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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has made tremendous
progress in the last few decades and is increasingly being used worldwide. The success of
haploidentical HSCT has made it possible to have “a donor for everyone”. Patients who
received transplantation in remission may have a favorable outcome, while those who
were transplanted in advanced stages of disease have a poor prognosis. Although
chimeric antigen receptor T (CAR-T) cell therapy is currently a milestone in the
immunotherapy of relapsed or refractory (R/R) B cell acute lymphoblastic leukemia (B-
ALL) and has demonstrated high remission rates in patients previously treated in multiple
lines, the relatively high relapse rate remains a barrier to CAR-T cell therapy becoming an
excellent cure option. Therefore, combining these two approaches (allo-HSCT and CAR-T
cell therapy) is an attractive area of research to further improve the prognosis of R/R B-
ALL. In this review, we will discuss the current clinical practices of combining allo-HSCT
with CAR-T cell therapy based on available data, including CAR-T cells as a bridge to allo-
HSCT for R/R B-ALL and CAR-T cell infusion for post-transplant relapse. We will further
explore not only other possible ways to combine the two approaches, including CAR-T
cell therapy to clear minimal residual disease peri-transplantation and incorporation of
CAR technology to treat graft-versus-host disease, but also the potential of CAR-T cells as
a part of allo-HSCT.

Keywords: chimeric antigen receptor, acute lymphoblastic leukemia, relapsed or refractory, graft versus host
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)
has achieved great progress in the past few decades. Advances in
graft-versus-host disease (GVHD) prophylaxis and supportive
care have significantly improved the outcomes of allo-HSCT.
The success of haploidentical hematopoietic stem cell
transplantation (haplo-HSCT) has expanded the application of
allo-HSCT, making it possible to have “a donor for everyone”. In
recent years, the results of haplo-HSCT have been comparable to
HSCT with matched sibling donors and unrelated donors (1–4).
As a result, there has been a dramatic increase in the number of
haplo-HSCT worldwide (5–7).

However, only transplantation of patients in remission may
obtain favorable outcomes, whereas the prognosis of transplantation
of patients with advanced disease is poor, with a long-term survival
rate of only about 20% (7). Therefore, the efficacy of salvage allo-
HSCT for patients with relapsed or refractory (R/R) hematological
malignancies is very limited. In addition, post-transplantation
relapse still occurs frequently and is the main cause of death after
allo-HSCT, yet there is no satisfactory salvage method (8, 9).

The advent of chimeric antigen receptor T (CAR-T) cell
therapy offers hope for patients with R/R hematological
malignancies. CAR-T cell therapy has shown a high remission
rate in these patients with severe pre-treatments (10–19).
However, the relatively high relapse rate remains a barrier to
CAR-T cell therapy becoming a curable method (10, 11, 20, 21).
The integration of allo-HSCT and CAR-T cell therapy becomes
an attractive area of research to fully exploit each other’s
advantages and further improve the treatment of B-cell
malignancies, especially high-risk B-cell acute lymphoblastic
leukemia (B-ALL).

To sum up, we will explore the current clinical practices of
combined allo-HSCT and CAR-T cell therapy including CAR-T
cell therapy as a bridge to allo-HSCT for R/R B-ALL and CAR-T
cell infusion for post-transplant relapse, based on available data.
And we will also further explore other possible ways to combine
the two methods, including the clearance of minimal residual
disease (MRD) peri-transplantation by CAR-T cell therapy and
the incorporation of CAR technology in the treatment of GVHD.
Meanwhile, we will also focus on a number of preclinical or pilot
clinical studies targeting for CAR-T cells as part of the graft or
conditioning regimen in allo-HSCT.
IS CAR-T CELL THERAPY A BRIDGE TO
ALLO-HSCT OR A DEFINITIVE
TREATMENT?

The relapse rate of B-ALL after CAR-T cell therapy was 20–70%
when the follow-up period was long enough (22). Therefore, it is
still controversial whether CAR-T cell therapy is the definitive
treatment or bridging therapy to allo-HSCT. Currently, the need
for allo-HSCT after CAR-T cell therapy usually depends on the
characteristics and persistence of CAR-T cells, the duration of B
Frontiers in Immunology | www.frontiersin.org 2
cell aplasia, institutional experience, and the patient’s intent and
general physical condition. For patients who intend to receive
allo-HSCT after CAR-T cell therapy, haploidentical donors are
an important source of donors due to the rapid donor
preparation and the strong effect of graft versus leukemia
(GVL) (1, 23). Table 1 presents the results of current large
clinical studies of patients requiring allo-HSCT after CAR-T cell
therapy. We will discuss pediatric and adult patients separately.

For pediatric and young adult patients with R/R B-ALL, a
phase 1/2a study involved 30 patients treated with CD19 CAR-T
cell therapy. After CAR-T cell therapy, only 10% of patients
underwent allo-HSCT. Despite the low percentage of subsequent
allo-HSCT, the event-free survival (EFS) rate was 67%, and the
overall survival (OS) rate was 78% at 6 months of continuous
remission (17). Subsequently, a global phase 2 study of
Tisagenlecleucel in 75 patients showed that only eight patients
in remission underwent allo-HSCT (15). The EFS and OS rates at
12 months were 50 and 76%, and the median duration of
remission was still not reached after a median follow-up of
13.1 months. In both studies, the persistence of CAR-T cells
and the duration of B cell aplasia were long.

In contrast, a phase 1 study at Seattle Children’s Hospital
enrolled 45 children and adolescents with R/R B-ALL in CD19
CAR-T cell therapy. The MRD-negative complete remission
(CR) rate was 93%, but the median expected duration of B cell
aplasia was only 3 months. Of the 40 patients with MRD-
negative CR, 11 (27.5%) underwent consolidative allo-HSCT,
and only two (18%) patients experienced relapse after allo-
HSCT. Of the 29 patients who did not undergo consolidative
allo-HSCT, 16 patients (55%) relapsed with a median follow-up
of 12.2 months (25). Another study from Pediatric Oncology
Branch of the National Cancer Institute enrolled 20 children and
young adults with R/R B-ALL who received a single infusion of
CD28-containing anti-CD19 CAR-T cells (27). A total of 12
patients achieved MRD-negative CR. The persistence of CAR-T
cells was relatively short, and no CAR-T cells were detected after
day 68. Thus, a high proportion (83%) of patients who obtained
MRD-negative CR underwent subsequent allo-HSCT. All 10
patients who underwent allo-HSCT remained disease-free, and
no unexpected peri-transplant toxicity was observed. Two
patients were judged ineligible to undergo allo-HSCT and both
relapsed within a short time (27). In a recent large phase 1/2
study from China, a total of 110 patients with B-ALL were
infused with CD19 CAR-T cells (30). The majority of patients
were children. Morphologic CR was observed in 93% of patients,
and 87% achieved MRD negativity. 75 patients (73.5%)
subsequently received allo-HSCT and 50 patients received
haplo-HSCT. Leukemia-free survival (LFS, 76.9 vs 11.6%,
P<0.0001) and OS (79.1 vs 32.0%, P < 0.0001) were
significantly better in patients who underwent allo-HSCT
compared with those who received only CAR-T cell therapy.
The authors speculated that in the majority of the patients,
haplo-HSCT (67%) and a myeloablative conditioning regimen
may play a role to reduce leukemia relapse.

For adults with R/R B-ALL, a phase 1 trial from MSKCC first
reported the results of patients receiving 19-28z CAR-T cell
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TABLE 1 | Summary of large clinical studies related to the need for allo-HSCT after CAR-T cell therapy in B-ALL.

Ri MRD- CR
rate, %

Allo-HSCT in
CR, %

Haplo-
HSCT, %

Overall OS, % Overall RFS/EFS/
LFS, %

Allo-HSCT vs non- HSCT

79 10 NA 78 (at 6 mo) 67 (at 6 mo) NA

81 10 NA 70 (at 18 mo) 66 (at 18 mo) NA

93 28 NA 69 (at 12 mo) 51 (at 12 mo) LFS, P = 0.057

55 75 NA 52 (at 10 mo)* 49 (at 18 mo) Relapse (9 vs 86%, P = 0.001); LFS, P =
0.006

87 73 67 64 (at 12 mo) 58 (at 12 mo) LFS (77 vs 11%, P < 0.0001); OS (79 vs
32%, P < 0.0001)

67 39 NA 50 (at 13 mo) 50 (at 6 mo) EFS, P = 0.64; OS, P = 0.89
81 45 62 61 (at 12 mo) 50 (at 7.3 m) RFS, P = 0.001; OS, P = 0.099

85 40 0 50 (at 20 mo)† 50 (at 7.6 mo)† EFS (HR = 0.39 P = 0.088)
68 59 83 50 (at 16 mo) 50 (at 15 mo) OS (59 vs 23%, P = 0.005); EFS (53 vs

19%, P < 0.001)
100 45 100 NA NA LFS, P < 0.001; OS, P < 0.001

ission with incomplete count recovery; MRD, minimal residual disease; Allo-HSCT, allogeneic HSCT; Haplo-HSCT, Haploidentical HSCT; OS, overall

cell therapy.
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Study N Costimulatory
domain

Previous
HSCT, %

CR/C
rate,

Children and young adults
Maude et al.
Phase I/IIA (17)

30 4-1BB 60 90

Maude et al.
(ELIANA) (15, 24)

79 4-1BB 61 82

Gardner et al. (25,
26)

45 4-1BB 62 93

Lee et al. (27–29) 51 CD28 35* 61

Zhang et al. (30) 110 (65%
children)

4-1BB (81%)
CD28 (19%)

14 93

Adults
Park et al. (10) 53 CD28 36 83
Jiang et al. (31) 58 (5

children)
4-1BB 5 88

Turtle et al. (32, 33) 53 4-1BB 43 85
Gu et al. (34) 56 (Ph+ ALL) 4-1BB 0 91

Zhao et al. (35) 122 4-1BB 20 100

HSCT, hematopoietic stem cell transplantation; CR, complete remission; CRi, complete rem
survival; RFS, relapse-free survival; EFS, event-free survival; LFS, leukemia-free survival.
*Results were reported from the first 21 patients.
†The authors reported survival rates in patients achieving MRD negative CR after CAR-T
%
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therapy (10). A total of 53 adults were enrolled and 44 (83%)
patients achieved CR. Among the 44 patients with CR, 17 (39%)
patients proceeded to allo-HSCT. There was no significant
difference in EFS and OS between MRD-negative patients who
underwent allo-HSCT and those who did not. A clinical trial
from China included 53 adults and five pediatric R/R B-ALL
patients who received CD19 CAR-T cell therapy (31). Of the 47
patients with MRD-negative remission, 21 were bridged to allo-
HSCT. Overall, no difference was found in OS between patients
who received allo-HSCT and those who did not. However, the
trial further identified subgroups of patients with high (≥5%)
pre-infusion bone marrowMRD or poor prognostic markers and
found that only this subgroup benefited from allo-HSCT with
significantly prolonged EFS.

On the contrary, in a phase 1/2 clinical trial from Fred
Hutchinson Cancer Research Center, 45 (85%) of the 53
patients who received CD19 CAR T-cell therapy achieved
MRD-negative CR. Eighteen (40%) patients in MRD-negative
CR underwent allo-HSCT. Multivariable stepwise modeling
demonstrated that allo-HSCT after CAR-T cell therapy may
achieve a better EFS (32, 33). Gu B et al. reported a study of
adults with R/R Philadelphia-chromosome positive ALL
receiving humanized CD19 CAR-T cell therapy. Fifty-one/56
(91.1%) patients achieved CR or CR with inadequate count
recovery (CRi). Subsequently, 30/51 CR/CRi patients received
consolidative allo-HSCT. Patients with allo-HSCT had better 2-
year OS and LFS than those without allo-HSCT. Multivariable
analysis revealed that allo-HSCT and MRD-negative remission
were independent prognostic factors of OS and LFS (34).
Recently, we conducted a multicenter retrospective study to
assess whether patients can benefit from haplo-HSCT after
CAR-T cell therapy or not (35). A total of 122 patients were
enrolled, including 55 patients with subsequent haplo-HSCT and
67 patients without subsequent transplantation. Compared to the
non-transplant group, patients who received subsequent haplo-
HSCT had higher 2-year OS (77.0 vs 36.4%, P < 0.001) and LFS
(65.6 vs 32.8%, P < 0.001). In addition, MRD-negativity before
transplantation predicts a favorable outcome of CAR-T cell
therapy followed by haplo-HSCT.
Frontiers in Immunology | www.frontiersin.org 4
From the above findings, the need to bridge allo-HSCT after
R/R B-ALL remission with CAR-T cell therapy is still a
controversial topic. Table 2 lists the ongoing clinical trials of
CAR-T cell therapy bridging to allo-HSCT in the treatment of B
cell malignancies. Bridging allo-HSCT, while reducing relapse
rates, is associated with transplant-related mortality. The most
critical factor for the future will be the identification of risk
factors for relapse after CAR-T cell therapy and selective
bridging of allo-HSCT in high-risk patients. For patients with
a low risk of relapse after CAR-T cell therapy, close monitoring is
all that needed.
CAR-T CELL THERAPY TO TREAT POST-
TRANSPLANT RELAPSE WITH LOW
INCIDENCE OF GVHD

Relapse is the leading cause of death after allo-HSCT (36). The
prognosis of relapse after allo-HSCT is very dismal, with low
remission rates and poor long-term survival (37, 38). The
median survival after relapse is 5.5 months. The estimated
survival rates at 1-, 2- and 5-year after relapse are 30, 16, and
8%, respectively (9). Despite the development of allo-HSCT for
the decades, the treatment of relapse after allo-HSCT remains a
major challenge. Augmentation of the GVL effect through donor
lymphocyte infusion (DLI) is one of the major salvage
interventions for post-transplant relapse (39–43).

However, DLI has a limited effect on ALL relapse after allo-
HSCT, with a CR rate of only 27% (44). Moreover, the
application of DLI is limited by the development of acute or
chronic GVHD (40–60%) (45, 46). Therefore, new therapeutic
strategies are urgently needed to improve the prognosis of ALL
relapsed after allo-HSCT. CAR-T cell therapy has brought
revolutionary progress in the treatment of R/R hematological
malignancies. At present, CAR-T cells still show great potential
in the treatment of post-transplant relapse. T cells harvested for
CAR-T preparation may come from donors or recipients
(Table 3).
TABLE 2 | Ongoing clinical trials of CAR-T cell therapy bridging to allo-HSCT in the treatment of B cell malignancies.

Trial ID Phase Disease Disease
status

Target Estimated
enrollment

Conductor

NCT03366324 1/2 B-cell Malignancies MRD
positive

CD19 20 Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology, China

NCT03366350 1/2 B-cell Malignancies R/R CD19 50 Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology, China

NCT04626726 1/2 B-ALL R/R CD19/
CD22

50 No.2 Hospital of Hebei Medical University, China

NCT02846584 2 B-cell Malignancies R/R CD19/
CD20

100 Southwest Hospital of Third Military Medical University, China

NCT03110640 1 B-cell Leukemia/
Lymphoma

R/R CD19 20 The First Affiliated Hospital of Wenzhou Medical University, China

NCT02431988 1 Diffuse Large B Cell
Lymphoma

R/R CD19 10 University College London Hospital, London, United Kingdom
B-ALL, B cell acute lymphoblastic leukemia; MRD, minimal residual disease; R/R, relapsed or refractory.
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For the first time, Kochenderfer et al. infused donor-derived
allogeneic CD19 CAR-T cells into patients with malignancies
that persisted after allo-HSCT and standard DLI (47, 48). CAR-T
cells were infused without previous chemotherapy or lymphocyte
depletion conditioning. Eight of 20 patients with B-cell
malignancies obtained remission, which included six CRs and
two partial remissions. B-ALL had the highest response rate, with
four of five patients achieving MRD-negative CRs. In another
study, Cruz et al. reported a phase one study in which donor-
derived virus-specific T cells were engineered to express CD19
CAR. CR was achieved in one of two patients with B-ALL
relapsing after allo-HSCT (49). In our report, two of three
patients (66.7%) with relapsed B-ALL post-transplantation
obtained CR after receiving donor-derived CD19 CAR-T cell
therapy (51).

In addition to donor-derived T cells, CAR-T cells can also be
manufactured from T cells harvested from the recipients. In
several studies described in the previous chapters (10, 17, 27),
patients with R/R B-ALL who relapsed after allo-HSCT were also
included. The reported CR rates after CAR-T cell therapy ranged
from 57 to 84%. In our study (51), we included 11 patients who
received recipient-derived CAR-T cell therapy for post-
transplant relapse. All patients (100%) achieved CR after CAR-
T cell therapy. In another study from China, efficacy of CD19
CAR-T cell in high-risk B-ALL was evaluated (30). Sixteen
patients had allo-HSCT prior to CAR-T cell therapy, and 11
(68.8%) had at least one DLI. After CAR-T cell therapy, 15
(93.8%) patients achieved CR. No statistically significant
difference was observed in the rate of CR in patients who
received allogeneic or autologous CAR-T cell therapy.

From the above data, CAR-T cell therapy has good efficacy in
the treatment of post-transplant relapse. In addition to the
routine complications such as cytokine release syndrome
(CRS) and immune effector cell-associated neurotoxicity
syndrome (ICANS), allogeneic CAR-T cells infusion brings
concerns about GVHD induction. In the study from
Kochenderfer et al. (47, 48), a total of 14 patients had a history
of GVHD, but none developed new-onset acute GVHD after
Frontiers in Immunology | www.frontiersin.org 5
CAR-T cell infusion. One patient developed mild chronic ocular
GVHD 2 years later, and another patient had chronic GVHD at
study entry, but the disease slowly and progressively worsened.
In the study by Cruz et al. (49), no GVHD was observed after
donor-derived CAR-T cell therapy, whereas we observed that
acute GVHD in one of three patients following donor-derived
CAR-T cell infusion. This patient was diagnosed with grade 3
gastrointestinal GVHD with secretory diarrhea more than 10
times per day. Symptoms improved after combination therapy
with steroids, cyclosporin, mycophenolate, and ruxolitinib (51).

For recipient-derived CAR-T cell therapy, Park et al. (10),
Maude et al. (17), and Lee et al. (27) reported a total of 43 cases
but no GVHD was observed. Two studies from China showed
that a small proportion of patients experienced GVHD after
CAR-T cell infusion. One study showed that out of 16 patients,
two (12.5%) patients developed acute GVHD (grade 1 and grade
3), and two (12.5%) patients developed extensive chronic GVHD
(30). In our report, two of 11 patients (18.2%) developed grade 2
acute skin GVHD after infusion of recipient-derived CAR-T
cells (51).

For GVHD caused by allogeneic CAR-T infusion, it is unclear
whether treatment of GVHD affects the persistence and
effectiveness of CAR-T cells. In a pilot study, two B-ALL
patients received donor-derived 4-1BB costimulatory CAR-T
cell therapy after allo-HSCT and developed grades 2–3 acute
GVHD 3–4 weeks after cell infusion. Symptoms of GVHD were
easily relieved with short-term use of steroids and/or cyclosporin
A. However, after anti-GVHD therapy, one patient with
moderately reduced blasts in bone marrow rapidly progressed
and died, and another patient with hematologic CR achieved
CD19 positive relapse (50). Nevertheless, a recent case report
presented that allogeneic donor-derived 4-1BB based CAR-T
cells were persistent up to 6 months after infusion under
therapeutic levels of cyclosporine A (52).

In contrast to the aforementioned studies using CAR-T cells
prepared from unselected T cells, two studies engineered 4-1BB
containing CAR-T cell products, which consisted of a defined
1:1 ratio of CD4+: CD8+ CAR-T cells (25, 32). This highly
TABLE 3 | Clinical outcomes of CAR-T cell therapy for post-transplant relapse.

Study N Costimulatory domain CR/CRi rate, % Acute GVHD, % Chronic GVHD, %

Donor derived allogeneic CAR-T cells
Kochenderfer et al. (47, 48) 20 CD28 80* 0 10
Cruz et al. (49) 8 CD28 50† 0 0
Dai et al. (50) 2 4-1BB 50 100 (grade 2 to 3) 0
Hu et al. (51) 3 4-1BB 67 33.3 (grade 3) NA
Recipient derived allogeneic CAR-T cells
Park et al. (10) 19 CD28 84 0 0
Maude et al. (17) 18 4-1BB NA 0 0
Lee et al. (27) 7 CD28 57 0 0
Zhang et al. (30) 16 4-1BB‡ 94 12.5 (grades 1 and 3) 12.5
Hu et al. (51) 11 4-1BB 100 18.2 (grade 2) NA
Turtle et al. (32) 11 4-1BB 93 0 9
Gardner et al. (25) 27 4-1BB 93 3.7 (grade 3) 0
December 2020 | Volume
CR, complete remission; CRi, complete remission with incomplete count recovery; GVHD, graft versus host disease.
*CR rate was calculated from five ALL patients.
†CR rate was calculated from two relapsed ALL patients.
‡81% of 110 enrolled patients received 4-1BB costimulatory CAR-T cells.
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defined CD19 CAR T-cell product was remarkably potent, with
over 90% of patients achieving CR after CAR-T cell therapy in
both studies. Turtle et al. reported that 27 (93%) of 29 patients
with R/R B-ALL achieved bone marrow remission after CAR-T
cell therapy. Patients who received lymphodepletion with
fludarabine and cyclophosphamide before CAR-T cell therapy
achieved a 1-year DFS rate greater than 60%. Eleven patients
with prior allo-HSCT received infusions of CAR-T cells
manufactured from recipients. None of the 11 patients
developed acute GVHD after CAR-T cell therapy. One
patient who had grade 1 acute skin GVHD before study
enrollment developed chronic GVHD at 3 months after CAR-
T cell infusion and required corticosteroid therapy (32). In
another study of 45 patients with R/R B-ALL, the MRD
negative remission rate after CAR-T cell therapy was 93%.
The estimated 12-month EFS of the infused patients was 50.8%,
the estimated 12-month OS was 69.5%, and the median follow-
up time was 9.6 months. Twenty-seven patients in this study
had undergone prior allo-HSCT. One patient had a history of
GVHD, which had been phased off GVHDmedication for more
than 1 year prior to CAR-T cell therapy, and developed grade 3
acute skin GVHD (25).

Compared with DLI, CAR-T cell therapy has a higher
remission rate for post-transplant relapse and the incidence of
GVHD associated with CAR-T cells infusion seems to be
relatively low. To date, a summary of all data on CAR-T cell
therapy for post-transplant relapse showed that the incidence of
GVHD was less than 10%. The risk factors for allogeneic CAR-T
cell-associated GVHD have not been fully defined. But from the
current data, it may be related to the source of T cells (donor- or
recipient-derived), CAR structure (53–56), CAR-T cell
subpopulation, the history of GVHD after allo-HSCT, which
needs to be further clarified by larger data support.
CAR-T CELL THERAPY TO CLEAR PERI-
TRANSPLANTATION MRD

CAR-T cell therapy improves the outcomes of R/R ALL
strikingly, but has potentially life-threatening complications,
including CRS and ICANS, especially in patients with high
disease burdens. Although most patients make a full recovery
after treatment, patients with grades 3 to 4 CRS or ICANS are
recommended to be transferred to the intensive care unit, and a
small percentage of patients still die because of serious
complications. Therefore, CAR-T cell therapy could be used
more safely to clear MRD with morphological remission, which
is suggested to accompany mild complications. In addition,
MRD is a powerful prognostic factor in the treatment of ALL
(57–63). For ALL patients receiving allo-HSCT, peri-
transplantation MRD levels have been confirmed to be
significantly associated with post-transplant relapse and long-
term survival. Thus, for B-ALL patients undergoing allo-HSCT,
the application of CAR-T cell therapy to clear peri-
transplantation MRD is an effective and safe way to improve
the prognosis. Previous studies on CAR-T cell therapy included
Frontiers in Immunology | www.frontiersin.org 6
patients with MRD-positive remission and patients with elevated
MRD after transplantation.

Park et al. included 15 patients who had MRD with bone
marrow blasts rates ranging from 0.01 to <5% and six patients
with MRD-negative remission (10). Results showed that when
compared with higher disease burden (≥5% bone marrow blasts),
lower disease burden (<5% bone marrow blasts) was associated
with a lower risk in severe CRS (41 vs 5%, P = 0.004) and
neurotoxic effects (59 vs 14%, P = 0.002). Moreover, patients with
lower disease burden had significantly longer EFS (10.6 vs 5.3
months, P = 0.01) and OS (20.1 vs 12.4 months, P = 0.02) than
patients with higher disease burden. But there was no significant
difference in survival between patients with lower disease burden
who underwent transplantation and those who did not.

Another study included six patients with marrow blasts less
than or equal to 5%, two of whom were MRD-positive after
transplantation (27). Patients with higher disease burden were
significantly more likely to have grades 3 or 4 CRS than patients
with lower disease burdens (P = 0.039). After CAR-T cell
therapy, all six patients obtained MRD-negative remission. Five
of them underwent subsequent allo-HSCT after MRD clearance
and remained disease-free with no unexpected peri-transplant
toxicities. One patient with previous allo-HSCT was ineligible to
receive a second allo-HSCT and relapsed with CD19-negative
leukemia 3 months later.

In a study of 110 high-risk ALL patients treated with CAR-T
cell therapy, 42 patients with MRD-positive remission were
included (30). CAR-T cell therapy successfully cleared MRD in
all 42 patients with a significantly lower incidence of grades 3 to 4
CRS and grades 2 to 3 neurotoxicity compared with patients who
had morphologic relapse. The majority of patients (73.5%) in this
study received subsequent allo-HSCT and achieved an LFS of
76.9% at 1 year. Notably, among the 75 patients who received
allo-HSCT, only seven (10.1%) of 69 MRD-negative patients
relapsed after transplantation, while three (50%) of six MRD-
positive patients relapsed after transplantation. This reflected the
importance of clearing MRD before transplantation to reduce
post-transplant relapse.

Kebriaei et al. conducted a phase 1 trial in 17 B-ALL patients
who received allogeneic CD19 CAR-T cells infusion to target
MRD at a median of 64 days after allo-HSCT (64). CAR T cells
were administered without additional lymphodepletion. GVHD
prophylaxis was tapered and discontinued by 6 months after
allo-HSCT. No unexpected acute infusion or delayed toxicities
were noted. Three patients developed GVHD, one patient with
grade one acute skin GVHD and one patient with chronic skin
GVHD who responded to steroids. One patient with a prior
history of drug-induced hepatotoxicity died from hepatic
GVHD. Following allo-HSCT, 1-year PFS and OS were 53 and
63%, respectively. When the subset of patients who received
haplo-HSCT was analyzed, the respective1-year rates were 75
and 100%, respectively. In a similar study, Zhang C et al.
reported that two high-risk ALL patients who received haplo-
HSCT were prophylactically infused with donor CAR-T cells on
day 60 without CRS and GVHD. Two patients survived with
disease-free for 1 year and 6 months, respectively (65).
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From the above results of the studies, CAR-T cell therapy is
an effective and safe method to clear peri-transplantation MRD.
At present, there are an increasing number of clinical studies in
this field. As more studies confirm the results, the clearance of
MRD will greatly expand the application of CAR-T cell therapy.
In addition, whether prophylactic CAR-T cells infusion for high-
risk ALL with MRD-negative remission can prevent relapse is
another interesting topic.
INCORPORATION OF CAR TECHNOLOGY
INTO THE TREATMENT OF GVHD

GVHD is the most frequent complication after allo-HSCT (66, 67).
Despite improvements in post-transplant immunosuppression, 20–
60% of recipients still develop GVHD, which is the leading cause of
non-relapse mortality following allo-HSCT (7). Alloreactive T cells
mediated immune injury to the host organ is a key process in
GVHD. Therefore, negative regulation of T cells to induce immune
tolerance is the main method to prevent and treat GVHD. In recent
decades, the commonly used immunosuppressive agents for GVHD
include steroids, calcineurin inhibitors, and mycophenolate mofetil,
etc. However, due to the lack of specificity of these drugs and the
requirement of long-term maintenance, they can lead to loss of T
cell immune function, weaken the anti-infection and anti-leukemic
effects of T cells after allo-HSCT, and increase the risk of infection
and relapse.

In recent years, an increasing subpopulation of immune cell
have been considered to play a role in GVHD (68). Adoptive
transfusion of immune cells in GVHD has attracted increasing
attention. Previous studies have shown that regulatory T cells
(Tregs) infusion can prevent and treat GVHD effectively and
have little influence on GVL effects (69–73). Other immune cell
subsets, such as NK cells, NKT cells, myeloid derived suppressor
cells and type II innate lymphocytes, have also been proved to
reduce the incidence of GVHD in a series of preclinical and
clinical studies, while the GVL effect remains (74–79).

However, a large number of polyclonal Tregs infusion
without antigen specificity leads to widespread, non-specific
immunosuppression. Compared with polyclonal Tregs, antigen-
specific Tregs have the advantage of migrating to target antigen,
persisting in local tissues and mediating local immunosuppression
(80, 81). Thus, a relatively small number of antigen-specific Tregs
will be sufficient to produce immunosuppression (80, 82). Antigen-
specific Tregs can be enriched from alloreactive T cells following
stimulation with allogeneic antigen-presenting cells in vitro. The
expansion efficiency in vitro is relatively low, which can limit the
number of cells and their universal application in patients. In
addition, the extensive expansion of antigen-specific Tregs by
antigen-presenting cells stimulation will lead to loss of FOXP3
(83) and decreased survival in vivo (84).

The emergence of CAR technology enables T cells to
specifically recognize, bind and clear targeted cells in a non-
MHC restricted manner. These characteristics of CAR
technology have opened new ideas for conferring Treg cell
Frontiers in Immunology | www.frontiersin.org 7
specificity, or CAR-Tregs. CAR-Tregs have a stable phenotype
and function without MHC restriction and are less dependent on
IL-2. It preferentially migrates to target sites and has stronger
specific immunosuppressive effects (85). In animal models, CAR-
Treg has shown great potential in the treatment of various
diseases, especially autoimmune diseases (86–90).

MHC class I molecules are constitutively expressed on the
surface of almost all nucleated cells and are major determinants
of allo-HSCT compatibility. Therefore, MHC class I molecules
are potential target antigens for CAR-Tregs to induce immune
tolerance after allo-HSCT. In 2016, a group created HLA-A2–
specific CAR and its application in generating antigen-specific
Tregs (91). In vitro, A2-CAR-Tregs maintained their expected
phenotype and inhibitory function before, during, and after A2-
CAR-mediated stimulation and did not have cytolytic activity. In
a mouse model of xenogeneic GVHD transplanted from human
PBMCs to NSG mice, human A2-CAR-Tregs were superior to
Tregs expressing unrelated CAR in preventing xenogeneic
GVHD caused by HLA-A2+ T cells. Two other groups also
established A2-CAR-Tregs and demonstrated their enhanced
inhibitory function in a human skin xenograft transplant
model (92, 93). More recently, Dawson et al. developed a panel
of humanized A2-CARs and tested them in Tregs. Adoptive
transfer of humanized A2-CAR Tregs in vivo showed that
humanized A2-CAR Tregs migrate rapidly and persist in A2-
expressing allografts, suppress HLA-A2+ cell-mediated
xenogeneic GVHD, and diminish rejection of human HLA-
A2 + skin allografts (94).

Besides cell-based immunosuppression, another strategy to
control GVHD is to target important cells or molecules in the
process of GVHD. CD83 is an important marker to define
activated human dendritic cells. CD83 is also expressed on
activated human T lymphocytes, but not on natural Treg
(95). Previous studies have shown that monoclonal antibodies
targeting CD83 can reduce GVHD in mice without affecting
GVL and antiviral activity (96). Therefore, CD83 may be a
potential target for CAR-T cells for the prevention and
treatment of GVHD. As mentioned above, CAR-T cells have
the property of recognizing, binding, and clearing cells carrying
target antigens and infusion of donor-derived CAR-T cells after
allo-HSCT is less likely to elicit GVHD. Based on these
characteristics of CAR-T cells, human CD83-targeted CAR-T
cells have been developed for the prevention of GVHD (97).
Human CD83 CAR-T cells can eradicate pathogenic CD83+
target cells, substantially increase the ratio of Tregs to allo-
activated conventional CD4+ T cells, and have preventive and
therapeutic effects on xenogeneic GVHD.
ALLOGENEIC CAR-T CELLS AS PART
OF HAPLO-HSCT

For patients with high leukemia burden, it is difficult to collect
enough autologous T cells in CAR-T cell production. There are
also cases where the autologous T cells fail to produce CAR-T
cells due to T cell dysfunction and the effects of previous
December 2020 | Volume 11 | Article 611710
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chemotherapy. Allogeneic CAR-T cells may solve this problem.
However, allogeneic CAR-T cells will be quickly eliminated by
the patient’s immune system without additional gene editing or
long-term lymphodepletion.

Two groups from China developed a newmethod to co-infuse
allogeneic CAR-T cells with allogeneic hematopoietic stem cells
from haploidentical donor into R/R B-ALL patients (98–100).
After re-induction of chemotherapy or a reduced-intensity
conditioning regimen, haploidentical donor-derived CD19-
CAR-T cells were infused in incremental numbers for 4 days.
Haploidentical hematopoietic stem cells were infused after CAR-
T cells infusion. The infusion of CAR-T cells as part of the
conditioning regimen eradicated leukemia cells and the patients’
normal B cells, and may improve hematopoietic stem cells
engraftment. In turn, engraftment of allogeneic hematopoietic
stem cells can further enhance the amplification and persistence
of allogeneic CAR-T cells. A total of 4 patients with R/R B-ALL
were reportedly treated with this protocol. An MRD-negative
remission was achieved and complete donor cell engraftment
Frontiers in Immunology | www.frontiersin.org 8
was established. One patient did not have GVHD because of
GVHD prophylaxis, but had a short duration of CAR-T cells
persistence. The remaining three patients without GVHD
prophylaxis developed varying degrees of GVHD, but the
CAR-T cells persist relatively longer with the longest
persistence up to 20 months. Two patients died from severe
infections and two patients survived for 100 days and 20 months
with disease-free, respectively.

Recently, Wiebking et al. designed an intriguing approach
which combined both allo-HSCT and CAR-T cell therapy with
complementary anti-leukemia mechanisms: the HLA-dependent
activity of GVL effect and the HLA-independent mechanism of
CAR-T cell (101). In this setting, a TCRab/CD19-depleted
haplo-HSCT platform was employed, which was associated
with very low transplantation-related mortality and GVHD
incidence (102–105). CAR-T cells were manufactured from
depleted ab T cells by genome editing to express CD19-
specific CARs, while simultaneously inactivating the T cell
receptor and rejoining the graft of haplo-HSCT. In vivo, the
A

B

D

E

C

FIGURE 1 | Allo-HSCT in combination with CAR-T cell therapy aiming to improve the prognosis of B-ALL. (A) CAR-T cell therapy as a definitive treatment or a
bridge to allo-HSCT for R/R B-ALL. (B) Infusion of allogeneic CAR-T cells to treat post-transplant relapse. (C) Clearance of minimal residual disease peri-
transplantation by CAR-T cell therapy. (D) Incorporation of CAR technology into the treatment of GVHD. (E) CAR-T cells as part of the conditioning regimen or graft
in allo-HSCT. R/R B-ALL, relapsed or refractory B cell acute lymphoblastic leukemia; CR, complete remission; Allo-HSCT, allogeneic hematopoietic stem cell
transplantation; CAR, chimeric antigen receptor; MRD, minimal residual disease; GVHD, graft-versus-host disease; Treg, regulatory T cell.
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abTCR-CD19 CAR-T cells eliminated leukemia without causing
GVHD in a preclinical xenograft model. This appealing program
needs to be further verified in the clinical setting.
CONCLUSIONS

The treatment of high-risk ALL remains a challenging. Especially
for adult ALL, the outcomes of receiving chemotherapy alone are
still poor (106). The establishment of the haplo-HSCT system,
which allows almost all patients to have a donor, has greatly
improved the prognosis of ALL. The emergence of CAR-T cell
therapy has further brought an amazing breakthrough in the
treatment of R/R B-ALL. At present, the two therapeutic
approaches (allo-HSCT and CAR-T cell therapy) have their
own indications and mechanisms, which are difficult to be
completely replaced. Combining the two approaches to
establish a complete B-ALL treatment system will become an
important development area at present and in the future, so as to
further improve the prognosis of B-ALL and approach the goal of
curing B-ALL (Figure 1). According to the available data, CAR-
T cell therapy can obtain a high remission rate in R/R B-ALL
patients. After remission, some patients can obtain long-term
CAR-T cells persistence and disease-free survival, which makes
CAR-T cell therapy a definitive method, while other patients
need subsequent allo-HSCT to further reduce relapse rates. For
Frontiers in Immunology | www.frontiersin.org 9
B-ALL patients with post-transplant relapse, infusion of
allogeneic CAR-T cells also achieves high remission rates with
low incidence of GVHD. It is not clear whether secondary
transplantation is necessary or not according to the small
number of cases. Haplo-HSCT is suggested to be associated
with higher incidence of GVHD compared with allo-HSCT from
matched sibling donors. CAR technology is a good strategy for
the treatment of GVHD. The results from preclinical studies are
encouraging and its clinical application is worth expectation in
the future. In addition, CAR-T cells are also being explored as a
part of haplo-HSCT, such as conditioning regimen or graft, and
the complementary mechanism of the two methods are expected
to bring better therapeutic effect.
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