
[6] in fitting a mixture model using the expectation max-
imization (EM) algorithm but we modified this approach to
address the characteristics of our dataset. The original
algorithm transformed the two-dimensional fluorescent
signal intensity plot into a one-dimensional set of contrasts
(see Methods). A mixture of three Gaussian (one heterozygous
cloud and two homozygous clouds) was fitted to this one-
dimensional set of contrasts using the EM algorithm [8] and
data points were assigned to clusters. Data points that could
not be attributed to a cluster with high posterior probability
were treated as missing data. In addition to the parameters
that described the location of the genotyping clouds the
model also estimated the a priori probabilities (®,, @y, D3) for
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each cluster; these correspond to the genotype relative
frequencies.

As control and case DNA samples were processed in
different laboratories, the location of the genotyping clouds
for the fluorescent signal can differ between cases and
controls (see Figure 1). Previously, we scored cases and
controls separately to allow for such differences [3]. However,
this solution is not ideal. While the location of the clusters
can differ, the a priori frequencies should be identical in cases
and controls under the null hypothesis of no association.
Statistical theory shows that the most powerful test is
obtained when the maximum likelihood for the nuisance
parameters (here the genotyping parameters) is estimated
under the null hypothesis. Letting these values differ between
cases and controls resulted in overestimated differences in
allele frequencies and increased over-dispersion of the test
statistic. Our modified algorithm linked the clustering for
cases and controls by assuming genotype frequency param-
eters to be identical but imposed no such restriction on the
location of the genotyping clouds. Variability in allele
frequencies across geographic regions is also allowed. We
extended this approach to score nsSNPs on the X chromo-
some to account for male/female copy number differences
(see Methods).

In the original algorithm, the a priori frequencies for the
three clusters (@, Oy, P3) are linked by the condition Oy + Py
+ @5 = 1, leaving two free parameters. We investigated the
effect of further constraining these frequencies to be
consistent with Hardy-Weinberg equilibrium (HWE). In that
version of the algorithm, the a priori frequencies (@, ®s, ®s)
are parameterised as @ 2n(1 — m),(1 — 75)2) using a unique
parameter T.

We also found that the statistical model for the fluorescent
clouds was not robust to excessive variability of the
fluorescent signal within a genotyping cloud. Because our
association tests require that no data point is treated as
missing (see below), we needed a model robust to outliers. As
the tails of the Gaussian distribution decay too fast, we
replaced the Gaussian distributions with ¢-distributions. Our
parameter inference procedure (EM algorithm, see [8]) uses a
representation of the ¢-distributions as a Gaussian random
variable with a variance sampled randomly from a Gamma
distribution. Fortunately, the sample size of this study was
sufficient to estimate these additional parameters.

Association Test

The nsSNPs were analysed using the one degree of freedom
Cochrane-Armitage trend test [9]. In this statistical frame-
work, the outcome variable is the disease phenotype and the
explanatory variable is the genotype. The null hypothesis is
the absence of effect of the genotype on the odds of
developing the disease. This test statistic for association is a
score test; the score statistic is the first derivative of the log-
likelihood of the data at the null value of the parameter
tested. The test statistic is obtained by dividing the score test
by its variance under the null, derived using a permutation
argument (see Methods). We also used a stratified version of
this test introduced originally by Mantel [10] that allows for
variability in allele frequency and disease prevalence across
12 broad regions in Great Britain [3]. In this version of the
test, the score and its variance are summed over the 12 strata
to obtain the overall score and variance. The ratio of the
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Figure 1. Example of Biased Association Statistic Resulting from Missing Data in the MIP nsSNPs Dataset

The top row shows the normalised fluorescent signal intensities for both alleles. The bottom row shows the contrasts (x-axis) plotted against the sum
signal (y-axis). Clustering is based on the original Moorhead et al. [5] algorithm: blue and green crosses belong to both homozygous clouds, red to the
heterozygous cloud and black indicates missing calls. The p-value for the association test is 0.036 using the original Moorhead et al. [5] algorithm and

0.55 using our modified procedure (which does not label any of the cal
doi:10.1371/journal.pgen.0030074.g001

square of the score statistic to its variance is asymptotically
distributed as a %® random variable with one degree of
freedom

We explored how differential bias could affect the
distribution of the test statistic. An aspect of the data that
is affected by the differential bias is the frequency of missing
calls and the way these missing calls affect the genotyping
clouds. These differences increased the over-dispersion level
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Is as missing).

(see for example Figure 1). We found that the best solution
was to avoid the use of missing calls and call all available
samples, making appropriate allowance for call uncertainty.
This led us to modify the association test. To do so, we
reformulated the association test as a missing data problem in
which the distribution of the genotypes status is estimated
conditionally on the fluorescent signal and the geographic
origin of the sample (see Methods). This modification of the
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Table 1. Over-Dispersion Factor A\ (Estimated under the Null ) and Type 2 Error for Three Versions of Our Algorithm: Full Method (1),
without the Joint Typing (2), and without the Use of Fuzzy Calls (3)

Fluorescent Signal

(fcontrols, fcases)

(1) Full Algorithm

(2) Split Typing

(3) No Fuzzy Calls

Ho H, A\% Type 2 Error A\% Type 2 Error A\% Type 2 Error
High quality fluorescent signal (0.05,0.05) (0.05,0.06) —0.53 0.721 4.82 0.721 —043 0.737
(0.05,0.05) (0.05,0.08) —0.53 0.029 4.82 0.03 —0.43 0.032
(0.1,0.1) (0.1,0.11) —0.08 0.822 0.01 0.822 —0.08 0.823
(0.1,0.1) (0.1,0.13) —0.08 0.156 0.01 0.156 —0.08 0.156
(0.2,0.2) (0.2,0.21) 0.38 0.877 0.38 0.877 0.38 0.877
(0.2,0.2) (0.2,0.23) 0.38 0.363 0.38 0.363 0.38 0.363
Low quality fluorescent signal (0.05,0.05) (0.05,0.06) —0.79 0.723 14.7 0.727 0.05 0.788
(0.05,0.05) (0.05,0.08) —-0.79 0.032 14.7 0.034 0.05 0.065
(0.1,0.1) (0.1,0.11) 0.15 0.824 835 0.825 534 0.844
(0.1,0.1) (0.1,0.13) 0.15 0.165 8.35 0.168 534 0.207
(0.2,0.2) (0.2,0.21) 0.59 0.882 7.04 0.881 272 0.893
(0.2,0.2) (0.2,0.23) 0.59 0.38 7.04 0.379 272 0414

Each row corresponds to a different pair of null (H, first column) and alternate (H;, second column) hypotheses, defined by the frequencies of the minor allele in cases and in controls
(feontrolss feases)- We considered two models for the quality of the fluorescent signal: high and low quality SNPs (see Methods). Results are based on 100,000 simulated SNPs.

doi:10.1371/journal.pgen.0030074.t001

test amounts to replacing the score statistic with its expect-
ation under this posterior distribution of the genotype status.
Similar ideas have been used in the context of haplotype

phasing [11].

Simulation Study

The elevated rate of false positives observed in the data
resulted from an over-dispersion of the test statistic. We
estimated the over-dispersion factor, A, by calculating the
ratio of the mean of the smallest 90% of the observed test
statistics to the mean of the smallest 90% of the values
expected under the null hypothesis of no association [3].
Using the smallest 90% is motivated, in a case-control
framework, by the exclusion of the “true” associations that
are caused by actual differences between cases and controls
and that can significantly affect the mean value of the test
statistic. To make the interpretation of the results easier, we
report A), the difference between the theoretical over-
dispersion factor (equal to 1) and the observed one: a value
of 1% for AL means that the over-dispersion factor Ais 1.01.

We illustrate the impact of our modifications by analysing
simulated fluorescent signal data. We used two models for the
quality of the fluorescent signal (high and low quality SNPs).
We considered various scenarios for the minor allele
frequency in cases and controls and simulated 100,000 SNPs
for each scenario. The signals were scored in three different
ways: (1) the full algorithm, as described above; (2) cases and
controls were called separately; and (3) fuzzy calls were not
used. In (3), we assigned a probability 1 to the most probable
call under the posterior distribution and we called a sample
missing when the probability of this most probable call was
less than 0.95. For each version of the scoring algorithm, we
report AA under the null hypothesis of no association (i.e.,
identical population frequencies in cases and controls). We
also compared the power for the three versions of the
algorithm. Following Neyman-Pearson’s lemma [12], the best
test is the one that, for a given type 1 error (the probability to
reject the null when the null is true), has the lowest type 2
error (the probability to accept the null when the alternate
hypothesis is correct). In practice it implied correcting the
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test statistic for the over-dispersion and estimating the
fraction of the SNPs simulated under the alternate hypoth-
esis for which the null hypothesis was accepted. We set the
type 1 error to 0.05 in our simulations. Results are reported
in Table 1.

We found that, as expected, all three versions of the
algorithm performed comparably well when the quality of the
fluorescent signal was high. In that situation, the only
situation where the level of over-dispersion was significant
was the separate typing procedure combined with low minor
allele frequency. Clustering based algorithms are not well
suited to estimate parameters when the number of data
points in a genotyping cloud is low and this weakness was
amplified when cases and controls were called separately.

However, strong differences appeared for the lower quality
SNPs. We found that there was little over-dispersion when the
full algorithm was used (AA between —0.79% and 0.59%).
However, when the split typing version was used, over-
dispersion ranged from 7.04% to 14.7%, increasing as the
minor allele frequency decreases. In addition, comparison
between joint and split typing methods showed that the
power of the study (measured by the type 2 error) was very
similar. However, this observation is misleading, as when the
data consists of a mixture of high and low quality SNPs,
applying a constant correction factor independently of the
fluorescent signal quality would result in a loss of power for
the split typing method. For the full method, we found a near
perfect agreement between theoretical and observed distri-
butions, and the use of a correction factor was not necessary.

Not using the fuzzy calls had a less obvious effect on the
over-dispersion. As mentioned above, the high quality SNPs
were not affected because the vast majority of calls was
certain. For the low quality fluorescent signal model, we
found that on average 1.2% of the individuals had a
probability of the most likely call lower than 0.95. Labelling
these unclear calls as missing significantly affected the over-
dispersion slope, which reached a maximum at intermediate
frequencies (AN = 5.34% at minor allele frequency 10%, see
Table 1). In addition, and unlike the split typing version of
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Figure 2. Quantile-Quantile Plot Comparing the Observed Distribution of the Association Statistic (y-Axis) with the Predicted Distribution under the

Null (x-Axis)

The leftmost graph uses our set of calls for our best 7,446 nsSNPs and the rightmost graph relies on the original calls for the best 5,294 nsSNPs in 3,750

cases and 3,480 controls.
doi:10.1371/journal.pgen.0030074.g002

the algorithm, the type 2 error increased significantly
(between 1% and 5%). We also note that calls with a most
likely probability lower than 70% were rare (on average 0.4%
of the calls). Therefore, replacing the fuzzy posterior
distribution with the most likely call had almost no effect
on the over-dispersion slope, indicating that for the range of
model and data considered here the inclusion of fuzzy calls is
not critical as long as missing calls are not used.

MIP nsSNPs Dataset

The MIP data consisted of 13,378 nsSNPs typed in 3,750
cases and 3,480 controls. We analysed 11,579 nsSNPs with
minor allele frequency estimated to be greater than 0.01. We
also excluded 281 nsSNPs in the HLA region that is known to
be associated with T1D, leaving 11,298 nsSNPs.

Initially, using the original calls, we employed stringent cut-
offs for the surrogate measures of clustering quality: case and
control call rates both greater than 95%, difference in call
rates between controls and cases smaller than 3% and HWE
x? < 16. This resulted in 2,079 high-quality nsSNPs with an
over-dispersion factor Al of 4.5%. We obtained a lower over-
dispersion of 1.5% when these nsSNPs genotypes were called
using the adapted algorithm. As expected, this difference in
over-dispersion between algorithms became more marked as
less stringent cut-offs were applied. For example, lowering
the call rate cut-off to 90% resulted in 5,294 nsSNPs with an
over-dispersion of AL =17% using the original Moorhead et
al. [b] scoring algorithm and 8.1% using the adapted
algorithm on the same set of nsSNPs.

We propose a measure of clustering quality that compares
the variability of the signal within a cluster with the
variability between clusters (see Methods). The lower limit
for the quality measure was set such that beyond this value
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the over-dispersion factor A remained constant. When we
selected the nsSNPs according to our quality-control measure
this resulted in 7,446 nsSNPs with an over-dispersion slope of
7.5% using our improved algorithm (Figure 2). For the same
set of SNPs the over-dispersion level was 21% using the
original calls.

We investigated the effect of our modifications by scoring
the data using various configurations of the algorithm and the
association test. The quality was measured using the level of
over-dispersion AL of the test statistic for the stratified test
(see Table 2). For the genotyping procedure, we found that
the split clustering of cases and controls significantly
increased the over-dispersion level: AL = 10.5%, +3%
compared to the joint typing of cases and controls with a
unique set of a priori frequencies (AL = 7.5%). However,
letting these a priori frequencies vary across geographic
regions in the stratified version of the test did not change
the results, although a stronger discrepancy might have been
observed if cases had not been well matched geographically
with the controls. Assuming a Gaussian model (rather than -
distribution in the adapted algorithm) also significantly
increased the over-dispersion level (+4.3%).

Imposing the a priori frequencies to be consistent with
HWE did not lower the over-dispersion level (+1.5%),
probably because this condition was too stringent. We
investigated a weaker version of this constraint in the
parameter estimation: we first estimated the parameters
under the HWE constraint. Then we relaxed this assumption
in the second step but used the parameter values estimated in
the first step as a starting point for the iterative parameter
estimation procedure. This modification also did not lower
the over-dispersion level (AL =8.2%,+0.7% compared to the
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Table 2. Impact of Our Modifications on the Over-Dispersion
Measure for the 7,446 nsSNPs That Passed our Quality Threshold
in 3,750 Cases and 3,480 Controls

Genotyping Algorithm Over-Dispersion AL

Adapted algorithm 7.5%

Using the most likely call instead of 7.4% (—0.1%)
its posterior distribution

Not avoid the use of missing calls 8.6 % (+1.1%)

11.8% (+4.3%)
10.5% (+3%)
21% (+13.5%)

Gaussian model (instead of t-distribution)
Separate typing of cases and controls
Original algorithm

The number in parentheses indicates the difference with the adapted algorithm (top row).
doi:10.1371/journal.pgen.0030074.t002

adapted calls). However, while this further constrain did not
improve the over-dispersion overall, this two-step procedure
helped with finding the global maximum of the likelihood
function for a small fraction of nsSNPs for which the variance
of the fluorescent signal was large. Therefore, it provided an
alternative scoring method useful to maximise the number of
typed nsSNPs while increasing the over-dispersion only
slightly.

Regarding the association test, we investigated the effect of
missing calls. For each nsSNP, we called a sample missing
when the probability of belonging to the most likely genotype
cloud was less than 95%. The number of missing calls varied
greatly across nsSNPs: the median of the average number of
missing calls across the nsSNPs that pass the quality threshold
is 0.2% but this median number is 1% among the 2,171
nsSNPs with the lowest quality score among the best set of
7,446 nsSNPs. We found that the use of missing calls slightly
increased the level of over-dispersion (+1.1% compared to
the same algorithm in the absence of missing calls). However,
missing calls have a larger effect on the quality scores: re-
estimating a best set of 7,446 nsSNPs but computing the
quality scores with missing data generated an over-dispersion
of 10.5%. This larger over-dispersion is explained by the fact
that introducing missing calls biased the computation of the
quality scores and prevented us from identifying low quality
nsSNPs (see Discussion). However, once we avoided the use of
missing calls and called all available samples, using the most
likely call instead of the posterior distribution had little effect
(AL=17.4%, 0.1% lower than our adapted calls). This limited
effect is expected because split calls are rare for the range of
models we considered.

WTCCC Control Dataset

In this section, we show the result of our adapted algorithm
applied to a different genotyping platform, the Affymetrix
Mapping 500K array set. These data have been generated by
the WI'CCC (www.wtccc.org.uk). The WTCCC is a GWA study
involving seven different disease groups. For each disease, the
WTCCC genotyped 2,000 individuals from England, Scotland,
and Wales. Disease samples will then be compared to a
common set of 3,000 nationally ascertained controls also
from the same regions. These controls come from two
sources: 1,500 are representative samples from the 1958
BBC and 1,500 are blood donors recruited by the three
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national UK Blood Service. Here, we compare the WI'CCC
control groups. This comparison is interesting because in a
typical GWA study, we expect a fraction of the over-
dispersion to reflect actual genetic differences between
control and disease groups. However, when comparing two
sets of healthy controls the interpretation of the results is
easier, as both groups should be representative samples of the
population.

We first show that our quality measure was efficient at
distinguishing poorly typed SNPs from correctly typed ones.
We illustrate this point by showing the distribution of p-
values on Chromosome 1 for three quality thresholds (see
Figure 3). Because the distribution of the fluorescent signal
differs between the MIP platform and the Affymetrix 500K,
the optimum threshold also differs. We found that approx-
imately 79% of the SNPs have a minor allele greater than 0.01
as well as a quality score greater that 1.9. Given a total
number of 40,220 SNPs on this chromosome, is approx-
imately the level beyond which no p-value is expected. For
that quality threshold of 1.9, only four SNPs are obvious false
positives with p-values beyond 1 X 107°. Visual inspection of
the clusters confirmed that these were indeed clustering
errors. When we increased the quality score to 2.2, only one
of the four SNPs remained (with a quality score of 2.3). As
approximately 12% of the Affymetrix 500K SNPs are
monomorphic in the British population, we found that only
9% of the SNPs did not pass our quality threshold, while
keeping the false-positive rate close to zero. Similar numbers
were found on other chromosomes.

In addition, we compared our algorithm with the BRLMM
calls, commonly used on this platform and provided by
Affymetrix. For each autosomal chromosome we used
BRLMM and our adapted algorithm to select the subset of
SNPs with a quality score greater than 1.9 and a minor allele
frequency greater than 0.01. For both sets of calls, we
computed the fraction of SNPs that pass that threshold. In
order to make results comparable, we calculated the over-
dispersion slope for the SNPs that passed both the BRLMM
and the adapted calls threshold (see Table 3). We found that
the percentage of SNPs that pass the quality threshold is
typically 4% higher using our adapted algorithm, while the
over-dispersion remained 2%-5% lower, indicating a signifi-
cant improvement.

Discussion

In this T1D nsSNP GWA study, the adapted algorithm was
successful at scoring more nsSNPs confidently (7,446 nsSNPs
instead of 5,294 nsSNPs) and, as a consequence, reducing the
false-positive rate: over-dispersion decreased from 17% to
7.5%. Rather than developing an entirely new genotyping
algorithm we have adapted the current algorithm for GWA
with the motivation of controlling the false-positive rate
resulting from a cases/controls genotyping bias. Conse-
quently, these modifications are relevant to all clustering
based genotyping algorithms. Here, we considered the MIP
genotyping technology [7] and the Affymetrix 500K array, but
these modifications are also applicable to the Illumina
platform (http://www.illumina.com). Our results show that
the most important recommendation consists of scoring the
different datasets (typically cases and controls) in a central-
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Figure 3. Distribution of p-Values for the Association Test between the 1958 BBC Samples and the UK Blood Donors (WTCCC Control Dataset) for Three

Different Quality Thresholds
doi:10.1371/journal.pgen.0030074.g003

ised manner, when this is possible. Introducing fuzzy calls is
less important as long as one avoids the use of missing calls.

In practice, a key component of any genotyping algorithm
is the ability to provide a single measure of clustering quality.
Previously, we used surrogate measures of clustering quality
(such as call rate and deviation from HWE) to identify
unreliable SNPs, but this approach was not optimal [3]. Our
measure of clustering quality compared the locations of the
clusters of fluorescent signals with the variability of this signal
within a cluster. However, to be really informative, this
measure should be computed in the absence of missing calls.

@ PLoS Genetics | www.plosgenetics.org

Excluding calls artificially reduces the variability of the signal
within each cloud and biases the quality measure upward.
Contrary to intuition, when using the calls provided by the
original MIP algorithm [7] to compute both the quality
measure and the association statistic, the over-dispersion
level is higher for the nsSNPs that have the highest confidence
value: AL = 26% for a confidence greater than 8 (1,116
nsSNPs) and AAL=15% for a confidence level between 5 and 8
(2,393 nsSNPs). Visual inspection of the clustering for these
nsSNPs showed that such high confidence levels were typically
associated with small variability of the fluorescent signals
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Table 3. Level of Over-Dispersion for the SNPs That Pass Both the Minor Allele Frequency Cut-Off (Greater than 0.01) and the Quality

Threshold of 1.9

Chromosome Number of SNPs Fraction of Successful SNPs Over-Dispersion AL
BRLMM Adapted Calls BRLMM Adapted Calls

01 40,220 0.74 0.79 333 —0.73
02 41,400 0.75 0.8 4.4 0.79
03 33,801 0.77 0.81 231 —1.47
04 32,334 0.76 0.8 3.43 1.12
05 32,056 0.78 0.82 6.89 43
06 31,470 0.79 0.84 3.2 —-0.73
07 25,835 0.78 0.83 6.49 247
08 27,457 0.77 0.82 7.7 3.88
09 22,864 0.77 0.81 6.91 3.24
10 28,501 0.76 0.81 5.72 1.93
11 26,273 0.76 0.81 10.32 6.46
12 24,954 0.76 0.82 15.58 10.89
13 19,188 0.77 0.81 6.54 411
14 15,721 0.76 0.81 533 25
15 14,356 0.75 0.79 7.64 3.49
16 15,309 0.74 0.79 425 —1.11
17 11,281 0.76 0.81 13.55 10.39
18 14,881 0.76 0.79 13.75 10.16
19 6,399 0.76 0.81 7.41 274
20 12,400 0.77 0.81 9.84 5.79
21 7,125 0.76 0.81 9.71 7.06
22 6,207 0.76 0.81 9.95 1.54

Results are reported separately for the 22 autosomal chromosomes. The over-dispersion measures the association between both control samples from the WTCCC (BBC 1958 and UK
blood donor samples) and was measured on the Affymetrix 500K. To compare the level of over-dispersion between BRLMM and our adapted calls, we based the computation of the over-

dispersion slope on the same set of SNPs that pass the quality threshold for both algorithms.

doi:10.1371/journal.pgen.0030074.t003

within clouds. In that situation, the original algorithm called
missing those data points located a few standard deviations
away from the center of the cluster. When these missing calls
occurred differently in cases and controls it resulted in an
increased over-dispersion of the association statistic (such as
in Figure 1).

We note that in spite of our efforts a level of over-
dispersion remains even for the 2,079 nsSNPs with near
perfect clustering (AL = 1.5%). This estimate is noisy and its
significance or causes are difficult to assess. However, we note
that in the larger set of 7,446 nsSNPs, the inclusion of 21 non-
Caucasian samples increased the over-dispersion from 7.5%
to 12.1%. Also, if there were any undetected close relations in
the collections of cases and controls this could also increase
the level of over-dispersion (we did ensure that inadvertent or
deliberate sample duplications were removed, and no first-
degree relatives were included in the study)

The difference between the lower bound of 1.5% (in the
high quality set of 2,079 nsSNPS) and our 7.5% level (in the
larger set of 7,446 nsSNPs) is probably associated with
remaining imperfections in our statistical model. As pointed
out in the Results section, replacing the most likely call with
its posterior distribution given the fluorescent signal had
little effect on the level of over-dispersion. Indeed, when a
data point was located between two clusters, the algorithm
did not assign an intuitive 50%/50% probability on both
adjacent clouds but rather put a weight close to one on the
cloud with the largest standard deviation. This replacement
of “grey” calls with “black or white” amplified the difference
between cases and controls and contributed to the remaining
level of over-dispersion.
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Materials and Methods

Description of the genotyping algorithm. The original algorithm is
described in [5]. Genotypes are scored based on the contrast measure:
for a SNP with alleles A and G and signal intensities I, and I,
respectively, S = Iy + Iy and contrast = sinh(2141;/S)/sinh(2). In this
approach a mixture of three Gaussian is then fitted to the set of
contrast values. Three parameters (®;, ®o, ®3) with the constraint @,
+ @, 4+ @5 =1 represent the a priori probabilities to belong to each of
the three clouds (before knowing the value of the contrast).
Parameters (a priori frequency estimates location M, and standard
deviation G of the three clouds) are estimated using the EM algorithm
[8]. This Gaussian mixture is replaced with ¢-distributions in our
modified method. A possible representation of a ¢-distribution with n
degree of freedom, variance parameter 6 and mean p is the following:

X = Normal(v, 6® /u) with u = Gamma(v/2, 2/v)

This representation is used in the version of the EM algorithm we
used to score the data [8]. It used a data augmentation procedure and
treated the variables w as missing data.

Linked clustering of cases and controls. When controls and cases
are typed separately each sample has its own set of parameters ©: (¥,
®,, ®g) that describe the a priori allele frequencies as well as
(K, 01, vi)] that describe the location of the three genotype clouds.
In the linked version of the scoring the a priori frequencies (®;, ®o, ®s3)
are identical for both samples (cases and controls). In the EM
algorithm the set of parameters © is estimated iteratively. The
estimator of ®@; at step (k+1) is (II'f»‘Jrl =3 7;‘/n where n is the number
of observations and f; :P()k(}(j:i). When the scoring is done
separately for cases and controls this estimator is computed
separately for both samples. In the linked version of the scoring this
sum is computed jointly for cases and controls. For the stratified
association test, each geographic region s has its own set of
parameters (@, @y, @3) that is estimated separately for each region,
but jointly for cases and controls. The rest of the EM algorithm
follows [8].

Typing of the X chromosome. We extended our linked clustering
approach to deal with nsSNPs on the X chromosome. Because of
male/female copy number differences this situation is similar to
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differential genotyping bias as the location of the genotyping clouds
can differ across samples. We extended our linked clustering
approach to this situation: the location of the genotyping clouds
could differ but the a priori frequencies were estimated jointly. In that
case we denote @ = Yy fi-+ Ypafi/2 and OF = 0 1 0 1 @
Then for the female sample we have ®*! = (I)f-‘/(I)k. For the male
sample:

O} = (@ +0.50%)/0F, LT = 0,0 = (@ + 0.50f) /0"

Imposing HWE. The linked clustering approach can be extended to
impose HWE for the a priori frequency estimates (@, @y, ®3). The
frequencies are parameterised as (1%,21(1 — m),(1 — 1)®). Using the same
notations the EM estimator becomes: n**! = (@ 4 0.50%) /. This
approach can also be extended to X chromosome SNPs as presented
above.

Association statistic. We first consider the unstratified version of
the test (see Protocol S1 for a complete derivation of the test). We
denote the disease status (the outcome variable in our model) as a
vector of binary variables Y. The vector X of explanatory variables
(the genotypes) can take three values (1,2,3). We assume a logistic
model: logit[P(Y = 1)] = o + BX. The score statistic can be written as:

U= > (Y= V)E(X|Z,Y;)

The score variance can be computed using a profile likelihood
argument:

where D and H are the numbers of cases and controls, xi is the
sample variance of the expected value of the genotype variable X,
and s? is the variance of X; under the fuzzy distribution. The test
statistic U?IV is x2 with one degree of freedom under the null.
Extension for stratification. The derivation of this test is available
in Protocol S1. In that version of the test the score statistic becomes:

U= (Y= Ys)E(X|Z, Y, $;)

(1= 7)Y 0 57

cases i

n

7 9
+ Y3 ontrols Si

DH
V="

2
N
n X

where §; is the strata for the individual i and Y, the mean value of Yin
that strata. Each strata has its own score variance (computed as in the
nonstratified situation) and the contribution of each strata is then
summed to obtain the overall score variance. The test statistic U2V is
still distributed as y* with one degree of freedom under the null.
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Measure of clustering quality. We designed a measure that captures
the intuition that clouds of points are well separated for a given SNP.
We use the difference between the centres of adjacent clouds divided
by the sum of the standard deviation for these two clouds. Center and
standard deviation of the clouds is computed based on the most likely
calls. The final quality measure for a SNP is the minimum computed
over each pair of clusters. This computation is done for cases and
controls separately and the minimum over both samples is then
computed. As expected, increasing that threshold is inversely
correlated with over-dispersion. The over-dispersion stops decreas-
ing at a threshold of 2.8 and we used this value to generate our set of
7,446 SNPs.

Simulation details. When simulating SNPs we simulated directly
the set of contrasts. For high quality SNPs, the centres of the three
genotyping clouds are —0.9,0,0.9. The three t-distributions have
degree of freedom equal to v = 10 and the scaling factor for the
standard deviation is 0.03. The standard error for each genotyping
cloud is then equal to 0.03 X /v/(v—2) = 0.034.

For lower-quality SNPs, the centres of the three genotyping clouds
are also —0.9,0,0.9. The three ¢-distributions have degree of freedom
equal to v = 3.5 and the scaling factor for the standard deviation is
0.1. The standard error for each genotyping cloud is then equal to

0.1 X \/V/(v—2) =0.152.

Supporting Information

Protocol S1. Derivation of the Test Statistic
Found at doi:10.1371/journal.pgen.0030074.sd001 (85 KB PDF).
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