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Summary 
We have generated several transgenic mouse strains carrying a human immunodeficiency virus 
1 (HIV-1) NEF/3' long terminal repeat (LTR) transgene under control of a T cell-specific 
promoter-enhancer element, showing a depletion of CD4 + T cells in the thymus and periphery. 
The immunological functions of the line with the most dramatic changes in lymphocyte populations, 
B6/338L, were analyzed in greater detail. The presence of the transgene in the heterozygous 
animal is associated with a dominant severe immunodeficiency. Older animals develop lymph- 
adenopathy and splenomegaly. CD4 § CD8 § and CD4 § CD8- single positive thymocytes already 
are depleted in these mice at the earliest stages in ontogeny, and peripheral T cells are reduced 
in frequency and present cell surface marker expression, which is characteristic for memory and 
activated T cells. The immunological response of B6/338L mice to several viral infections is 
also greatly impaired. Thus, the HIV-1 NEF/3' LTR as transgene in T cells can cause immuno- 
deficiency and disease with striking similarities to a known retrovirus-induced immunodeficiency 
called murine AIDS (H. C. Morse III, S. K. Chattopadhyay, M. Makino, T. N. Frederickson, 
A. W. H/igin, and J. W. Hartley. 1992. AIDS. 6:607). 

I nfection of C57BL/6 mice with a mixture of viruses re- 
covered from the Duplan Laterjet strain of MuLVs induces 

in certain strains of mice a severe immunodeficiency disease 
called murine AIDS (MAIDS) 1 which has similarities to 
AIDS in humans (1). The virus responsible for the profound 
immunodeficiency is a defective MuLV termed BMSd (2) or 
Du5H (3). The disease is characterized by pronounced spleno- 
megaly and lymphadenopathy, by polyclonal activation and 
proliferation of T and B cells (1, 4) and markedly impaired 
responses to mitogenic and specific antigenic stimuli (5), as 
well as enhanced susceptibility to infection (6) and late stage 
lymphomas. The pathogenesis is still unclear as is that caused 
by HIV-1. 

The nefgene is found in all primate lentiviruses, HIV-1, 
HIV-2, and simian immunodeficiency viruses (SIV), but is 
highly polymorphic. However, in contrast to other viral regula- 
tory genes, tat and rev, nef is dispensable for virus growth 
in vitro (7) and remains without a precisely defined func- 
tion. The Nef protein is encoded by a single open reading 

1 Abbreviations used in this paper: LCMV, lymphocyte choriomeningitis 
virus; MAIDS, murine AIDS; ntg, nontransgenic; ORF, open reading 
frame; SIV, simian immunodeficiency virus; tg, transgenic; VSV, vasicular 
stomatitis virus. 

frame (ORF) located at the 3' end of the HIV-1 genome, 
partially overlapping the 3' LTR. It is found as a 27-kD pro- 
tein NH2-terminally myristoylated and associated with cy- 
toplasmic membrane structures (8). Nevertheless, free non- 
myristoylated, 25-kD forms initiated at an internal AUG codon 
(9) also have been detected in the cytoplasm of infected cells. 
Early mutational experiments demonstrated a participation 
of Nef in downregulation of HIV-1 expression (10), hence 
its name "negative factor". However, other reports using iden- 
tical nef genes or gene products were unable to detect any 
negative effect on HIV-1 replication (11). Moreover, recent 
experiments show that natural nef alleles accelerate HIV-1 
replication in primary T-lymphocytes (12), and that the nat- 
ural HIV-1, ELI nef allele promotes efficient HIV-1 infec- 
tion in primary mononuclear cells (13). 

It has been demonstrated that Nef can influence the ex- 
pression of two cellular proteins, CD4 and IL-2 (14-16). Two 
different mechanisms of downregulation by Nef seem to be 
involved. IL-2 production in response to antigen receptor- 
mediated stimulation is inhibited at the transcriptional level 
(16), whereas cell surface expression of CD4 in Nef-expressing 
cells is downregulated by a posttranscriptional mechanism 
(15). The relevance of these effects in the pathogenesis of AIDS 
is not yet clear. 
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As a first step to better understanding the biological ac- 
tivity of Nef  in vivo, Kestler et al. (17) have studied SIVM^c 
infection of rhesus monkeys with infectious molecular clones 
bearing different nefgenes. Their results suggest that the SIV 
nefgene is necessary for efficient replication and full patho- 
genesis in infected rhesus monkeys, which implies for Nef 
a function as a positive factor in vivo. 

In this paper, we describe transgenic (tg) animals as a model 
system to examine Nef function in vivo. To study the influence 
of Nef expression on T cell maturation and function, tg mice 
were generated carrying the HIV-1 nefgene under control 
of a T cell-specific regulatory element. In different indepen- 
dent tg lines, phenotypic changes in lymphocyte populations 
of thymus and peripheral lymphoid organs were observed at 
various degrees, mainly affecting the CD4 + T cell lineage. 

Materials and Methods 
Mice. C57BL/6, (C57BL/6 x DBA/2)F, and pseudopreg- 

nant Moro mice were purchased from Biological Research Labora- 
tories, Ltd. (Fuellinsdorf, Switzerland). C57BL/6-PbThyla/Cy 
were obtained from The Jackson Laboratory (Bar Harbor, ME). 

Generation ofTCg-NEF Tg Mice. The mouse TCR ~ chain en- 
hancer-promotor dement (18) was constructed by fusing a 5.5-kb 
BamHI/KpnI fragment containing the mTCR ~/chain core en- 
hancer elements (19) to a 1.8-kb BamHI/KpnI fragment containing 
the mV~8.3 TCR B chain promotor. This regulatory control ele- 
ment was fused to a PCR fragment comprising nucleotides (nt) 
7956-9484 of the HIV-1, Bru genome (20) containing the com- 
plete nefORF. The construct was injected as a 9-kb SmaI frag- 
ment into (C57BL/6 x DBA/2) x (C57BL/6 x DBA/2)zygotes 
according to protocols described by Bluethmann and Steinmetz (21). 
Tg founder mice were mated to C57BL/6J mice to establish per- 
manent inbred Tg lines. The transgene transmission was followed 
by Southern blot analysis and PCR analysis. 

PCR Analysis. Amplifications of mouse tail DNA (22) were 
performed using the GeneAmp kit (Perkin-Elmer AG, Kuesnacht, 
Switzerland) according to the manufacturer's instructions. Trans- 
gene-specific primers used were N29 (5'-ATGGGTGGCAAG- 
TGGTCAAAAAGT-3') 5' primer and N30 (5'-TCAGCAGTTCTT- 
GAAGTACTCCGG-3') 3' primer. Amplifications were done in 35 
cycles of 30 s at 95~ 45 s at 69~ and 1 min at 72~ Tg offspring 
showed a 621-bp transgene-specific band upon agarose gel elec- 
trophoresis. 

RNA PCR. For RNA isolation, tissues were removed and 
quickly frozen in liquid nitrogen and stored at -80~ until ana- 
lyzed. RNA was extracted by a modified single-step method (23). 
1-5/~g total RNA was used as a template with oligo p(dT)12-18 
as primer and Moloney-murine leukemia virus (M-MLV) H-  RT 
(GIBCO BRL, Gaithersburg, MD) in a cDNA synthesis reaction 
at 42~ according to the manufacturer's instructions. After addi- 
tional RNase H (Pharmacia, Diibendorf, Switzerland) treatment 
at 37~ cDNA was used in a PCR amplification. Transgene-specific 
primer sets used were oligonucleotides N205 (5'-CCTGCAGAC- 
CCACCTCCCAACC-3') 5' primer/N507 (5'-GCGCGCCGC- 
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTGAAGCAC-3') 
3' primer, and N201 (5'-CGAGGGGACCCGACAGGCCCG-Y) 
5' primer/N507 3' primer, yielding products of '~1.3 and ,-1.2 
kb in length for amplifications 1 and 2, respectively. Amplificat- 
ions were done for 30-40 cycles using cycles of 30 s at 95~ 1 
rain at 66~ and 1.5 min at 72~ For control amplifications, 
TCR C/32 chain mRNA (24)-specific primers oligonucleotide sets 
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N210 (5'-ACCCTCAGGCCTACAAGGAGAGC-Y)/N207 (5'- 
GCAGGAAAATCTATGGCCAGGGTG-Y) and N211 (5'-CTA- 
CTGCCTGAGCAGCCGCCTG-3')/N 209 (5'-GGTGAAGAA- 
CGGCTCAGGATGCATA-Y) were used, yielding products of 410 
and 360 bp in length for amplifications 1 and 2, respectively. 

Antibodies Used in Flow Cytometry Analysis. The following an- 
tibodies against different antigens were used. CD4 (GK1.5, Becton 
Dickinson & Co., Mountain View, CA; and RM-4-5, Pharmingen, 
San Diego, CA), CD8 (53-6.7, Becton Dickinson & Co.), Thyl.2 
(53-2.1, Pharmingen), Thyl.1 (MRC OX-7; Serotec Ltd., Kidling- 
ton, Oxford, UK), Ly-1 (CD5) (53-7.3, Pharmingen), CD3e 
(145-2Cll, Pharmingen), Ly5 (B220) (CD45RA) (RA3-6B2, Phar- 
mingen), Ly6C (AL-21, Pharmingen), Pgp-1 (CD44) (IM 7, 
Pharmingen), IgE-R (CD23) (B3B4, Pharmingen), heat stable an- 
tigen (HSA) (Jlld, Pharmingen), leukocyte cell adhesion molecule 
1 (LECAM-1) (Mel-14, Pharmingen), c~/~ TCR (H57-597, Phar- 
mingen), 2//8 TCR (GL3, Pharmingen), VB5.1 5.2 (MR 9-4, Phar- 
mingen), V/33 (KJ-25, Pharmingen), V/317a (KJ-23, Pharmingen), 
V/311 (RR3-15, Pharmingen), H-2K b (AF6-885, Pharmingen), 
H-2K d (SF1-1.1, Pharmingen), 3Gll, and 6C10 (25). 

Mitogenic Stimulation of Lymphocytes In Vitro. Lymphocytes iso- 
lated from spleen and LNs were depleted of erythrocytes by hypo- 
tonic lysis. T cells were purified by treatment with anti-J11D and 
anti-class II antibody plus complement as described by Muralidhar 
et al. (4) or enriched by nylon wool columns. Cells were cultivated 
in IMDM medium supplemented with 10% FCS (Hyclone Labora- 
tories, Logan, UT), 2 mM t-glutamine, 1 mM sodium pyruvate, 
100 IU/ml penicillin, 100 /~g/ml streptomycin, 5 x 10 -5 M 
2-ME, and 10 mM Hepes in 96-well microtiter plates at 4 x 10 s 
cells per well. Mitogen concentrations used were 5/~g/ml Con 
A, 50/zg/ml LPS, and 10/xg/ml SEB (all from Sigma Chemical 
Co., St. Louis, MO). After 48 h, the cultures were pulsed for at 
least 8 h with [3H]thymidine (Amersham, Zurich, Switzerland) 
and harvested for counting. Mean and SEs of triplicate cultures 
were determined. 

Neutralizing Anti-Vasicular Stomatitis Virus Antibody Re- 
sponses. Mice were infected intravenously with 2 • 106 PFU 
vasicular stomatitis virus (VSV) in a volume of 0.2 ml. Blood samples 
were collected on days 4, 9, and 14 after infection. Anti-VSV neu- 
tralizing titers of the sera were assayed in 96-well plates as described 
by Roost et al. (26). IgG antibody titers were determined after 
reduction with 0.1 M 2-ME. 

Immune Response to Lymphocytic Choriomeningitis-WE Infec- 
tion. Mice were infected by subcutaneous injection of 30 PFU lym- 
phocytic choriomeningitis virus (LCMV, WE strain) into footpads. 
Footpad swelling was monitored by measurement with spring- 
loaded calliper as described by Zinkernagal et al. (27). Increase in 
footpad thickness is expressed as a percentage of control value. 
Footpads of noninjected mice served as control. Animals were killed 
after 23 d and LCMV-WE titers in spleen, liver, and blood were 
determined by plaque assay (27). 

Bone Marrow Reconstitution. 24 h before the bone marrow 
transfer, B6-PL-Thyla mice (6-8-weeks-old), were irradiated with 
850 rad at 103 rad/min from a 127Cs animal irradiator. Animals 
were maintained under specific pathogen-free conditions. The 
drinking water was supplemented with 100 mg/liter neomycin and 
10 mg/liter polymixin (Sigma Chemical Co.). As radiation con- 
trols, 6-8-wk-old C57BL/6 mice were treated in parallel but not 
reconstituted with bone marrow. 3-wk-old B6/338L tg or B6 non- 
transgenic (ntg) mice of the same litter were killed. Bone marrow 
was isolated by flushing the tibias and femurs with sterile medium 
(RPMI 1640, 25 mM Hepes, 0.3% BSA). Mature T and B cells 
were depleted by treatment with polyclonal rabbit anti-mouse Ig 
(Pharmingen), monoclonal rat anti-Thyl.2 (Pharmingen) antibodies, 
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and complement-mediated lysis. 0.2 ml cell suspension (5 x 107 
cells/ml) was injected intravenously into lethally irradiated mice. 
Donor and recipients were sex matched. 

Results 
Generation of Tg Lines and Analysis of the B6/338L Trans- 

gene Locus. As illustrated in Fig. 1 A, the transgene con- 
struct contained a 1.5-kb PCR fragment of the HIV-1, Bru 
genome (20), which was inserted downstream of the mouse 
TCR B chain enhancer (19) and V~8.3 promoter to target 
expression of the transgene to lymphoid cells (18). After zy- 
gote microinjection, several independent tg lines were gener- 
ated, three of which showed phenotypic changes, such as loss 
of CD4 expression in lymphocyte populations, thymic at- 
rophy, and reduced life span, but to different degrees. An 
example of a typical CD4/CD8 staining pattern of thymo- 
cytes from two different tg lines is given in Fig. 2. The most 
dramatic effects were observed in line B6/338L. Already in 
the heterozygous state, offspring of line B6/338L were charac- 
terized by a profound immunodeficiency and a high mor- 
tality rate when kept under nonspecial pathogen free (SPF) 
conditions. Most animals died at 4-6-mo-old, whereas ntg 
littermates had normal life expectancies. Similarly, homozy- 
gous B6/305 offspring showed a high mortality rate when 
kept under non SPF conditions, indicating impaired immune 
responses in these animals. 

Tg line B6/338L was the only one with a single copy of 
the transgene integrated. All other lines carried multiple copies 
of the transgene. However, the B6/338L integrated trans- 
gene was characterized by a smaller 4.5-kb band as compared 
with a 8.5-kb band in the other tg lines, that hybridized in 
Southern blots to a Nef-specific probe (Fig. 1 B). More detailed 
analysis by Southern blotting and PCR. revealed a rearrange- 
ment of the original injected construct as depicted in Fig. 
1 C. The three components of the transgene construct were 
present but in a different organization. This organization, 
however, resembles the natural configuration of the mouse 
TCR 3 chain locus where the enhancer is located downstream 
of the TCR 3 chain gene. A likely explanation for the rear- 
rangement is a partial deletion of the 5' and 3' ends of two 
tandem copies during the integration process. 

To determine whether the nefORF and the V38.3 pro- 
moter of the B6/338L transgene were still intact, fragments 
were cloned by PCR amplification from either genomic DNA 
or from thymic cDNA templates and sequenced. No muta- 
tions to the original nefgene and V38.3 promoter sequence 
used for zygote injections or to transgenes cloned from other 
tg lines were found (data not shown). 

To exclude the presence of a MAIDS-inducing defective 
retrovirns in the tg lines, Southern blots were screened with 
a BMS-defective, retrovirus-specific probe (100-bp SalI-XbaI 
fragment of plasmid pGEN-3 BM5d/Dp12a; 28). No BMSd- 
specific hybridization pattern as described by Chattopadhyay 

Figure 1. The TCR-NEF transgene construct and the B6/388L integration locus. (A) The mouse TCR. O chain enhancer-promoter element was 
constructed by fusion of a 5.5-kb BamHI/Kpnl fragment containing the mTCR/~ chain core enhancer elements (19) to a 1.8-kb BamHl/KpnI fragment 
containing the mV~8.3 TCR ~ chain promoter. This control element was hooked up to a PCR fragment comprising nt 7956-9484 of the HIV-1 
Bru genome (20) containing the complete nefORE (B) Southern blot analysis of genomic DNA digested with EcoR.I/Asp718 from: (lane 1) ntg; 
(lane 2) B6/338L; and (lane 3) B6/305 littermates with a nef-specific probe. No crosshybridization of the nef-specific probe with endogenous retroviral 
sequences in tg or ntg littermates was observed. (C) The B6/338L locus. Schematic illustration of the B6/338L transgene locus as deduced from Southern 
blot analysis with different restriction enzymes hybridized to nefor TCR B chain enhancer-specific probes (19), and PCR analysis with different transgene- 
specific oligonucleotides. 
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Figure 2. CD4/CD8 staining pattern of tg and ntg thymocytes. Cells 
were labeled with PE-conjugated anti-mouse CD4 and biotinylated 
anti-mouse CD8, and subsequently with Streptavidin-Tandem by standard 
procedures and analyzed on a FACScan | instrument (Becton Dickinson 
& Co.). 

et al. (28) was detected (data not shown). The nef-specific 
hybridizing probe used for identification of tg offspring did 
not recognize any endogenous MuLV sequences (see Fig. 1 B). 

Transgene Expression. Transgene expression was monitored 
by a RNA-PCR method using primer pairs specific for 
transgene-derived messages (see Materials and Methods). An 
example of an ethidium bromide-stained agarose gel elec- 
trophoresis of nef-specific amplification products derived from 
total thymic RNA templates of B6/338L mice is given in 
Fig. 3 A. PCR products were cloned and sequenced to confirm 
the specifcity of the amplification. A he, specific 1.2-kb frag- 
ment was visible in tg samples only. TCR ~ chain messages 
could be detected in most lymphoid samples, using mTCR 
CB2 gene-specific primers (Fig. 3 B). 

RNA samples of different organs from B6/338L mice of 
various stages were analyzed. An overview of transgene ex- 
pression in lymphoid organs is given in Table 1. nefmRNA 
could be detected in the thymuses of B6/338L mice at all 
time points analyzed, even at the earliest embryonic stages, 
indicating that the first intrathymic precursors already seemed 
to express the transgene. At day 91, no analysis could be made 
because in these mice a thymus was not present anymore. 
In LN samples only, a weak signal was obtained at day 29, 
whereas all other samples were negative. However, in spleen, 
strong positive signals were obtained at days 29 and 45. Spleen 
samples of older and younger animal were negative. In bone 
marrow and liver samples, no positive signal was ever ob- 
tained. All RNA samples of lymphoid organs from day 15 
in ontogeny onwards were positive for TCR B chain mes- 

sage (data not shown). Other organs tested, such as lung, 
heart, brain, kidney, and skin, as well as all samples from 
ntg littermates, were negative for nef-specific transcripts (data 
not shown). Preliminary experiments showed that similar dis- 
tribution of Nef expression--strong expression in the thymus, 
lower expression in the peripheral lymphoid organs -was  de- 
tected in B6/305 mice. 

Thymocyte Populations. Macroscopic analysis of B6/338L 
offspring revealed signs of thymic atrophy in animals younger 
than 8 wk old. In animals older than 8 wk old, the thymus 
often completely disappeared with time. In addition, older 
mice developed lymphadenopathy and splenomegaly. 

Dramatic changes in thymocyte populations of B6/338L 
mice were demonstrated by subjecting thymocytes to FACS | 
analysis (Becton Dickinson & Co.). The total number of 
thymocytes isolated from 6-8-wk-old mice was reduced 5-10- 
fold compared with ntg littermates. Furthermore, the 
CD4 + CD8 + cells, which normally constitute the majority 
of the thymocytes, were almost completely lacking in B6/338L 
mice (Fig. 2). In contrast, the largest population were 
CD8 § CD4- thymocytes, which represented only a minor 
fraction in ntg littermates. However, only a minority of these 
CD8+CD4 - cells expressed high levels of CD3 and low 
levels of HSA, two characteristic markers of mature CD8 + 
cells (data not shown). Most of these cells showed cell surface 
marker expression found on CD4+CD8 + cells in normal 
mice except for their lack of CD4 expression. The 
CD4-CD8-  population and cells expressing intermediate 
levels of CD8 were found to be increased as well. No 
CD4+CD8 - thymocytes were detected (Fig. 2). In other 
TCR-NEF tg lines, B6/305 (Fig. 2) and B6/553 (data not 
shown), a similar depletion of CD4 + cells in the thymus 
was observed, but to a lesser degree. Compared with ntg 
littermates, total CD4 § thymocyte numbers were decreased 
200-300-, 15-20-, and 8-10-fold in heterozygous B6/338L, 
B6/305, and B6/553 mice, respectively. 

Thymocyte Populations during Ontogeny. Single cell suspen- 
sions of thymus from prenatal stages of B6/338L mice were 
analyzed by FACS | to determine at what time point of de- 
velopment the depletion of the CD4 § CD8 § and CD4 § 
CDS- thymocyte population occurred. As shown in Fig. 4, 
at day 15 of gestation, first CD4-CD8 t~ CD4t~ 
and CD41~163176 thymocytes were detected in ntg 
thymus, whereas the overall majority of tg thymocytes was 
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Figure 3. PCR amplification of transgene and 
mTCR 3 chain messages. Agarose gel electropho- 
resis of (A) 2 nd PCR products with transgene- 
specific primers and (B) 2 nJ PCR products with 
mTCR ~ chain C2-specific primers. Sizes of con- 
trol DNA fragments are shown in kilobases. Lanes 
(M) DNA size marker (1-kb ladder, Gibco BRL); 
(ntg) total thymus RNA from ntg day 16 embryos; 
(tg) total thymus RNA from tg day 16 embryos; 
(control) no RNA; (+) addition of reverse tran- 
scriptase (RT) to cDNA mix; ( - )  no addition of 
RT to cDNA mix. For details of the RNA-PCR 
procedure, refer to Materials and Methods. 



Table 1. Overview of Transgene Expression in B6/338L Mice 

Prenatal Postnatal 

Tissue El3 El4 El5 El6 El7 El8 dl d3 d6 dl0 d14 d21 d29 d45 d91 

Thymus + + + + + + + + + + + + + + ND 

Liver . . . . . . .  ND ND ND ND ND - - - 
Spleen ND ND . . . . . . . . . .  + + - 

LN ND ND ND ND ND ND ND . . . . .  _+ - - 

Bone marrow ND ND ND ND ND ND ND ND ND ND . . . . .  

1-5/~g of total RNA from different tissues was used as template for R.NA-PCR amplification with transgene-specific primers. ( + ) Expression; 
( - )  no expression; (_+) very weak expression. 

C D 4 - C D 8 - .  A C D 4 + C D 8  + thymocyte population was 
present in ntg thymus on day 16 of  gestation, when the deple- 
tion of this population was already prominent in tg thymus. 
Only very low CD4 expression was observed on tg thymo- 
cytes. 1 or 2 d before birth, at day 18 of  gestation, the overall 
majority of ntg thymocytes had the C D 4 + C D 8  + pheno- 
type, whereas in tg thymus, larger populations of C D 4 -  
CD8 § and C D 4 - C D 8 -  cells were observed. 

These results suggest that transgene expression leads to 
a depletion of CD4-positive thymocytes already at the earliest 
stages in embryogenesis. The mechanism that leads to this 
effect, however, is still unclear. 

Thymic Populations in C57BL/6 Mice Reconstituted with tg 
Bone Marrow. Reconstitution experiments were performed 
to investigate the role of  B6/388L bone marrow-derived he- 
matopoietic cells versus those of thymus and lymphoid organs 
in the generation of the severe immunodeficiency of the 

B6/388L tg mouse line. B6-PL-Thyl a mice expressing the 
Thyl.1 allele on T cells were chosen as recipients to distin- 
guish T cells derived from the donor bone marrow of B6/338L 
or B6/ntg mice expressing the Thyl .2 allele from those de- 
rived from the endogenous bone marrow. 6-8-wk-old B6- 
PL-Thyl  a mice were lethally irradiated and reconstituted 
with bone marrow of 3-wk-old heterozygous B6/338L tg 
mice or B6/ntg control mice of  the same litter, as described 
in Materials and Methods. 

Reconstituted mice survived irradiation and some of  them 
were killed 8 and 12 wk after transfer for thymocyte analysis. 
Mice reconstituted with B6/ntg bone marrow showed normal 
ratios of  C D 4 - C D S - ,  C D 4 + C D 8  +, C D 4 - C D 8  +, and 
C D 4 + C D 8  - thymocytes (Fig. 5 A). In contrast, almost 
complete depletion of C D 4 + C D 8  + and C D 4 + C D 8  - cells 
was seen in mice reconstituted with B6/338L bone marrow. 
The increase of  the C D 4 -  C D 8 -  and C D 4 -  CD8 + popula- 
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Figure 4. CD4/CD8 staining 
pattern of ntg and tg thymocytes 
from fetal thymus at day 14-16 and 
day 18 of gestation. Timed matings 
with B6/338L males and C57BL/6 
females were set up. The day at 
which a vaginal plug was observed 
was taken as day 0. Pregnant females 
were killed at day 13-18 of gesta- 
tion. The fetal thymuses of 6-10 em- 
bryos per time point were removed. 
Genomic DNA samples were pre- 
pared from tail biopsies, and by PCR 
analysis tg and ntg embryos were 
identified. Single cell suspensions of 
thymocytes were stained with PE- 
conjugated anti-mouse CD4 and bi- 
otinylated anti-mouse CD8, subse- 
quently with Streptavidin-Tandem, 
and analyzed by flow cytometry. 
(~bp) The time point of gestation. 
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Figure 5. Thymocyte populations of reconstituted B6/Thyl a mice. 
Cells from B6/Thyla mice were labeled (A) with PE-conjugated anti-mouse 
CD4 and biotinylated anti-mouse CDS, and subsequently with Streptavidin- 
Tandem; or (B) with FITC-conjugated anti-mouse Thyl.1 and PE- 
conjugated anti-mouse Thyl.2 antibodies 8 wk after reconstitution with 
B6/338L tg or ntg bone marrow. 

tion, as well as their CD3e and HSA expression pattern is 
analogous to that found in thymuses of B6/338L mice (data 
not shown). Total thymocyte numbers of these mice were 
reduced three to sixfold when compared with the control 
mice. In the thymuses of both types of reconstituted mice, 
only very few cells could be detected as expressing Thyl.1, 
and most of them were Thyl.2 positive (Fig. 5 B). Thyl.2 
staining also revealed the presence of a proportion of Thyl.2- 
negative/Thyl.l-negative cells in mice reconstituted with 
B6/338L bone marrow, which was not found in mice recon- 
stituted with B6/ntg bone marrow. 

Taken together, these experiments demonstrate that the 
phenotypic changes in the thymocyte population of B6/338L 
tg mice are inherent to bone marrow-derived cells and are 
not due to a defect of thymic epithelium as found, for ex- 
ample, in nude mice. 

Pe@heral Lymphocyte Populations. To address the question 
of whether these changes in thymus (Fig. 6, A and B) would 
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influence the distribution of the peripheral lymphocyte popu- 
lation, lymphocytes were isolated from LNs and spleens and 
analyzed by FACS | As mentioned earlier, B6/338L mice de- 
veloped lymphadenopathy and splenomegaly starting at about 
6-8 wk after birth. Expansion of lymphocytes continued 
throughout their life span, as the total number of cells in 
LNs and spleen increased up to 10-fold over controls. The 
percentage of T cells in the periphery was reduced 5-10-fold, 
as demonstrated by Thyl or CD4/CD8 staining (Fig. 6, C 
and D), mainly because of a large increase of the B cell popu- 
lation. The actual number of T cells in older mice was re- 
duced only two- to three-fold because of the enlargement 
of lymphocyte populations. The ratio of CD4 § to CD8 + 
cells, about 2:1 in normal mice, was as low as 0.5:1. B6/338L 
peripheral T cells also showed major phenotypic alterations 
compared with ntg controls. Their expression of CD8 and 
CD3 was reduced. A substantial fraction of the CD8 + cells 
is most probably NK cells, as they were CD3- (Fig. 6 G) 
and expressed the murine NK cell marker NKI.1 (data not 
shown). 

In the mouse system, naive T cells can be distinguished 
from memory or antigen-triggered T cells by differential 
expression of the cell surface markers Pgp-1 (CD44) and Mel-14 
(LECAM-1) (29). Naive T cells express low levels of Pgp-1 
and high levels of Mel-14; memory or activated T cells ex- 
press high levels of Pgp-1 and low levels of Mel-14. In con- 
trol mice, only a minor population expressed high levels of 
Pgp-1 and low levels of Mel-14 (Fig. 6, H and/),  whereas 
in B6/338L mice, the majority of peripheral T cells had this 
phenotype (Fig. 6, H and ,I). Recently Hayakawa and Hardy 
(25) described four subsets of peripheral CD4 + T cells ac- 
cording to their differential expression of the 6C10 and 3Gll 
antigens, which show differential growth potential and dis- 
criminate virgin and memory or activated T cells. The 
3Gl1+6C10- subset was the predominant population in ntg 
mice. In B6/338L mice, a clear shift towards the double nega- 
tive subsets was observed (Fig. 6, E and F). Taken together, 
these data show that the changes in tg thymocyte popula- 
tions lead to a drastic depletion of peripheral T ceils. In addi- 
tion, they indicate that as in the MAIDS mice (1, 4) the pe- 
ripheral T cells in B6/338L mice show cell surface marker 
expression characteristic of memory or activated T cells, 
whereas virgin T cells seem to be absent. 

In Vitro Stimulation of Peripheral Lymphocytes. To study the 
functional capacity of B6/338L lymphocytes in vitro, lym- 
phocytes were prepared from LNs and spleen and stimulated 
with different mitogens. For cell proliferation assays, either 
total cells (Fig. 7, A and B) were used or T cells were en- 
riched (Fig. 7 C) to compensate differential proliferation due 
to the different frequencies ofT cells in B6/338L mice. Lym- 
phocytes isolated from spleen or LN showed only weak 
proliferation upon stimulation with Con A or SEB (Fig. 7, 
A and B) even when IL-2 was included in the culture medium. 
The LPS response was drastically reduced when using spleen 
cells (Fig. 7 A), but, only a two to three-fold reduction was 
observed with LN cells (Fig. 7 B). Cultures with adjusted 
numbers of T cells showed a six to eight-fold reduction in 
response to Con A stimulation (Fig. 7 C). 

Transgenic Mice 



Figure 6. Cell surface marker analysis of cells 
from different lymphoid tissues of B6/338L mice. 
Thymocytes of 6-wk-old (A) nontransgenic (ntg) 
or (B) B6/338L transgenic (tg) littermates were 
stained with PE-conjugated anti-mouse CD4 and 
biotinylated anti-mouse CD8, and subsequently 
with Streptavidin-Tandem. CD4/CD8 staining of 
LN cells of (C) ntg or (D) tg offspring. Spleen 
cells were stained with PE-conjugated anti-mouse 
CD4 and biotinylated mAb 3Gll and FITC- 
conjugated 6C10. Only CD4 + cells were acquired 
(inset). 3Gll/6C10 profile is shown for (E) ntg or 
(F) tg mice. LN cells were stained with PE- 
conjugated anti-mouse CD4, FITC-conjugated 
anti-mouse CD8, and counterstained with anti- 
bodies to (G) biotinylated anti-mouse CD3-E, (/-/) 
biotinylated anti-mouse Pgp-1 (CD44), or (/) bi- 
otinylated anti-mouse Mel-14 (LECAM-1). 
CD4-CD8- cells were omitted during acquisi- 
tion. (Shaded curves) The staining of B6/338L cells; 
(unfilled curves) staining of ntg controls. 

In Vivo Immune Responses. The in vivo immune responses 
of B6/338L mice were studied by infection with various 
viruses. To test whether B6/338L mice were able to generate 
a normal antiviral humoral response, 8-wk-old mice were in- 
fected with VSV. The efficiency of the response was assessed 
by determination of the serum titer of virus neutralizing an- 
tibodies at different time points. In B6/338L mice, anti-VSV 
IgM responses measured on day 4 after infection were normal, 
however, the T cell-dependent neutralizing IgG antibodies, 
determined on days 9 and 14, were reduced when compared 
with controls (Table 2). These results illustrate the impair- 
ment of B6/338L T h cell responses involved in switching 
anti-VSV antibody responses from IgM to IgG. 

CD8 § T cell responsiveness was tested in mice infected 
with LCMV (27). Subcutaneous inoculation of LCMV (WE 
strain) into footpads of mice normally induces a virus-specific 
swelling reaction. The initial major swelling which is max- 
imal around day 8, is mediated by CD8 + T cells, followed 
by a late minor swelling phase around day 12, which is 
CD4 § T cell dependent (27). This typical reaction was in- 
deed observed in the control mice. However, B6/338L mice 
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infected with LCMV-WE showed no measurable swelling 
reaction in the footpads (Table 3). This unresponsiveness again 
illustrates the functional defect of T cells in B6/338L mice. 
CD8 + T cells are also crucial for the clearance of LCMV 
after acute infection (30). As reported previously, in normal 
mice LCMV virus was detected in the spleen on days 4-6 
after infection, but no virus could be demonstrated after day 
23 (30). In contrast, B6/338L mice still contained high virus 
titers on day 23 after subcutaneous infection (Table 3). These 
results suggest that the CD8 + T cells of B6/338L mice were 
not able to induce a protective virus-specific CTL response. 

Discuss ion 

The data presented here suggest an association of a HIV-1 
NEF/3' LTR transgene with a severe immunodeficiency, as 
manifested by the lack of responsiveness of tg lymphocytes 
to mitogenic stimuli, defective immune response to various 
viral infections and enhanced susceptibility to infections. The 
similarities to MAIDS and to human AIDS are striking and 
a further study of this tg mouse line might lead to a better 
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F i g u r e  7. Proliferative responses of B6/338L and ntg lymphocytes to 
mitogenic stimulation. Lymphocytes isolated from spleen (A) and LNs 
(B) were depleted of erythrocytes by hypotonic lysis. (C) T cells from LNs 
were enriched by nylon wool columns. T cell numbers were adjusted ac- 
cording to anti-Thyl.2 FACS | staining. Cells were cultivated in IMDM 
supplemented with 10% FCS (Hyclone Laboratories), 2 mM t-glutamine, 
1 mM sodium pyruvate, 100 IU/ml penicillin, 100 #g/ml streptomycin, 
5 • 10 -5 M 2-ME, and 10 mM Hepes in 96-well microtiter plates at 
1-4 x 105 cells per well. Mitogen concentrations used were 5/zg/ml Con 
A, 50 #g/ml LPS, and 10/xg/ml SEB. After 48-72 h the cultures were 
pulsed for at least 8 h with [3H]thymidine and harvested for counting. 
Mean and SEs of triplicate cultures are shown. 

understanding of the pathogenesis of AIDS. Accidental in- 
fection of our mice with a MAIDS-inducing retrovirus mix- 
ture could be excluded by Southern analysis using a BM5 
defective probe as described by Chattopadhyay et al. (28). 

Whether T cell-specific expression of the HIV-1 nef gene 
product leads directly to the deficiency in thymocyte devel- 
opment as observed in the tg B6/338L mice remains to be 
proven. Low levels of neftranscripts could be detected by RNA- 
PCR in the thymus of B6/338L mice, as well as in B6/305 
mice (data not shown). So far we have not been able to de- 
tect the presence of Nef protein in any of the transgenic lines. 
Work is in progress to improve the sensitivity of the methods 
used. Nevertheless, the downregulation of CD4 observed in 
thymocytes of different independent tg lines would fit in with 
reports demonstrating a downregulation of CD4 from the 
cell surface in response to Nef expression in transfected human 
(15) and mouse T cell lines (31). 

Differences in the genetic backgrounds of the tg lines due 
to the (C57BL/6 x DBA/2)F2 zygotes used for injection 
could be responsible for the differential effects seen. In the 
case of MAIDS, for example, it is known that only certain 
strains of mice develop the immunodeficiency, according to 
their MHC haplotypes and other genetic determinants (1). 
Backcrossing of the B6/338L locus into different mouse strains 
should clarify this point. In addition, the unique organiza- 
tion of the transgene or the integration site can lead to differen- 
tial expression during embryogenesis and/or differentiation 
of T cells, and thus may account for the strong effects ob- 
served in B6/338L mice versus the less obvious changes in 
other tg lines. It has been shown for several tg lines that the 
site of integration can influence the timing and magnitude 
of transgene expression (32). Another possible explanation 
for the B6/338L phenotype could be an insertional muta- 
tion. Although this cannot be excluded formally, it seems 
rather unlikely because of the following reasons: first, inser- 
tional mutations in tg animals tend to be recessive (32) (the 
B6/338L phenotype is dominant); and second, two other 
independent HIV-1 NEF/Y LTR tg mouse lines show similar 
effects with respect to CD4 expression, atrophy of the thymus 
and reduced life spans. 

Finally, reconstitution experiments indicate that the 
B6/338L phenotype can be established in normal C57BL/6 
mice by bone marrow transfer. This finding would suggest 
that the immunodeficiency phenotype in B6/338L mice is 
caused by a bone marrow-derived defect that leads to an im- 
paired recruitment of precursor T cells in the thymus, a 
phenomenon that is believed to also occur in AIDS patients. 

During the course of the preparation of this manuscript, 
Skowronski et al. (33) reported the generation of tg mice 
carrying the nefgene under control of the CD38 promoter-en- 
hancer. Similar to our TCR-NEF mice, these mice show a 
depletion of CD4-positive thymocytes and peripheral T cells, 
but to a lesser degree than in our B6/338L mice. In addition, 
the authors report a hyperreactivity of CD3-NEF1 tg thymo- 
cytes to TCR stimulation, however, no data on mitogenic 
stimulatory capacity of tg peripheral lymphocytes or on the 
capacity of tg mice to generate immune responses to specific 
pathogens were presented. The authors suggest that this hyper- 
responsiveness of the CD3-NEF1 tg thymocytes may lead 
to the direct elimination rather than the positive selection 
of these cells, which is manifested in peripheral T cell deple- 
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Table 2. In Vivo Analysis of Immune Responses to Infection with Different Viruses I 

Neutralizing antibody titers (logz x 40) 

Day 4 Day 9 Day 14 

Mouse IgM/IgG IgG IgM/IgG IgG IgM/IgG IgG 

B6/338L I 9 <1 7 3 2 <1 

B6/338L II 7 (1  . . . .  

B6/338L III 8 (1  5 3 2 1 

B6/ntg I 8 <1 11 7 11 9 

B6/ntg II 7 <1 11 7 9 9 

B6/ntg III 8 <1 11 8 9 9 

Neutralizing anti-VSV antibody responses of B6/338L or B6/ntg littermates. Mice were infected intravenously with 2 x 106 PFU in 0.2 ml. Blood 
samples were collected on days 4, 9, and 14 after infection. Anti-VSV neutralizing titers of the sera were assayed in 96-well plates as described else- 
where (26). IgG antibody titers were determined after reduction with 0.1 M 2-ME. One mouse died of VSV (*). This correlates with increased 
susceptibility to VSV in the absence of an IgG response (34). 

Table 3. In Vivo Analysis of Immune Responses to Infection with Different Viruses II 

Percent swelling vs. control on day LCMV-WE clearance by day 23 

PFU/ PFU/ PFU/ 
Mouse 6 8 13 15 spleen liver ml blood 

B6/338L I <5% <5% <5% <5% 1.8 x 105 3.0 x 107 2.5 x 10 f 
B6/338L II <5% <5% <5% <5% 1.5 x 106 2.4 x 107 3.8 x 104 

B6/ntg I <5% 100% 10% <10% <i02 <10 ~ <10 z 

B6/ntg II <5% 90% 15% <10% <102 <102 <102 

Immune response to LCMV-WE infection. Mice were infected with 30 PFU into footpads. Footpad swelling was monitored by measurement with 
spring-loaded calliper (27). Increase in footpad thickness is expressed as a percentage of control value. Footpads of noninjected mice served as controls. 
Animals were killed after 23 d and LCMV-WE titers in spleen, liver, and blood were determined by plaque assay (27). 

tion. This is in line with our observations of an unresponsive 
state of  the residual peripheral T cells and impaired immune 
responses to specific pathogens in B6/338L mice. These 
unresponsive T cells, whose number is reduced drastically 
compared with the T cell population of normal mice, may 
represent a small population of  tg thymocyte escaping the 
deleterious effect of Nef  expression and/or CD4 downregu- 

lation by a so far undetermined mechanism. Interestingly, 
in B6/338L as well as CD3-NEF1 tg mice, Nef expression 
seems to be strongly reduced in peripheral lymphocytes as 
compared with thymocytes, suggesting the reduction or elimi- 
nation of  transgene expression to be the mechanism to es- 
cape elimination in the thymus. 

We gratefully acknowledge Gabriele Suess and Laurence Ozmen for their help in the immunoassays and 
bone marrow reconstitution experiments and numerous helpful discussions. We thank Horst Bluethmann 
for his expert support and Helmut Jacobsen and Manfred Brockhaus for critical reviewing of the manu- 
script. The BM5d-specific DNA probe was provided by Herbert C. Morse, National Institutes of Health 
(Bethesda, MD); the mAbs 3Gll and 6C10 were kindly provided by K. Hayakawa. The TCR enhancer- 
promoter cassette was provided by Christopher Gray, Hoffmann-La Roche. 

805 Lindemann et al. 



This work was supported by Kommission zur Foerderung der wissenschaftlichen Forschung grant 1944.2. 

Address correspondence to Dr. Jan Mous, Hoffmann-La Roche Ltd., CH-4002 Basel, Switzerland. D. 
Lindemann is currently at the Whitehead Institute for Biomedical Research, Nine Cambridge Center, 
Cambridge, MA 02142. 

Received for publication 3 May 1993 and in revised form 3 November 1993. 

References 

1. Morse, H.C. III, S.K. Chattopadhyay, M. Makino, T.N. 
Frederickson, A.W. Hfigin, andJ.W. Hartley. 1992. Retrovirus- 
induced immunodeficiency in the mouse: MAIDS as a model 
for AIDS. AIDS. 6:607. 

2. Chattopadhyay, S.K., H.C. Morse, III, M. Makino, S.K. 
Ruscetti, and J.W. Hartley. 1989. Defective virus is associated 
with induction of murine retrovirus induced immunodeficiency 
syndrome. Proc. Natl. Acad. Sci. USA. 86:3862. 

3. Aziz, A., H. Zaher, and P. Jolicoeur. 1989. Severe im- 
munodeficiency induced by a defective murine leukemia virus. 
Nature (Lond.). 338:505. 

4. Muralidhar, G., S. Koch, M. Haas, and S.L. Swain. 1992. CD4 
T cells in murine acquired immunodeficiency syndrome: poly- 
clonal progression to anergy. J. Exp. Med. 175:1589. 

5. Mosier, D.E., R.A. Yetter, and H.C. Morse, III. 1985. 
Retroviral induction of acute lymphoproliferation disease and 
profound immunosuppression in adult C57BL/6 mice../. Exp. 
Med. 161:766. 

6. Bullet, R.M., R.A. Yetter, T.N. Frederickson, and H.C. Morse, 
III. 1987. Abrogation of resistance to severe mousepox in 
C57BL/6 mice infected with LP-BM5 routine leukemia viruses. 
J. Virol. 61:383. 

7. Terwilliger, E., J.G. Sodroski, C.A. Rosen, and W.A. Hasel- 
tine. 1986. Effect of mutations within the 3' off open reading 
frame region of human T cell virus type III on replication and 
cytopathogenicity. J. ViroI. 60:754. 

8. Franchini, G., M. Robert-Guroff, J. Ghrayeb, N.T. Chang, and 
F. Wong-Staal. 1986. Cytoplasmic localization of the HTLV 
III 3' orfprotein in cultured T-cells. Proc. Natl. Acad. Sci. USA. 
83:5282. 

9. Kaminchik, J., B. Bashan, A. Itach, N. Sarver, M. Gore&i, 
and A. Panelt. 1991. Genetic characterization of human im- 
munodeficiency virus type 1 nef gene product translated in vitro 
and expressed in mammalian cells. J. Virol. 65:583. 

10. Luciw, P.A., C. Cheng-Mayer, andJ.A. Levy. 1987. Mutational 
analysis of the human immunodeficiency virus (HIV): the orf-B 
region downregulates virus replication. Proc. Natl. Acad. Sci. 
USA. 84:1434. 

11. Hammes, S.R., E.P. Dixon, M.H. Malim, B.R. Cullen, and 
W.C. Greene. 1989. Nefprotein of human immunodeficiency 
virus type 1: evidence against its role as transcriptional silencer. 
Proc. Natl. Acad. Sci. USA. 86:9549. 

12. de Ronde, A., B. Klarer, W. Keulen, L. Smit, andJ. Goudsmit. 
1992. Natural HIV-1 nef accelerates virus replication in pri- 
mary human Iymphocytes. Virology. 188:391. 

13. Terwilliger, E.F., E. Langhofl:, D. Gabuzda, E. Zazopoulos, 
and W.A. Haseltine. 1991. Allelic variation in the effects of 
the nef gene on replication of human immunodeficiency virus 
type 1. Proc. Natl. Acad. Sci. USA. 88:10971. 

14. Guy, B., Y. Riviere, K. Dott, A. Regnault, and M.P. Kieny. 
1990. Mutational analysis of the HIV nef protein. Virology. 
176:413. 

15. Garcia, J.V., and A.D. Miller. 1991. Serine phosphorylation-in- 

dependent downregulation of cell-surface CD4 by nef. Nature 
(Lond.). 350:508. 

16. Luria, S., I. Chambers, and P. Berg. 1991. Expression of the 
type I human immunodeficiency virus Nef protein in T-cells 
prevents antigen receptor-mediated induction of interleukin-2 
mRNA. Proc Natl. Acad. Sci. USA. 88:5326. 

17. Kestler, H.W. III, D.J. Ringlet, K. Mori, D.L. Panicali, P.K. 
Sehgal, M.D. Daniel, and R.C. Desrosiers. 1991. Importance 
of the nef gene for maintenance of high virus loads and for 
development of AIDS. Cell. 65:651. 

18. Gray, C. The significance of CD8 in negative selection. 1992. 
PhD Thesis. University of Basel, Switzerland. 

19. Krimpenfort, P., R.D. Jong, Y. Uematsu, Z. Dembic, S. Ryser, 
H.V. Boehmer, M. Steinmetz, and A. Berns. 1988. Transcrip- 
tion of T cell receptor r-chain genes is controlled by a down- 
stream regulatory element. EMBO (Fur. Mol. Biol. Organ.) J. 
7:745. 

20. Wain-Hobson, S., P. Sonigo, O. Danos, S. Cole, and M. Alizon. 
1985. Nucleotide sequence of the AIDS virus, LAV. Cell. 40:9. 

21. Bluethmann, H., and M. Steinmetz. 1990. Transgenic mice 
for analysis of T cell development. In Immunological Methods. 
Academic Press, Inc., New York. 311. 

22. Laird, P.W., A. Zijderveld, K. Linders, M.A. Rudnicki, R. 
Jaenisch, and A. Berus. 1991. Simplified mammalian DNA iso- 
lation procedure. Nucleic Acids Res. 19:4293. 

23. Chomczynski, P., and N. Sacchi. I987. Single-step method 
of RNA isolation by acid guanidinium thiocyanate-phenol- 
chloroform extraction. Anal. Biochem. 162:156. 

24. Malissen, M., K. Minard, S. Mjolsness, M. Kronenberg, J. 
Goverman, T. Hunkapiller, M.B. Prystowsky, Y. Yoshikai, F. 
Fitch, T.W. Mak, and L. Hood. 1984. Mouse T cell antigen 
receptor: structure and organization of constant and joining 
gene segments encoding the 3 polypeptide. Cell. 37:1101. 

25. Hayakawa, K., and R.R. Hardy. 1991. Murine CD4 + T-cell 
subsets. Semin. Immunol. 123:145. 

26. Roost, H.P., S. Claran, R. Gobet, E. R/iedi, H. Hengarmer, 
A. Althage, and R.M. Zinkernagel. 1988. An acquired im- 
mune suppression in mice caused by infection with lympho- 
cytic choriomeningitis virus. Eur. J. Immunol. 18:511. 

27. Zinkernagel, R.M., T. Leist, H. Hengartner, and A. Althage. 
1985. Susceptibility to lymphocytic choriomeningitis virus iso- 
lates correlates directly with early and high cytotoxic T-cell 
activity, as well as with footpad swelling reaction, and all three 
are regulated by H-2D. J. Exp. Med. 162:2125. 

28. Chattopadhyay, S.K., D.N. Sengupta, T.N. Fredrickson, H.C. 
Morse III, and J.W. Hartley. 1991. Characteristics and contri- 
butions of defective, ecotropic, and mink cell focus-inducing 
viruses involved in a retrovirus-induced immunodeficiency syn- 
drome of mice. J. Virol. 65:4232. 

29. Vitetta, E.S., M.T. Berton, C. Burger, M. Kepron, W.T. Lee, 
and X.-M. Yin. 1991. Memory B and T cells. Annu. Rev. Im- 
munol. 9:193. 

30. Lehmann-Grube, F., D. Moskophidis, and J. IAhler. 1988. 

806 Immunodeficient HIV-1 Nef Transgenic Mice 



Recovery from acute virus infection. Role of cytotoxic T lym- 
phocytes in the elimination of lymphocytic choriomeningitis 
virus from spleens of mice. Ann. N Y  Acad. Sci. 532:238. 

31. Garcia, J.V., J. Alfano, and A.D. Miller. 1993. The negative 
effect of human immunodeficiency virus type I Nef on cell sur- 
face CD4 expression is not species specific and requires the cy- 
toplasmic domain of CD4. J. Virot. 67:1511. 

32. Jaenisch, K. 1988. Transgenic animals. Science (Wash. DC). 
240:1468. 

33. Skowronski, J., D. Parks, and R. Mariani. 1993. Altered T 
cell activation and development in transgenic mice expressing 
the HIV-1 nef gene. EMBO(Eur. Mot. Biol. Organ.).]. 12:703. 

34. Gobet, K., A. Cerny, E. Ruedi, H. Hengartner, and R.M. 
Zinkernagel. 1988. The role of antibodies in natural and ac- 
quired resistance of mice to vesicular stomatitis virus. Exp. Cell 
Biol. 56:175. 

807 Lindemann et al. 


