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The transcription factor forkhead box protein P2 (FOXP2) is a highly

conserved key regulator of embryonal development. The molecular mech-

anisms of how FOXP2 regulates embryonal development, however,

remain elusive. Using RNA sequencing, we identified the Wnt signaling

pathway as key target of FOXP2-dependent transcriptional regulation.

Using cell-based assays, we show that FOXP2 transcriptional activity is

regulated by the Wnt coregulator b-catenin and that b-catenin contacts

multiple regions within FOXP2. Using nuclear magnetic resonance spec-

troscopy, we uncovered the molecular details of these interactions. b-cate-
nin contacts a disordered FOXP2 region with a-helical propensity via its

folded armadillo domain, whereas the intrinsically disordered b-catenin N

terminus and C terminus bind to the conserved FOXP2 DNA-binding

domain. Using RNA sequencing, we confirmed that b-catenin indeed reg-

ulates transcriptional activity of FOXP2 and that the FOXP2 a-helical
motif acts as a key regulatory element of FOXP2 transcriptional activity.

Taken together, our findings provide first insight into novel regulatory

interactions and help to understand the intricate mechanisms of FOXP2

function and (mis)-regulation in embryonal development and human

diseases.
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Introduction

The transcription factor FOXP2 has been discovered

as functional element of human speech development

[1]. FOXP2 belongs to the most conserved proteins in

mammals [2], and its function in neuronal and embry-

onal development, vocalization, and social behavior

has been investigated in various functional animal

studies [3–7]. Dual transcriptional roles have been

reported for FOXP2, both in transcriptional repression

[8,9], and in activation of target genes [10].

Most of the recent studies focused on FOXP2 tar-

gets involved in neuronal cells or brain tissue in order

to reveal the role of FOXP2 in human speech develop-

ment. Up to now, more than 1000 direct or indirect

targets have been found using chromatin immunopre-

cipitation sequencing (ChIP-Seq), ChIP-chip (chro-

matin immunoprecipitation coupled with hybridization

to promoter microarrays), microarray, and RNA

sequencing (RNA-Seq) [6,9–16]. Multiple pathways are

regulated by FOXP2, including activation of mitogen-

activated protein kinase (MAPK), and signaling path-

ways such as notch, retinoic acid, insulin-growth fac-

tor, signal transducer and activator of transcription 3

(STAT3), p53, sonic hedgehog, and Wnt/b-catenin
[9,10,17,18].

FOXP2 is associated with various biological func-

tions. Therefore, it is not surprising that FOXP2 dys-

functions are associated with a broad range of diseases

such as developmental verbal dyspraxia [19], autism

[20], and various cancer types, including ovarian, hepa-

tocellular, bone, gastric, breast, prostate, and colorec-

tal cancer [21]. Dysregulation of FOXP2 might play a

crucial role in cancer initiation and progression and is

considered as diagnostic marker of neoplastic cells

[21]. Due to the key role of FOXP2 in a plethora of

biological pathways, tight regulation of FOXP2 tran-

scriptional activity is essential. However, the molecular

mechanisms underlying regulation of FOXP2 tran-

scriptional activity remain elusive.

To better understand the regulatory mechanisms,

which control the transcriptional activity of FOXP2,

we aimed to find clues about candidate pathways,

which are regulated by FOXP2 to get ideas about reg-

ulatory elements, motifs, and processes in cells. Recent

studies have identified a potential link between FOXP

proteins and the Wnt signaling pathway [22,23]. There-

fore, in this report, we investigated a possible link

between FOXP2 and the Wnt pathway, as both are

important in embryonal development and might regu-

late each other. Thus, we focused on the interaction

with b-catenin as transcriptional coactivator, which is

regulating, when active, various transcription factors

such as T-cell factor/lymphoid enhancer-binding factor

(TCF/LEF) [24–26], hypoxia-induced factor 1 a under

hypoxic conditions [27], or FOXO under oxidative

stress [28]. Using a combination of complementary

in vitro and cell-based approaches, we revealed the role

of b-catenin as functional regulator of FOXP2 tran-

scriptional activity. Our results suggest that additional

factors such as the structure and composition of

FOXP2 DNA target motifs, binding of cofactors, and/

or post-translational modifications play an important

role in FOXP2-mediated transcriptional regulation.

Results and Discussion

FOXP2 regulates multiple genes and pathways

Up to now, the complex FOXP2-mediated regulatory

mechanisms and its implications in biological func-

tions remain elusive. To determine possible regulatory

elements, which are controlled by FOXP2, we per-

formed RNA-Seq experiments with a human osteosar-

coma epithelial cell line (U2OS) overexpressing wild-

type human FOXP2 (Fig. 1A). Functional enrichment

analysis was performed for all differentially expressed

genes (DEGs). By comparing the Mock-transfected

cells as controls with cells overexpressing FOXP2, we

found 3054 genes to be significantly upregulated and

Fig. 1. Multiple genes and pathways such as Wnt signaling are regulated by FOXP2. (A) Western blot showing the overexpression of

FOXP2 in U2OS cells. Lane 1 is lysate of mock-transfected cells as control. Lane 2 is total cell protein lysate of FOXP2-overexpressing cells.

One representative blot out of three is shown (n = 3). (B) Volcano plot shows distribution of significantly up- (red dots) and downregulated

(blue dots) genes upon FOXP2 overexpression in U2OS cells. Genes with a fold change (FC) (log2) below 1 or above �1 are shown in black

as not significant. Not significantly change genes with a P-value > 0.05 are not shown. (C) Top 15 of significantly enriched KEGG pathways

of up- and downregulated genes upon FOXP2 overexpression in U2OS cells. Red dotted line indicates cutoff (P-value: 0.05). (D) Top 15 of

significantly enriched GO term biological functions of up- and downregulated genes upon FOXP2 overexpression in U2OS cells. Red dotted

line indicates cutoff (P-value: 0.05). (E) Schematic representation of the canonical Wnt/b-catenin pathway. ON and OFF mean Wnt pathway

active or inactive, respectively. (F) mRNA expression plot and heatmap of Wnt target genes in FOXP2-overexpressing cells compared with

control cells as log2 fold change, genes are represented in a range of red (upregulated) and blue (downregulated) (n = 5) (G) Validation of

selection of Wnt targets by qPCR. Data are shown as mean � SEM, n = 5.
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4555 genes to be downregulated (Fig. 1B). This is in

line with previous studies, demonstrating that FOXP2

can act both as transcriptional activator and as

repressor [8,9]. In order to obtain a functional

interpretation of the changed gene expression profiles,

we performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analy-

sis based on Fisher’s extract test and using DAVID

3.8 [29].

KEGG pathway analysis showed that the 3054

upregulated genes were enriched in 47 pathways, and

GO analysis revealed 233 biological functions. The

4555 downregulated genes were associated with 49

pathways (KEGG) and 378 biological functions (GO

term). The 15 most significant KEGG pathways of up-

and downregulated genes and biological functions are

shown in Fig. 1C,D, respectively. In line with a previ-

ous study using ChIP-chip [6], we find Axon guidance,

the Wnt and the MAPK signaling pathways to be reg-

ulated by FOXP2. Interestingly, our data show that

FOXP2 overexpression leads to yet unknown changes

in several additional pathways such as cell adhesion

molecules, tumor necrosis factor (TNF)-signaling, cal-

cium signaling, and Hippo signaling (Fig. 1C). Thus,

FOXP2 regulates a broad range of biological functions

and plays a crucial role in signal transduction [21].

The most downregulated pathway in our analysis is

Axon guidance, which is consistent with previous

results obtained from ChIP-chip [6] and highlights the

key role of FOXP2 in neural development and neuro-

transmission. Furthermore, we confirm the role of

FOXP2 in regulation of pathways important in brain

development and morphology, memory, and learning

[30], such as cell adhesion molecules, Hippo signaling,

and Wnt signaling [31–33]. The second most signifi-

cantly upregulated pathway is the TNF signaling path-

way followed by nuclear factor (NF)-kappa b
signaling pathway. TNF signaling activates the NF-

kappa b transcription factor [34] and the MAPK sig-

naling pathway and thereby regulates apoptosis

[35,36]. So far no direct link between TNF/NF-kappa

b signaling and FOXP2 has been found, although one

study found different expression levels of the FOXP2

gene in rheumatoid arthritis patients undergoing an

anti-TNF therapy [34]. Given that a link between

FOXP3 with NF-kappa b signaling has been reported

[37], our data suggest FOXP2 as an additional regula-

tor of TNF/NF-kappa b signaling in analogy to

FOXP3. Interestingly, pathways linked to cancer

appeared in both up- and downregulated DEGs. This

can be explained that FOXP2 has the capacity to

repress both pro-oncogenic and tumor suppressor

genes depending on the cancer [21].

FOXP2 mediates transcription of Wnt target

genes

Interestingly, Wnt signaling-related GO terms

appeared in five biological functions in the set of

downregulated genes, including ‘Wnt signaling path-

way’ (P-value: 0.0013), ‘negative regulation of Wnt sig-

naling pathway’ (P-value: 0.0083), ‘negative regulation

of canonical Wnt signaling pathway’ (P-value: 0.021),

‘Wnt signaling pathway, calcium modulating pathway’

(P-value: 0.033), and ‘positive regulation of Wnt sig-

naling pathway, planar cell polarity pathway’ (P-value:

0.058). Additionally, Wnt signaling appears in the 15

most downregulated KEGG pathways, indicating that

FOXP2 plays an important role in downregulating

genes related to the Wnt signaling pathway.

Wnt signaling operates in both vertebrates and

invertebrates [38] and acts as central regulatory ele-

ment in a remarkably diverse range of functions dur-

ing embryonic development and adult homeostasis

controlling cell fate specification, cell proliferation, and

cell migration [39–41]. Disruptions in this highly con-

served signaling pathway result in various diseases

including cancer and neurodegenerative diseases

[39,42–44]. In the inactive state of the Wnt signaling

pathway, a large multiprotein complex called the b-
catenin destruction complex traps and degrades the

coactivator b-catenin in the cytoplasm, preventing its

translocation to the nucleus (Fig. 1E). In the active

state, the destruction complex no longer degrades b-
catenin, leading to higher cytosolic levels, its nuclear

translocation, activation of the T-cell factor/lymphoid

enhancer-binding factor (TCF/LEF) family of tran-

scription factors, and transcription of Wnt target genes

[24–26].
To reveal the effect of FOXP2 on the Wnt signaling

pathway, we analyzed the expression of 14 known

Wnt target genes in our RNA-Seq data set and visual-

ized it via a heatmap (Fig. 1F). FOXP2 overexpression

significantly changes the expression of all observed

Wnt targets providing first evidence for FOXP2 func-

tion in the regulation of the Wnt pathway. To validate

Fig. 2. Sequence alignment of FOXP1 (UNIProtKB–Q9H334), FOXP2 (UNIProtKB–O15409), FOXP3 (UNIProtKB–Q9BZS1), and FOXP4

(UNIProtKB–Q8IVH2), using CLUSTAL OMEGA (EMBL-EBI, HINKSTON, UK). Blue color indicates conserveness of residues. Above alignment

structural organization of FOXP2 is shown for visualization of domains of FOXP2.

3264 The FEBS Journal 288 (2021) 3261–3284 ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

b-catenin regulates FOXP2 function G. Richter et al.

http://www.uniprot.org/uniprot/Q9H334
http://www.uniprot.org/uniprot/O15409
http://www.uniprot.org/uniprot/Q9BZS1
http://www.uniprot.org/uniprot/Q8IVH2


100 110 120 130 140 150 160 170 180 190

- - - Q P A L Q V P V S V AMM T PQ V I T PQQMQQ I L QQQ V L S PQQ L Q V L L QQQQ A L M L QQQQ L Q E F Y K KQQ EQ L Q L Q L L QQQ H AG - - - - - - - - - - - - - - - - - - - - -
- - - Q R P L Q V P V S V AMM T PQ V I T PQQMQQ I L QQQ V L S PQQ L Q A L L QQQQ A VM L QQQQ L Q E F Y K KQQ EQ L H L Q L L QQQQQQQQQQQQQQQQQQQQQQQQQQQ
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M P N P R PG K P S A P S - - - - - - - - - - - - - - -
KQ S A S A VQ V P V S V AMM S PQM L T PQQMQQ I - - - - - L S P PQ L Q A L L QQQQ A L M L Q - - Q L Q E Y Y K KQQ EQ L H L Q L L T QQQ AG K PQ - - - - - - - - - - - - - - - - - -

200 210 220 230 240 250 260 270 280 290

- - - - - - - - - - - - - - - - KQ P K - - - - - - - EQQQ V A T Q - - Q L A F QQQ L L QMQQ L Q - QQ H L L S L Q RQG L L T I Q PGQ P A L P L Q P L - - - - - - - - - - - - - AQ - GM I P
QQQQQQQQQQQQQ H PG KQ A K EQQQQQQQQQQ L A AQ - - Q L V F QQQ L L QMQQ L QQQQ H L L S L Q RQG L I S I P PGQ A A L P VQ S L - - - - - - - - - - - - - PQ AG L S P
- - - - - - - - L A L G P S PG A S P SWR A A - P K A S D L L G A RG PGG T F QG R - - - - - D L RGG A H A - - - S S S S L N PM P P SQ L Q L P T L P L VM V A P SG A R L G P L P H L Q A L L
- - - - - - - - - - - - - - - - - - - - - - - - - - - P K E A L G N K - - Q L A F QQQ L L QMQQ L Q - QQ H L L N L Q RQG L V S L Q P NQ A SG P L Q T L - - - - - - - - - - - - - PQ A A V C P

300 310 320 330 340 350 360 370 380 390

T E L QQ L WK E V T S A H T A E E T T G N N H - - - - - - S S L D L T T T C V S S S A P - - - - - S K T S L I M N - - - - - - - - - P H A S T NGQ L S V H T P K R E S L S H E E H P H S H P L YG H
A E I QQ L WK E V T G V H SM E D - NG I K H - - - - - - GG L D L T T N N S S S T T S - - S N T S K A S P P I T - - - - - - - - - H H S I V NGQ S S V L S A R R D S S S H E E T G A S H T L YG H
Q D R P H F M HQ L S T V D A H A R T P V L Q V H P L E S P AM I S L T P P T T A T G V F S L K A R PG L P PG I N V A S L EWV S R E P A L L C T F P N P S A P R K D S T L S A V PQ S S Y P L L A N
T D L PQ L WKG EG A PGQ P - A E D S V KQ - - - - - - EG L D L T G T A A T A T S F - - A A P P K V S P P L S - - - - - - - - - H H T L P NGQ P T V L T S R R D S S S H E E T PG S H P L YG H

400 410 420 430 440 450 460 470 480 490

G V C KWPG C E A V C E D F Q S F L K H L N S E H A L D D R S T AQ C R VQMQ V VQQ L E L Q L A K D K E R L Q AMM T H L H V K S T E P K A A PQ P L N L V S S V T L - - - - S K S A S E A S PQ
G V C KWPG C E S I C E D F GQ F L K H L N N E H A L D D R S T AQ C R VQMQ V VQQ L E I Q L S K E R E R L Q AMM T H L HM R P S E P K P S P K P L N L V S S V T M - - - - S K NM L E T S PQ
G V C KWPG C E K V F E E P E D F L K H CQ A D H L L D E KG R AQ C L L Q R EM VQ S L EQQ L V L E K E K L S AMQ A H L AG KM A L T K A S S V A S S D KG - - - - - - - - - - - - - - - - - -
G E C KWPG C E T L C E D L GQ F I K H L N T E H A L D D R S T AQ C R VQMQ V VQQ L E I Q L A K E S E R L Q AMM A H L HM R P S E P K P F SQ P L N P V PG S S S F S K V T V S A A D S F P D

500 510 520 530 540 550 560 570 580 590

S L P H T P T T P T A P L T P V T QG P S V I T T T SM H T VG P I R R R Y S D K Y N V P I S S A D I AQ NQ E F Y K N A E V R P P F T Y A S L I RQ A I L E S P E KQ L T L N E I Y NWF T RM F A Y
S L PQ T P T T P T A P V T P I T QG P S V I T P A S V P N VG A I R R R H S D K Y N I PM S S - E I A P N Y E F Y K N A D V R P P F T Y A T L I RQ A I M E S S D RQ L T L N E I Y SWF T R T F A Y
S C C I V A AG SQG P V V P AWSG P R E A P D - S L F - - - A V - R R H L WG S HG N S T F P E F L H NM D Y F K F H NM R P P F T Y A T L I RWA I L E A P E KQ R T L N E I Y HWF T RM F A F
G L V H P P T S A A A P V T P L R - - P PG L G S A S L HGGG P A R R R S S D K F C S P I S S - E L AQ N H E F Y K N A D V R P P F T Y A S L I RQ A I L E T P D RQ L T L N E I Y NWF T RM F A Y

600 610 620 630 640 650 660 670 680 690

F R R N A A T WK N A V R H N L S L H K C F V R V E N V KG A VWT V D E V E F Q K R R PQ K I SG N P S L I K NMQ S S H A Y C T P L N A A L Q A SM A E N S I P L Y T T A SMG N P T L G N - L A S
F R R N A A T WK N A V R H N L S L H K C F V R V E N V KG A VWT V D E V E YQ K R R SQ K I T G S P T L V K N I P T S L G YG A A L N A S L Q A A L A E S S L P L L S N PG L I N N A S SG - L L Q
F R N H P A T WK N A I R H N L S L H K C F V R V E S E KG A VWT V D E L E F R K K R SQ R P S R C S N P T PG P - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
F R R N T A T WK N A V R H N L S L H K C F V R V E N V KG A VWT V D E R E YQ K R R P P KM T G S P T L V K NM I SG L S YG A - L N A S YQ A A L A E S S F P L L N S PGM L N PG S A S S L L P

700 710 720 730 740 750 760 770

A I R E E L NG AM E H T N S N E S D S S PG R S PMQ A V H P V H V K E E P L D P E E A EG P L S L V T T A N H S P - D F D H D R D Y E D E P V N E DM E
A V H E D L NG S L D H I D S N - G N S S PG C S PQ P H I H S I H V K E E P V I A E D E D C PM S L V T T A N H S P - E L E D D R E I E E E P L S E D L E
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
L S H D D VG A P V E P L P S NG S S S P P R L S P PQ Y S HQ VQ V K E E P A E A E E D RQ PG P P L G A P N P S A SG P P E D R D L E E E L PG E E L S

FOXP1_HUMAN
FOXP2_HUMAN
FOXP3_HUMAN
FOXP4_HUMAN

FOXP1_HUMAN
FOXP2_HUMAN
FOXP3_HUMAN
FOXP4_HUMAN

FOXP1_HUMAN
FOXP2_HUMAN
FOXP3_HUMAN
FOXP4_HUMAN

FOXP1_HUMAN
FOXP2_HUMAN
FOXP3_HUMAN
FOXP4_HUMAN

FOXP1_HUMAN
FOXP2_HUMAN
FOXP3_HUMAN
FOXP4_HUMAN

FOXP1_HUMAN
FOXP2_HUMAN
FOXP3_HUMAN
FOXP4_HUMAN

FOXP1_HUMAN
FOXP2_HUMAN
FOXP3_HUMAN
FOXP4_HUMAN

FOXP1_HUMAN
FOXP2_HUMAN
FOXP3_HUMAN
FOXP4_HUMAN

10 20 30 40 50 60 70 80 90

MMQ E SG T E T K S NG S A I Q NG SGG S N H L L E CG - - G - - - - - - - - L R EG R S NG E T P A V D I G A A D L A H AQQQQQQ A L Q V A RQ L L L QQQQQQQ V SG L K S P K R N D K
MMQ E S A T E T I S N S SM NQ NGM S T L S SQ L D A - - - G - - - - - - - - S R DG R S SG D T S S - E V S T V E L L H - - L QQQQ A L Q A A RQ L L L Q - - - - QQ T SG L K S P K S S D K
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MM V E S A S E T I R S A P SGQ NG VG S L SGQ A DG S SGG A T G T T A SG T G R E V T T G A D S NG EM S P A E L L H - - F QQQQ A L Q V A RQ F L L Q - - - - - Q A SG L S S PG N N D S

Poly-glutamine region

Zinc finger Leucine zipper

Forkhead-domain

3265The FEBS Journal 288 (2021) 3261–3284 ª 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

G. Richter et al. b-catenin regulates FOXP2 function



the gene expression changes from the RNA-Seq data,

we performed qPCR of known Wnt targets (Fig. 1G).

The expression levels of the selected genes were in

agreement with the RNA-Seq data and thus validate

the effect of FOXP2 overexpression on the regulation

of the Wnt pathway.

Regulation of the Wnt pathway has been reported

for other members of the FOXP family [22,23]. The

human FOXP family consists of four members,

FOXP1, FOXP2, FOXP3, and FOXP4. On the molec-

ular level, FOXP1, FOXP3, and FOXP4 share many

similarities compared with FOXP2 (sequence align-

ment in Fig. 2). The most conserved domains among

FOXP proteins are the DNA-binding forkhead

domain (FH), the zinc finger, and the leucine zipper.

Using mass spectrometry, Walker et al. [22] showed

that FOXP1 forms a complex with b-catenin, tran-

scription factor 7-like 2 (TCF7L2, also known as

TCF4), and CREP-binding protein (CBP) and thereby

enhances expression of Wnt target genes such as

AXIN2 or NKD1. FOXP3 misregulation is linked to

Wnt pathway activation in lung cancer by promoting

tumor growth and metastasis [23]. FOXP3 was

reported to interact with b-catenin via coimmunopre-

cipitation and to be transcriptionally regulated by b-
catenin in DNA-microarray [45]. Until now, however,

it remains elusive whether FOXP2 is regulated by b-
catenin, and whether regulation of FOXP proteins is

due to a direct interaction with b-catenin.

b-catenin interacts with FOXP2 and regulates its

transcriptional activity

We therefore aimed to address first whether the

FOXP2-mediated regulation of the Wnt pathway is

mediated by an interaction of FOXP2 with b-catenin.
Indeed, we found that FOXP2 coimmunoprecipitates

with b-catenin at endogenous levels in HEK 293T cells

that endogenously express both proteins, using either

FOXP2 or b-catenin as bait (Fig. 3A). This indicates

that both proteins interact directly or indirectly like in

the case of FOXP1 [22] and FOXP3 [23] and that in

turn b-catenin could regulate FOXP2 activity through

this interaction.

To investigate the effect of b-catenin on FOXP2

transcriptional activity, we then performed RNA-Seq

analysis to determine changes in gene expression pro-

files upon b-catenin activation. In this approach, we

used U2OS cells, which express a cytosolic, transcrip-

tionally inactive form of b-catenin [46] but do not

express FOXP2 protein. Treatment of U2OS cells with

the Wnt/b-catenin pathway activator CHIR (99021;

Tocris, Bio-Techne Ltd., Abington, UK), a GSK3b
inhibitor, showed efficient translocation of b-catenin
into the nucleus, as reported previously [47] (Fig. 3B).

Using mock-transfected cells as control, we compared

the gene expression to cells which (a) overexpressed

FOXP2, (b) were treated only with CHIR, and (c)

overexpressed FOXP2 and were treated with CHIR.

Overlap of significantly DEGs within all conditions is

represented in Fig. 3C as Venn diagram. The top 5

most significant KEGG pathways for each group are

listed in Fig. 3D.

We then focused our data analysis on the set of

genes selectively and significantly affected by b-catenin
activation upon CHIR treatment in a context of

FOXP2 overexpression. Those genes highlight specific

pathways regulated by both FOXP2 and b-catenin and

represent the most populated group with 1913 signifi-

cantly upregulated genes. This confirms a mechanistic

correlation between FOXP2 and b-catenin in the regu-

lation of gene transcription. KEGG pathway and GO

term analysis revealed that those 1913 genes were

enriched in eight KEGG pathways (top 5 shown in

Fig. 3D) and 38 biological functions (top 15 in

Fig. 3E). Those pathways are associated with b-cate-
nin-dependent regulation of FOXP2 transcriptional

activity as they do not appear in the conditions of

FOXP2 overexpression only and in CHIR treatment

only.

Furthermore, we investigated the genes downregu-

lated under the experimental conditions (Fig. 3C) in

order to see the role of b-catenin in the FOXP2-depen-

dent inhibition of gene expression. The fractions with

Fig. 3. b-catenin interacts with FOXP2 and regulates its transcriptional activity. (A) Co-IP of endogenous FOXP2 and b-catenin from HEK-

293-T cells shows interaction. Control shows no unspecific binding of both proteins to the beads. One representative blot out of three is

shown (n = 3). (B) Western blot showing the cellular localization of b-catenin in U2OS cells upon treatment of reagent CHIR inducing

increased nuclear translocation of b-catenin. Lane 1 = control cells, 2 = CHIR 99021 (5 µM). Loading controls: nuclear fraction = Lamin,

cytosolic fraction = GAPDH. One representative blot out of three is shown (n = 3) (C) Venn diagram showing overlap of DEGs in FOXP2-

overexpressing cells, CHIR-treated cells, and FOXP2-overexpressing cells treated with CHIR. (D) Top 5 of significantly changes KEGG

pathways of up- and downregulated genes of each condition of DEGs. (E) Top 15 of significantly enriched GO term biological functions

of up- and downregulated genes upon FOXP2 overexpression plus CHIR treatment in U2OS cells. Red dotted line indicates cutoff

(P-value: 0.05).
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most up and downregulated genes overlap between the

FOXP2 only and FOXP2 plus CHIR conditions, sug-

gesting regulation of FOXP2 function independent of

b-catenin/CHIR. The dataset being unique in the con-

dition with FOXP2 overexpression plus CHIR treat-

ment contained 833 genes, which were distributed in

eight pathways (KEGG) (top 5 in Fig. 3D) and 36

biological processes (GO term) (top 15 in Fig. 3E),

suggesting that those pathways and biological pro-

cesses are only affected by combined FOXP2 overex-

pression and CHIR treatment and thus give a clue

about a regulatory effect of b-catenin on FOXP2. The

expression of Wnt targets in the conditions ‘Control’,

‘FOXP2 overexpression’ (FOXP2), ‘CHIR treatment’

(CHIR), and ‘FOXP2 overexpression with CHIR

treatment’ (FOXP2 + CHIR) is shown in Fig. 4A as

heatmap. BMP4, AXIN2, CCND1, APC2, and

RUNX2 show a different expression pattern in

FOXP2 + CHIR than FOXP2 and CHIR alone, indi-

cating that those genes are indeed affected by the

effect of CHIR on FOXP2 activity. Validation of our

RNA-Seq data using qPCR on a list of Wnt targets

confirmed the effect of CHIR on FOXP2 activity

(Fig. 4B).

Moreover, our RNA-Seq data show that b-catenin
significantly increases the number of genes upregulated

by FOXP2, whereas the number of downregulated

genes remains the same compared with FOXP2 over-

expression only (Fig. 4C). These results indicate that

the FOXP2 repressor function is counteracted by b-
catenin, which would happen under conditions of Wnt

pathway activation.

To further substantiate the potential link between

FOXP2 and Wnt signaling, we carried our qPCR anal-

ysis in a different cell line (HEK293T) and using

FOXP2 silencing instead of overexpression. Using

three different Wnt pathway activators, we reveal that

a set of Wnt target genes are regulated in a FOXP2-

dependent manner. Moreover, we obtained consistent

results for all three Wnt pathway activators tested,

including different concentrations of WNT3a condi-

tioned medium, the Wnt Surrogate-Fc fusion protein,

and CHIR (Fig. 4D).

Summarizing, our RNA-Seq and qPCR data show

that Wnt signaling, resulting in increased nuclear levels

of b-catenin, regulates expression of a set of target

genes in a FOXP2-dependent manner.

Multiple regions in FOXP2 bind to b-catenin in

cells and in vitro

Interactions of b-catenin with FOXP1 [22] and FOXP3

[23] have been reported recently. However, the molecu-

lar details of the interaction of b-catenin with FOXP

proteins remain elusive. In order to identify the bind-

ing regions of b-catenin on FOXP2, we generated sev-

eral FOXP2 constructs. FOXP2 consists of four

structured domains which are connected with stretches

with a high degree of predicted disorder (Fig. 5A). N-

terminally, FOXP2 contains a poly-Q region, which

generally can function as functional modulator in tran-

scription factors [48]. The folded zinc finger and leu-

cine zipper domains have been shown to mediate

protein–DNA interactions and dimerization of FOXP

proteins, respectively [49]. The forkhead domain acts

as DNA-binding domain and is highly conserved in

the FOXP family [1] (Fig. 2).

We designed our constructs by decreasing the pro-

tein size progressively regarding its functional domains

and regions (Fig. 5B). Respective FOXP2 proteins

were tested on their interaction with endogenous b-
catenin by coimmunoprecipitation experiments. For

this set-up, we used U2OS cells, which contain only

endogenous b-catenin and no FOXP2, thus allowing

us to examine b-catenin binding to exogenous FOXP2.

We overexpressed different FOXP2 constructs in com-

parable amounts and performed the coimmunoprecipi-

tation using either FOXP2 or b-catenin as bait. In line

with FOXP1 and FOXP3, full-length FOXP2 binds to

b-catenin (Fig. 6A). Deletion of the poly-Q region

Fig. 4. FOXP2 modulates the Wnt pathway. (A) Heatmap of Wnt target genes in FOXP2-overexpressing cells (FOXP2), CHIR-treated cells (CHIR),

and FOXP2-overexpressing cells treated with CHIR (FOXP2 + CHIR), genes are represented in a range of red (upregulated) and blue

(downregulated) (n = 5). (B) Validation of selection of Wnt targets by qPCR. Data represent the mean � SEM, n = 5, two-way ANOVA (Tukey’s

multiple comparisons test) was performed. P > 0.05 = NS; P < 0.05 = *; P < 0.01 = **; P < 0.001 = ***; P < 0.0001 = ****. (C) Number of up-

and downregulated genes in each condition compared with control cells. (D) FOXP2 siRNA knockdown efficiency validation. All of the four

preselected FOXP2 siRNAs could decrease FOXP2 protein expression significantly (n = 1). ‘siFOXP2_MIX’ is a pool of the four siRNAs. RT–qPCR

analysis of CCND1, TIAM1, JUN, BMP4, CD44, and LEF1 mRNA expression upon FOXP2 knockdown and b-catenin activation. Housekeeping

gene HPRT1 was used as reference. siRNA FOXP2_13 was used for FOXP2 knockdown. WNT3a condition medium, GSK inhibitor CHIR, and

WNT surrogate were used to active b-catenin. Data represent the mean � SEM, n = 3 or 4, two-way ANOVA (Tukey’s multiple comparisons

test) was performed. P > 0.05 = NS; P < 0.05 = *; P < 0.01 = **; P < 0.001 = ***; P < 0.0001 = ****.
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showed similar amounts of coimmunoprecipitated

b-catenin compared with the full-length construct,

indicating that this region is not involved in FOXP2

binding. In contrast, further deletion of the potentially

intrinsically disordered region (IDR) from residue 247

to 341 leads to decreased amounts of bound b-catenin,
suggesting that this region is involved in b-catenin
binding. Further deletion of the region harboring the

zinc finger and leucine zipper (residue 342–503) did

not alter the amount of bound b-catenin, suggesting

that the C-terminal region containing the forkhead

domain and a C-terminal IDR is sufficient for b-cate-
nin binding and constitutes a second binding site.

Taken together, those results indicate that both, the

FOXP2FH domain and the disordered region, are

involved in b-catenin binding.

In order to further validate the direct interaction

between b-catenin and FOXP2, the expressed and

purified FOXP2 proteins were tested using nuclear

magnetic resonance (NMR) spectroscopy. Both

FOXP2 (80 kDa) and b-catenin (85 kDa) full-length

proteins are challenging for NMR spectroscopy

because of severe line broadening and spectral overlap.

Thus, we designed two shorter FOXP2 constructs

based on our coimmunoprecipitation experiments: (a)

the IDR (FOXP2IDR, residues 247–341) and (b) the

forkhead domain (FOXP2FH, residues 504–594)
(Fig. 5B).

In line with the Co-IP data, addition of increasing

amounts of unlabeled full-length b-catenin to 15N-

labeled FOXP2FH resulted in a progressive disappear-

ance of a set of 1H,15N cross-peaks indicating direct

interaction between FOXP2FH and b-catenin (Fig. 6B).

To identify the b-catenin regions involved in the inter-

action with FOXP2FH, we carried out additional bind-

ing studies.

b-catenin is composed of multiple domains that

could be involved in FOXP2 binding. In addition to

the folded core region, which is composed of 12 copies

of a 42 amino acid sequence motif known as an arma-

dillo repeat, the N- and C-terminal regions are intrinsi-

cally disordered [50]. Both, the armadillo repeat region

and the disordered termini, have been reported to bind

interaction partners [51]. To identify the b-catenin
domain(s) involved in the interaction with the FOXP2,

we first recorded 1H,15N HSQC NMR spectra of 15N-

labeled FOXP2FH free and in the presence of unla-

beled b-catenin N terminus (b-catenin1–140), C termi-

nus (b-catenin666–781), or a construct containing the N-

terminal part of the armadillo region (residues 141–
304). Although no binding could be observed for b-
catenin141–304 (Fig. 6D), both disordered termini

showed binding, as indicated by increasing chemical

shift perturbations upon addition of increasing

amounts of the unlabeled binding partners (Fig. 6C,

E). Inspection of the affected residues revealed that

both disordered b-catenin regions bind similar regions

within FOXP2FH, close, but not overlapping with the

DNA-binding interface, involving residues located

within FOXP2FH a-helices 1, 2, 3, and 4 (Fig. 6F,G).
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Fig. 5. Structural organization of FOXP2 and b-catenin. (A) Disorder prediction using PONDR� (www.pondr.com) for FOXP2 indicating the
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To reveal the molecular details of b-catenin binding

to the FOXP2IDR, we first characterized the structural

features of this region with high degree of predicted

disorder. In line with the disorder prediction, the low

dispersion of cross-peaks in the 1H,15N HSQC NMR

spectrum, NMR relaxation data, and the NMR
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secondary chemical shifts confirm that FOXP2IDR is

highly disordered (Fig. 7A,B). Strikingly, a short

region with increased a-helical propensity was detected

from amino acids 264 to 272, as indicated by NMR

secondary chemical shifts (Fig. 7B, upper panel),

decreased flexibility (Fig. 7B, lower panel), and

decreased disorder (Fig. 5A). Addition of increasing

amounts of unlabeled b-catenin to 15N-labeled
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FOXP2IDR resulted in a progressive disappearance of

a set of 1H,15N cross-peaks indicating direct interac-

tion between the FOXP2IDR and b-catenin (Fig. 7A).

Strikingly, b-catenin binds to the short a-helical region
(residues 262–275). By comparing the amino acid

sequence of this FOXP2 region with the sequence of

the known b-catenin-binding motif of the Wnt signal-

ing transcription factors TCF7L1 and TCF7L2 (also

known as TCF3 and TCF4), we identified similar pat-

terns of hydrophobic and charged residues, with the

consensus [D/E]ΦX2ΦX3Φ, where Φ is a hydrophobic

residue and X2/X3 is a 2/3-residues spacing between

the hydrophobic residues (Fig. 7C). This indicates that

the FOXP2IDR binds to b-catenin in a similar orienta-

tion as TCF7L1 and TCF7L2. This particular binding

site was further validated using different b-catenin con-

structs and a competition experiment (see below).

To further characterize binding between FOXP2IDR

and b-catenin, we recorded 1H,15N HSQC NMR spec-

tra of 15N-labeled FOXP2IDR free and upon addition

of increasing amounts of unlabeled b-catenin141–304. A
progressive increase was observed in chemical shift

perturbations of a set of FOXP2IDR 1H,15N cross-

peaks, proving the direct interaction between FOX-

P2IDR and the N-terminal part of the armadillo

domain of b-catenin (Fig. 7D). To reveal the site in b-
catenin recognizing the FOXP2IDR, and to comple-

ment our structural comparison of FOXP2 and

TCF7L1/TCF7L2 binding (see above), we carried out

competition experiments with the known b-catenin-
binding partner StAx (stapled Axin). StAx is a short-

stapled peptide derived from the native b-catenin inter-

action partner tumor suppressor protein Axin-1 and

has been reported to bind the N-terminal part of the

b-catenin armadillo domain [52]. In line with a compe-

tition of StAx and FOXP2IDR, addition of increasing

amounts of StAx to a preformed complex of 15N-la-

beled FOXP2IDR and unlabeled b-catenin141–304 leads

to a subsequent recovery of FOXP2IDR signal intensity

(Fig. 7E,F for reference titrations).

Taken together, this set of experiments suggests

that both disordered b-catenin regions are involved in

the regulation of FOXP2 activity and specificity to

DNA. Both N- and C-terminal b-catenin disordered

regions have been proposed to act as transactivation

domains and to bind other proteins, such as a-cate-
nin and DVL-1 [53,54]. Thus, we propose that via

these interactions additional cofactors regulating

transcriptional activity are recruited to FOXP2 via

b-catenin.
Summarizing, NMR chemical shift titrations are in

line with our Co-IP data and confirm the existence of

two distinct b-catenin-binding sites within FOXP2.

Both interaction sites are located on different positions

of the protein, which leads to the idea that the IDR

might play a crucial role in the regulation of FOXP2

transcriptional activity. It is likely to assume be that

this IDR binds to cofactors, such as b-catenin, and

facilitates the binding of those to the forkhead

domain. Another possibility might be, that the IDR,

eventually bound to cofactors, competes with other

proteins for binding to the forkhead domain, in turn

regulating FOXP2 activity by affecting the DNA

affinity.

We could show that b-catenin binds to FOXP2IDR

residues harboring a transiently folded a-helix. IDRs

are known to play crucial roles in protein–protein
interactions. Due to their flexibility, they can adapt to

many structurally different interaction partners and

form low-affinity complexes, which are important in

signaling processes [55]. This novel secondary structure

in FOXP2 might constitute a broad interaction site for

various interaction partners. Interestingly, the tran-

siently folded a-helix is conserved in FOXP1 and

FOXP4 (Fig. 2), indicating a broader function within

the FOXP family. Thus, the IDR might play a crucial

role in the regulation of FOXP2 activity, as it could

enhance or inhibit binding to DNA and other interac-

tion partners and cofactors.

Moreover, the IDR harbors an interesting feature as

it contains the two amino acids which differ between

chimpanzee and humans [2]. These residues might be

crucial for b-catenin binding and therefore for evolu-

tionary development of speech in humans and chim-

panzee.

Deletion of the disordered b-catenin-binding site

alters FOXP2 transcriptional activity in the

presence and absence of b-catenin

In order to elucidate the role of the FOXP2IDR in

transcriptional regulation of FOXP2 target genes

in the absence or presence of b-catenin, RNA-Seq

analysis was performed. To this end, we designed

a FOXP2 full-length construct lacking the a-helical
b-catenin-binding region (residue 264–272,
further called FOXP2Dhelix) for mammalian cell

expression.

To analyze the effect of FOXP2 helix deletion in the

absence of nuclear b-catenin, we compared the FOXP2

and FOXP2Dhelix RNA-Seq data. Strikingly, we found

that 30% of the downregulated and 33% of upregu-

lated genes differ between both conditions (Fig. 8A).

Therein, 618 of upregulated genes were unique for

FOXP2. The most significant KEGG pathways and

biological functions are listed in Fig. 8B and C,
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respectively. Interestingly, one of the biological pro-

cesses associated with the most upregulated genes in

this group was ‘signal transduction’ (36 genes, P-value:

9.2 9 10�4), which supports the key role of this a-heli-
cal region in FOXP2 regulation. Out of a total of 3656

upregulated genes, 602 were unique for FOXP2Dhelix.

From a total of 5012 genes, which were downregu-

lated, 3543 genes were similar in both conditions and

457 unique for FOXP2Dhelix (Fig. 8A). Moreover, 602

upregulated and 457 downregulated genes were unique

for FOXP2Dhelix. Wnt genes were slightly affected by

helix deletion (Fig. 8D). In order to validate our

RNA-Seq data, qPCR was used on a list of Wnt tar-

gets and confirmed the effect of the a-helix on FOXP2

activity (Fig. 8E). Our results indicate that the a-heli-
cal region is a key motif for the regulation of FOXP2

activity as the variant lacking this motif shows various

differentially regulated genes. Mechanistically, this

region might function as interaction site for various

cofactors, including b-catenin, thereby regulating

FOXP2 transcriptional activity.

To analyze the effect of helix deletion in the

presence of nuclear b-catenin, we treated a part

of the U2OS cells overexpressing FOXP2Dhelix with

the Wnt/b-catenin pathway activator CHIR

(FOXP2Dhelix + CHIR) and compared the correspond-

ing RNA-Seq data to those obtained under conditions

only expressing FOXP2Dhelix and for cells only treated

with CHIR (Fig. 9A). We found 770 of a total gene

set of 5849 upregulated genes to be similar in all

data sets. Beside this, 1655 genes were unique to

‘FOXP2Dhelix + CHIR’, indicating that these genes

are dependent on the interaction of FOXP2Dhelix with

b-catenin or the effect of the lacking region with

a-helical propensity on the regulation of FOXP2 by
b-catenin, as those genes do not change upon FOXP2Dhelix

overexpression or CHIR treatment only. KEGG analysis
(Fig. 9B) and GO term analysis (Fig. 9C) revealed that
‘FOXP2Dhelix’ is involved in different pathways compared
with ‘FOXP2D-helix + CHIR’. Moreover, the number of
DEGs reveals a strong effect of b-catenin on FOXP2
activity, as the number of upregulated genes increased by
61% between ‘FOXP2’ and ‘FOXP2 + CHIR’ and by
50% between ‘FOXP2Dhelix’ and ‘FOXP2Dhelix + CHIR’

(Fig. 9D). These data emphasize that the a-helical region
is important in the regulation of FOXP2 activity, for
example, by recruiting transcriptional cofactors, including
b-catenin, to FOXP2. By comparing the DEGs between
‘FOXP2 + CHIR’ and ‘FOXP2Dhelix + CHIR’, we could
find various DEGs which differ between both conditions
(Fig. 9E). Thus, b-catenin seems to have an enormous
impact on the regulation of FOXP2 as we observed many
changes between the condition ‘FOXP2 + CHIR’ treat-

ment and ‘FOXP2Dhelix + CHIR’. However, it is worth
mentioning that a b-catenin-independent/GSK inhibition/
helix deletion-dependent regulatory processes cannot be
excluded. This supports our hypothesis that the IDR, con-
taining the a-helical region indeed affects the interaction
to cofactors such as b-catenin. The effect of all investi-
gated conditions on selected Wnt targets is displayed in a
heatmap in Fig. 9F. As we observed only minor changes
in Wnt-related genes between FOXP2 + CHIR and
FOXP2D-helix + CHIR, we analyzed the changes using
qPCR and confirmed the impact of the a-helical region on
FOXP2-dependent regulation of CCND1, JUN, and

TIAM1 (Fig. 9G). Moreover, the top 10 DEGs of

each condition compared with the control condition

indicates different regulations of non-Wnt genes upon

deletion of the region with a-helical propensity

(Table 1).

In this study, we found the Wnt signaling pathway

to be regulated by FOXP2 and discovered a direct

interaction between b-catenin and FOXP2 for the

first time. The Wnt signaling pathway was studied

extensively in correlation with embryonal and cancer

development. It has already been shown that a few

FOX proteins are related to the Wnt signaling path-

way and that some of them (i.e., FOXM1 [56],

FOXO3a [57], FOXO4 [28]) interact with a crucial

player of this pathway, the transcriptional coactiva-

tor b-catenin.
We could map two interaction sites of b-catenin

to FOXP2. Both binding sites seem to be important

for FOXP2 activity as we observed several changes

in regulated pathways if the a-helical-binding site

within the FOXP2IDR was lacking. Interestingly, this

region is conserved in FOXP1 and FOXP4, indicat-

ing an important interaction site for other proteins

(Fig. 2).

Thus, we propose that the a-helix in the FOXP2

intrinsically disordered region acts as a recruiter for

cofactors (Fig. 10A). Cofactors play crucial roles in

signal transduction and regulation of transcription fac-

tors [58,59]. This regulatory element seems to be

important for b-catenin-dependent regulation of

FOXP2, as we found various genes differentially chan-

ged upon Wnt/b-catenin pathway activation with

CHIR. We show for the first time that b-catenin
indeed regulates a member of the FOXP protein fam-

ily via direct interaction with multiple regions. Our

data display the first functional explanation of how b-
catenin regulates FOXP proteins and the first proof of

direct interactions between both proteins (model in

Fig. 10B). This sets the mechanistic base for future

studies on the involvement of the FOXP2/b-catenin
axis in embryonal development.
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Materials and methods

Plasmids and mutagenesis

Plasmids for human FOXP2 full-length, human FOXP2IDR,

human b-catenin full-length, human b-catenin1–141, human

b-catenin141–304, and human b-catenin666–781 optimized for

Escherichia coli expression were purchased from Genscript

(Piscataway, NJ, USA). Obtained plasmids contained a

tobacco etch virus (TEV)-cleavage site following a N-termi-

nal His6- and a protein A-tag for purification. Plasmids con-

taining the FOXP2 full-length optimized for mammalian cell

expression were kindly provided from W. Enard (Ludwig

Maximilians University Munich, Germany). Truncated vari-

ants of FOXP2 were produced by site-directed mutagenesis

following the protocol described by Liu and Naismith [60].

The primers were purchased on IDT (Integrated DNA Tech-

nology, Inc., Freising, Germany) and used for mutagenesis

(listed in Table 2).

Recombinant protein expression and purification

For the expression of recombinant unlabeled, 15N or
15N-13C labeled protein, the different bacterial expression

vectors were transformed into E. coli DE3 strains. Then, a

single colony was inoculated in lysogeny broth (LB) med-

ium (20 mL) with kanamycin (25 mg�L�1) and cultured at

37 °C until the OD600 reached a value between 2 and 3.

From this, for unlabeled protein expression, 10 mL was

added to 1 L of LB medium with kanamycin (25 mg�L�1).

For isotope-labeled protein, 1 mL was added to 1 L of 15N

or 15N-13C containing M9 minimal medium, in which 15N-

NH4Cl (1 g�L�1) and 13C-glucose (2 g�L�1) for 15N-13C

labeled protein and 15N-NH4Cl (1 g�L�1) and 12C-glucose

(4 g�L�1) for 15N labeled protein were the only sources of

nitrogen and carbon for NMR isotope labeling purposes

(Cambridge Isotope Laboratories, Inc, Tewksbury, MA,

USA). Cultures were grown at 37 °C until an OD600 of

0.8–1 was reached and then induced with 0.5 mM Isopropyl

b-D-1-thiogalactopyranoside (IPTG) followed by protein

expression for 16 h at 20 °C. Cells containing disordered

protein constructs such as FOXP2IDR, b-catenin1–140, and

b-catenin666–781 were harvested and sonicated in denaturat-

ing lysis buffer (50 mM Tris/HCl pH 7.5, 150 mM NaCl,

20 mM Imidazole, 6 M urea), whereas folded protein con-

structs such as FOXP2FH, b-catenin full-length, and

b-catenin141–304 were harvested and sonicated in nondenatu-

rating lysis buffer (50 mM Tris/HCl pH 7.5, 150 mM NaCl,

20 mM Imidazole, 2 mM Tris(2-carboxyethyl) phosphine

(TCEP), 20% glycerol). The cell lysate was separated in

soluble and insoluble fraction by centrifugation of the

lysate at 33 745 g for 30 min at 4 °C. The soluble His6-

tagged protein was purified using Ni-NTA agarose beads

(Qiagen, Vienna, Austria), and the His6 tagged protein

A-tag was cleaved by TEV protease (5 µg�mL�1) incuba-

tion over night at 4 °C. Next day, the untagged protein

was desalted in Tris-containing buffer (50 mM Tris/HCl pH

7.5, 150 mM NaCl, 20 mM Imidazole, 2 mM TCEP) to

remove excessive imidazole from the elution buffer and

then separated from the cleaved His6 protein A-tag per-

forming a second affinity purification using Ni-NTA agar-

ose beads. Disordered protein constructs such as

FOXP2IDR, b-catenin1–140, and b-catenin666–781 underwent

heat shocking at 90 °C for 15 min to minimize protease-in-

duced degradation. A final exclusion chromatography

purification step was performed in the buffer of interest on

a gel filtration column (Superdex 75; GE Healthcare,

Vienna, Austria). Protein concentrations were estimated

from their absorbance at 280 nm, assuming that the e value

at 280 nm was equal to the theoretical e value. The StAx-

31 peptide was derived from Boehringer Ingelheim RCV

GmbH & CO KG (Vienna, Austria) and synthesized at

JPT Peptide Technologies (Berlin, Germany) according to

Grossmann et al. [52].

Nuclear magnetic resonance spectroscopy

For protein–protein interaction experiments, 15N labeled

FOXP2IDR and FOXP2FH samples at concentrations of 50–
100 µM were prepared in either 50 mM Na2HPO4/NaH2PO4

pH 6.5, 150 mM NaCl, 2 mM b-mercaptoethanol (BME)

(Fig. 7D,E) or 50 mM Tris/HCl pH 7.5 (Figs 6B–E and 7A),

Fig. 9. Deletion of the disordered b-catenin-binding site alters FOXP2 transcriptional activity in the presence of b-catenin. (A) Venn diagram

indicating overlaps of differentially expressed genes in cells either overexpressing FOXP2D-helix, treated with CHIR and overexpressing

FOXP2D-helix plus CHIR treatment. (B) Top 5 of significantly changes KEGG pathways of up- and downregulated genes of each condition of

differentially expressed genes. (C) Top 15 of significantly enriched GO term biological functions of up- and downregulated genes upon

FOXP2D-helix overexpression plus CHIR treatment in U2OS cells. Red dotted line indicates cutoff (P-value: 0.05). (D) Number of up- and

downregulated genes in each condition compared with control cells. (E) Venn Diagram showing overlaps between conditions

‘FOXP2 + CHIR’ and ‘FOXP2D-helix + CHIR’. (F) Heatmap of Wnt target genes in FOXP2-overexpressing cells (FOXP2), CHIR-treated cells

(CHIR), FOXP2D-helix-overexpressing cells (FOXP2D-helix), FOXP2-expressing cells with CHIR treatment (FOXP2 + CHIR), and FOXP2D-helix-

overexpressing cells with CHIR treatment (FOXP2D-helix + CHIR), genes are represented in a range of red (upregulated) and blue

(downregulated) (n = 5). (G) Validation of selection of Wnt targets by qPCR. Data represent the mean � SEM, n = 5, two-way ANOVA

(Tukey’s multiple comparisons test) was performed. P > 0.05 = NS; P < 0.05 = *; P < 0.01 = **; P < 0.001 = ***; P < 0.0001 = ****.
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150 mM NaCl and 2 mM TCEP, and 10% D2O for the lock

signal. Titrations containing b-catenin full-length were

recorded in buffer with pH 7.5, as precipitations occurred at

pH 6.5. NMR spectra of FOXP2IDR recorded at pH 7.5

show fewer signals due to different proton exchanges. There-

fore, titrations containing 15N labeled FOXP2IDR and b-
catenin141–305 (soluble at pH 6.5) were recorded in buffer

with pH 6.5. After recording a 15N HSQC reference spec-

trum, increasing amounts of the protein partner were added

stepwise and 15N HSQC spectra recorded. If samples were

diluted, intensities were normalized by scaling the intensities

according to the dilution factor.

For backbone assignment experiments 15N 13C labeled

FOXP2IDR and FOXP2FH and samples at concentrations

of 400–600 µM were prepared in 50 mM Na2HPO4/

NaH2PO4 pH 6.5, 150 mM NaCl, 2 mM BME, and 10%

D2O for the lock signal. Triple resonance backbone assign-

ment experiments included the following: HNCACB, HN

(CO)CACB, HNCO, and HN(CA)CO.

All NMR experiments were performed on a 700 MHz

Bruker Avance III NMR spectrometer equipped with a

TCI cryoprobe (Bruker Biospin, Rheinstetten, Germany)

and a 600 MHz Bruker Avance Neo NMR spectrometer

equipped with a TXI 600S3 probe head at 298 K (Bruker

Biospin, Rheinstetten, Germany). Spectra were processed

using NMRpipe [61] and NMR resonances assigned using

CCP NMR [62]. NMR chemical shifts have been submitted

to the Biological Magnetic Resonance Bank (BMRB) under

the accession numbers BMRB 50427 (FOXP2IDR) and

BMRB 50426 (FOXP2FH).

Table 2. Primer sequences used for site-directed mutagenesis.

Constructs Primer sequences (50–30) Optimized for Vectors

FOXP2FH Fw1: CGTCCGCCGTTCACCTAC
Rv1: GGATCCTTATTCCAGGTCTTCTG
Fw2: CCCGACGCTGtaaAAAAACATTCC
Rv2: GAGCCGGTAATTTTCTGAC

E. coli cells pETM11

FOXP2

Construct247–715
Fw: GGCCAGGCAGCACTTCCT
Rv: TTAGGTTTCACAAGTCTCGAGTCATTC

Mammalian cells pCMV 3Tag

FOXP2

Construct342–715
Fw: TCTCTATGGCCATGGAGTTT
Rv: AAGCCGAATTCCACCACA

Mammalian cells pCMV 3Tag

FOXP2

Construct504–715
Fw: TCAGACCTCCATTTACTTATGC
Rv: AGCCGAATTCCACCACAC

Mammalian cells pCMV 3Tag

FOXP2Dhelix Fw: GTGACTGGAGTTCACAGTATG
Rv: AGGACTTAAGCCAGCTTG

Mammalian cells pCMV 3Tag
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Fig. 10. Model of FOXP2 function in signal

transduction. (A) Schematic model of

possible molecular regulatory processes

within FOXP2 including the role of the

region with a-helical propensity and b-

catenin as cofactor. (B) Schematic overview

of the effect of CHIR treatment on Wnt

signaling pathway and FOXP2 transcriptional

activity.
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Cell culture and transfection

For the Co-IP with endogenous FOXP2 and b-catenin,
HEK 293T cells were maintained at 37 °C under 5% CO2

in a-MEM medium (Invitrogen) supplemented with 5%

(v/v) FCS (Gibco), 100 IU�mL�1 penicillin, and 100 µg�mL�1

streptomycin.

U2OS cells were maintained at 37 °C under 5% CO2 in

a-MEM medium (Invitrogen, Lofer, Austria) supplemented

with 5% (v/v) FCS (Gibco, Thermo Fisher Scientific,

Vienna, Austria), 100 IU�mL�1 penicillin, and 100 µg�mL�1

streptomycin. In a six-well plate, approx. 80% confluent

U2OS cells were transfected with various FOXP2 construct

plasmids (500 ng) in equal amount using Lipofectamine

3000 (Thermo Fisher Scientific, Vienna, Austria) for 48 h.

In case of CHIR treatment, 5 µM CHIR 99021 was added

in the medium 72 h before transfection with FOXP2 con-

struct plasmids.

For the qPCR experiments, HEK 293T cells were cul-

tured in DMEM supplemented with 100 U�mL�1 penicillin,

100 mg�mL�1 streptomycin (Lonza, Basel, Switzerland),

and 10% FBS (Lonza, Basel, Switzerland). For FOXP2

knockdown, siRNAs (FlexiTube GeneSolution GS93986

for FOXP2; Qiagen, Vienna, Austria) were transfected to

HEK293T cell with Lipofectamine RNAiMAX (Thermo

Fisher Scientific, Vienna, Austria) according to manufac-

turer’s instruction. Customized siRNA (Dharmacon, THP

Medical Products GmbH, Vienna, Austria, UAGCGA-

CUAAACACAUCAA) was used as a control. For western

blot, cells were collected two days after transfection. For

RT–qPCR, GSK inhibitor CHIR99021 (final concentration

3 mM) (Sigma-Aldrich, Vienna, Austria), WNT3a condi-

tioned medium (20% or 50%, v/v) (home-made), or Wnt

Surrogate-Fc fusion protein (U-protein express) was added

to the cells one day after transfection; cells were collected

two days after transfection.

Coimmunoprecipitation

Cells were lysed in lysis buffer [50 mM HEPES, 150 mM

NaCl, 1 mM EDTA, 10 mM Na4P2O7, 2 mM Na3VO4,

10 mM NaF, 1% (v/v) Triton X-100, 10% (v/v) glycerol, pH

7.4] containing protease and phosphatase inhibitors

(Thermo Fisher Scientific, Vienna, Austria) for 10 min on

ice. Cell homogenates were centrifuged at 11292 g. (4 °C,
10 min) to pellet debris. Lysates containing equal protein

concentrations (1 mg) were precleaned by mixing 20 µL of

protein

A/G plus agarose (Thermo Scientific) for 2 h at 4 °C fol-

lowed by centrifugation at 2823 g. (4 °C, 5 min) to separate

beads. Supernatants were mixed with 1 µg anti-b-catenin or

anti-FOXP2 (Cell Signaling, Leiden, The Netherlands -

5337) antibody (BD Biosciences, San Jose, CA, USA -

610154) for 2 h at 4 °C. The immune complexes were pre-

cipitated by mixing 20 µL of protein A/G plus agarose

beads overnight at 4 °C. Beads were separated by centrifu-

gation at 10 000 r.p.m. (4 °C, 1 min). After washing three

times with a buffer [50 mM HEPES, 300 mM NaCl, 5 mM

EDTA, 50 mM NaF, 1% (v/v) Triton X-100, 50 mM Tris/

HCl, 0.02% (w/v) NaN3, pH 7.4], beads were resuspended

in 40 µL of 4 9 NuPAGE LDS sample buffer. Western blot

analysis was performed to detect immunoprecipitated b-
catenin protein as well as coimmunoprecipitated FOXP2

protein and vice versa, as control beads with lysate and

without anti-FOXP2/anti-b-catenin antibody were used in

order to detect unspecific binding of FOXP2/b-catenin to

the beads.

Western blot analysis

Coimmunoprecipitated proteins (in 4 9 NuPAGE LDS

sample buffer) or cell lysates were mixed with 4 µL sample

reducing agent (Invitrogen) and heated (70 °C, 10 min). Pro-

teins were separated by electrophoresis on a NuPAGE 4–
12% Bis-Tris gel and transferred to nitrocellulose membranes

(Invitrogen). Membranes were blocked with 5% (w/v) nonfat

milk in TBST (Tris-buffered saline containing Tween 20)

(25 °C, 2 h) and incubated with anti-b-catenin (BD bio-

sciences-610154, 1 : 2000) or anti-FOXP2 (Cell Signaling-

5337, 1 : 1000) antibody [diluted in 5% (w/v) BSA-TBST,

overnight at 4 °C]. After washing, membranes were incu-

bated with HRP-conjugated goat anti-mouse IgG

(1 : 100 000 Biomol-8101102) or goat anti-rabbit IgG

(1 : 200 000 Biomol-6293) (25 °C, 2 h). Immunoreactive

bands were visualized using Immobilon Western Chemilumi-

nescent HRP substrate developed by Bio-Rad ChemiDoc

MP Imaging System (Millipore, Billerica, MA, USA).

FOXP2 knockdown cells were lysed with sample buffer

(0.2% SDS, 10% glycerol, 0.2% 2-mercaptoethanol, 60 mM

Tris pH 6.8). Samples were subjected to SDS/PAGE and

transferred to PVDF membrane (Merck, Vienna, Austria).

Anti-FOXP2 primary antibody (AB-16046; Abcam, Cam-

bridge, UK) and antiactin primary antibody (SC1616;

Santa Cruz, Heidelberg, Germany) were used 1 : 5000.

Western blot analysis was performed under standard

conditions.

RNA isolation and RNA-Seq

QIAshredder and RNeasy Mini Kit (Qiagen) was used to

isolate RNA from transfected U2OS cells according to the

manufacturer’s protocol. Integrity of RNA was determined

using a bioanalyzer instrument (Agilent Technologies,

Santa Clara, CA, USA). A cDNA library including five

replicates per condition was prepared using the TruSeq

Stranded mRNA Sample Prep Kit (Illumina Inc., San

Diego, CA, USA) according to the manufacturer’s recom-

mendation. Briefly, 1 µg of total RNA was used for first-

strand synthesis performed with a random hexamer and

SuperScript II (Life Technologies, Carlsbad, CA, USA).
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Second-strand synthesis was performed using dUTP and

the Illumina-specific Second Strand Marking Master Mix.

After end repair and A-tailing indexed adaptors were

ligated to the cDNA fragments. Fragments successfully

ligated with adaptor molecules on both ends were enriched

by PCR for 15 cycles and purified with AMPure XP Beads

(Beckman Coulter Inc., Brea, CA, USA). The final libraries

were quality checked on an Agilent Bioanalyzer and quan-

tified with qPCR using a commercially available PhiX-li-

brary (Illumina Inc.) as a reference. All samples were run

in five biological replicates, and a total of 30 equimolarily

pooled samples were sequenced two high output flow cells

on an Illumina NextSeq in a paired-end run with 2 9 75

cycles. On average, we obtained a mean of 61.7 million

reads (range 48.4–87.6) properly paired reads (range 16,

581.904–59 646.128) per sample. Raw RNA-Seq reads were

aligned to the human hg19 genome using STAR [63]. Gene

read counts are generated using FEATURECOUNTS [64], and

differential expression was analyzed using DESEQ2 [65].

Genes with adjusted P-value lower than 0.05 and a log2

fold change of 1 or �1 were considered differentially

expressed. For pathway analysis, we used DAVID 3.8 [29].

The GO database is currently the most widely used gene

annotation system for gene functions and products and

provides a better understanding of the links between genes

and diseases [66]. The KEGG database, on the other side,

combines genetic information with functional information

and can thus be used to understand relationships between

genes and enriched pathways [67].

Quantitative real-time PCR (qPCR)

qPCR was performed on 1 µg isolated RNA using the

Luna Universal one-step RT–qPCR Kit (New England Bio-

labs, Frankfurt am Main, Germany) according to the sup-

plier’s manual on a 7999HT Fast Real-Time PCR System

(Applied Biosystems, Vienna, Austria). The gene-specific

primers used for qPCR are listed in Table 3.

Relative gene expression levels were normalized to

HPRT1 and calculated using the DDCT method [68] and

visualized as log2 fold change. Significance between groups

was determined using two-way ANOVA (Tukey’s

multiple comparisons test) P > 0.05 = NS; P < 0.05 = *;
P < 0.01 = **; P < 0.001 = ***; P < 0.0001 = **** with

the software GRAPHPAD PRISM 8.1.1 (GraphPad Software,

San Diego, CA, USA, www.graphpad.com).

For qPCR in HEK293T, living cells were harvested in

RLT buffer and mRNA was isolated using Qiagen RNeasy

Kit (Qiagen). cDNA was synthesized using iScript cDNA

synthesis kit (Bio-Rad, Vienna, Austria). SYBR green

FastStart master mix (Roche, Vienna, Austria) was used to

perform Real-time PCR in the CFX cycler (Bio-Rad). The

relative expression level of target genes was normalized to

HPRT1 level (Table 3).
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Table 3. Primer sequences used for qPCR.

Gene Forward primer (50–30) Reverse primer (50–30)

BMP4 ATGATTCCTGGTAACCGAATGC CCCCGTCTCAGGTATCAAACT
CCND1 GCTGCGAAGTGGAAACCATC CCTCCTTCTGCACACATTTGAA
CD44 CTGCCGCTTTGCAGGTGTA CATTGTGGGCAAGGTGCTATT
HPRT1 CCTGGCGTCGTGATTAGTGAT AGACGTTCAGTCCTGTCCATAA
JUN TCCAAGTGCCGAAAAAGGAAG CGAGTTCTGAGCTTTCAAGGT
LEF1 TGCCAAATATGAATAACGACCCA GAGAAAAGTGCTCGTCACTGT
TIAM1 CCTGTGTCTTACACTGACTCTTC CATCCCCGTAAAGCCTGCTC
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