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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is characterized by abnormal lung inflammation that
exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to
investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models
do not mimic in vivo situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of
primary cells, etc.). To circumvent these concerns, we developed a new epithelial cell culture model.

Methods: Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and
non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES). BES were
analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also
compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with
lipopolycaccharide (LPS) and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8) and
leukotriene B4 (LTB4) and the anti-inflammatory mediator prostaglandin E2 (PGE2).

Results: BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium
with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency
of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic
features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and
following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p
< 0.001) which correlated with lung function changes.

Conclusion: This study provides for the first time a compelling evidence that the BES model provides an unaltered
bronchial surface epithelium. More importantly, BES represent an attractive culture model to investigate the mechanisms
of injuring agents that mediate epithelial cell inflammation and its contribution to COPD pathogenesis.
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Background

Chronic obstructive pulmonary disease (COPD) is charac-
terized by progressive limitation of expiratory airflow and
is associated with chronic inflammation in response to
various injuring agents [1,2]. Cigarette smoke outweighs
any other etiologic factor in the development of COPD.
And exacerbations mediated for instance by respiratory
infections have a direct effect on the disease worsening
and acceleration of lung function loss [3]. COPD is recog-
nized as a major health problem worldwide resulting in
large consumption of health care resources [4]. Remarka-
bly, advances in therapy against COPD are still limited
due in part to poor understanding of the mechanisms
underlying the setting and/or progression of this disease.

Among the hallmarks of COPD are chronic inflamma-
tion, injury of both parenchyma and epithelial lining, and
recruitment/activation of inflammatory cells (neu-
trophils, macrophages and CD8+ T cells) triggered in part
by mediators derived from the epithelium [5-8]. In con-
trolled situations, the bronchial epithelium represents the
first line of defense and protects the lung by acting as a
physicochemical barrier of the submucosa. This tissue is
also able to mount an inflammatory response releasing
mediators following exposure to insulting agents includ-
ing cigarette smoke [9], cytokines [10-13], and infectious
pathogens or their products such as lipopolysaccharide
(LPS) [14-16]. However, in the setting of overwhelming
conditions such as in COPD, there appears to be an
abnormal inflammatory response in the lungs beyond the
normal protective response. But, the mechanisms of air-
way epithelium inflammation and their contribution to
COPD development are not entirely clear.

Different systems have been developed to investigate the
role of airway epithelium in COPD. Morphologic analy-
ses using surgical specimens or bronchial biopsies from
COPD and non-COPD smokers demonstrated an
enhanced inflammatory cell infiltration in COPD, goblet
cell hyperplasia and plugging associated with mucus
hypersecretion in both groups [17]. Of note, these studies
did not reveal discernable histologic differences in bron-
chial surface epithelium between the two groups. Func-
tional analyses or response studies to stimuli could not
be carried out using these tissues. A number of cell culture
models were established to study the role of the epithe-
lium in COPD ranging from its response to insults, differ-
entiation, injury, and regeneration. These models include
cell culture on uncoated or coated wells, air-liquid inter-
face system, and xenograft model. Application of either
model to epithelial cell lines or primary epithelial cells
provides undoubtedly insights in the biology of epithe-
lium. But, extrapolation of data obtained from these
studies to in vivo situations could be misleading due to a
number of concerns. For example, epithelial cell lines
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employed in most of the studies are transformed cells.
Primary bronchial epithelial cells, when removed from
their host tissue, are dissociated (e.g., trypsinisation).
And when grown as monolayers, they undergo dediffer-
entiation, proliferation and loose some of their specific
functions. Indeed, epithelial cells dissociated from nasal
polyps dedifferentiate rapidly with loss of ciliated cells
and disappearance of tight junctions [18]. More recently,
we and others have developed three-dimensional (3-D)
cultures of human epithelial cells, spheroids, using lung
epithelial cell lines or cells derived from nasal epithelium
[19-24]. Compared to 2-D models, the 3-D culture model
keeps the airway epithelium in a well-differentiated and
polarized state, as demonstrated by an enhanced expres-
sion of functional tight junctions proteins, an increase in
expression of cell-specific markers and a greater induc-
tion in proinflammatory cytokines following stimulation
[19]. Although, these studies suggest 3-D cultures as a
more physiologically relevant model to examine airway
epithelium functions, 3-D culture from nasal epithelium,
a widely used model, may not represent in vivo situations
due to cell changes resulting from protease-induced
dissociation, proliferation, secondary aggregation and
differentiation.

Our goals in the current study were two fold. First, we
sought to develop for the first time a bronchial epithelial
spheroids (BES) model, a 3-D culture system, using non
transformed non dissociated bronchial brushings obtained
from COPD and non-COPD patients. Second, we vali-
dated this model by comparing the responses of both types
of BES to lipopolysaccharide (LPS), a ubiquitous endo-
toxin. Our findings show that COPD and non-COPD
smokers-derived brushings form spontaneously 3-D BES.
Both types of BES are characterized by a polarized bron-
chial epithelium with tight cell-cell junctions, composed of
basal cells, secretory cells and ciliated cells. We also provide
evidence that COPD, but not non-COPD BES, exhibit an
enhanced inflammatory response to LPS.

Methods

Patients

Patients referred to Reims University Hospital to undergo
flexible bronchoscopy were screened for inclusion in the
present study. All the patients were current or ex-smokers
(>10 pack-years). The selection of COPD patients was
established on the basis of the Global Initiative for
Chronic Obstructive Lung Disease guidelines [25] as a
ratio of FEV,/FVC less than 0.7 after the administration of
200 pg of salbutamol. Patients were excluded from the
study when one of the following conditions was present :
recent history of exacerbation and/or respiratory tract
infection, an increase in FEV, > 20%/baseline or >200 mL
at 30 min following 200 pug of inhaled salbutamol, history
of asthma, and use of inhaled or systemic corticosteroids.
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Patients were asked not to smoke 12 hours before bron-
choscopy. Detailed informations about the patients
included their smoking habits (current smoking status
and number of pack-years), drug history, age, weight and
height.

Lung function was determined for all patients, including
FEV,, FVC, FEV,/FVC, reversibility of airflow limitation
(AFEV,) measured after administration of 200 pg salbuta-
mol, total lung capacity (TLC), residual volume (RV), and
diffusing capacity for carbon monoxide per liter alveolar
volume (K.,) (BodyBox 5500, Medisoft, Sorinnes, Bel-
gium). For all COPD patients, the BODE index was com-
puted from body-mass index, degree of airflow
obstruction, dyspnea score (Modified Medical Research
Council scale), and exercise capacity measured by the six-
minute-walk test [26].

The study was approved by the Consultative Committee
Protecting Persons in Biomedical Research (CCPPRB) of
Champagne-Ardenne. All the subjects gave their informed
written consent.

Fiberoptic bronchoscopy and bronchial brushings

After local anesthesia with 2% lidocaine, a fiberoptic
bronchoscope (Olympus, Paris, France) was inserted into
the trachea and airways were systematically examined.
Bronchial epithelium was obtained by gentle brushing of
segmental bronchi under visual control by mean of a
cytology brush (Olympus, Paris, France). Each patient
underwent 6 bronchial brushings. Brushes were processed
immediately to carry out our studies.

Culture of bronchial epithelial spheroids

Samples obtained from bronchial brushings were gently
centrifuged (50 g for 5 min), and resuspended in 2 mL
RPMI-1640 (Invitrogen, Carlsbad, CA) supplemented
with insulin (1 pg/ml; Sigma Chemical, St Louis, MO),
Apo-transferrin (1 pg/ml; Serva, Heidelberg, Germany),
epidermal growth factor (10 ng/ml; Sigma), hydrocorti-
sone (0.5 ug/ml; Sigma), retinoic acid (2,5 ug/ml; Sigma),
amphotericin B (2,5 pg/ml; Sigma), penicillin (200 U/ml)
and streptomycin (100 U/ml). Bronchial brushings were
then treated with a mucolytic agent (acetylcysteine 2.5%)
(Bristol-Myers Squibb, Rueil-Malmaison, France) for 15
min. Epithelial sheets were then collected and washed two
times. Pooled bronchial epithelial sheets were then resus-
pended in 2 ml medium supplemented with fetal calf
serum 10% and cultured in 24-well flat-bottomed culture
plates at 37°C, 5% CO2 for 24 h. Under static conditions,
bronchial epithelial sheets formed rapidly and spontane-
ously distinctive bronchial epithelial spheroids (BES).
BES were in suspension and did not adhere to the wells.
Next, BES were gently transferred to new culture plate,
washed one time and cultured for various time periods (1
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to 8 days). Morphological and functional analyses were
carried out at designated time points.

Tissue section preparation and immunofluorescence

BES were gently centrifuged and cryofixed in liquid nitro-
gen and stored at -80°C as previously described [18].
Transverse frozen sections (5 wm thick) were placed on
gelatin-coated glass slides and fixed in methanol (-20°C)
for 10 min. Slides were washed twice in PBS, incubated in
1% bovine serum albumin (BSA) for 5 min and then incu-
bated for 1 h at room temperature with the following pri-
mary antibodies: anti-Cytokeratin 13 (Sigma) anti-
Cytokeratin 18 (Sigma), anti-MUC5AC (gift from JP
Aubert, Lille, France), anti-occludin (Zymed, San Fran-
cisco, CA), anti-zonula occludens (ZO-1) (Zymed), anti E-
cadherin (R & D Systems, Minneapolis, MN), anti-IL-8
(Biosource International, Camarillo, CA), and Ki67 anti-
gen (MIB-1 clone) (Immunotech, Marseille, France). Pre-
immune sera were used as negative controls. Next, slides
were washed three times and incubated with the bioti-
nylated secondary antibody for 1 h at room temperature.
After washing the slides three times, Alexa Fluor 488-con-
jugated streptavidin (1:100; Molecular Probes) was
added. Nuclei were couterstained with Harris haematoxy-
lein solution (Sigma), mounted in citifluor antifading
solution (Agar Scientific, Essex, United Kingdom), and
observed with an Axiophot microscope (Zeiss, Le Pecq,
France) at a magnification of x 40.

Transmission Electron Microscopy

BES were fixed in 2% glutaraldehyde-PBS for 1 h at room
temperature and then postfixed with 1% osmium tetrox-
ide at 4°C. BES were then dehydrated and embedded in
increasing concentrations of Epon diluted in ethanol and
ranging from 50% to 100%. Polymerisation for 78 h at
60°C was then carried out. Ultrathin sections (80 nm)
were cut on a microtome, mounted on copper grids, and
stained with uranyl acetate and lead citrate. The sections
were observed on a J.E.O.L. 200 x transmission electron
microscope operating at 75 kV.

Videomicroscopy and measurement of ciliary beat
frequency

BES plates were placed in a culture chamber at 37°C, 5%
CO2, and was followed overtime by videomicroscopy
using a CCD video-camera connected to an Axiophot
microscope (Zeiss, Le Pecq, France) with x40 objective. In
order to assess the ciliary beating, the video images of
active ciliated cells were displayed on a video screen. A
photodetector placed on a ciliated cell on the video
detects an analogic signal which was filtered, amplified
and numerized to obtain the ciliary beating frequency, as
previously described [27]. Ciliary beat frequency was
measured on five different BES per preparation, and the
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mean ciliary beat frequency was determined by averaging
five different measures.

LPS stimulation of BES and ELISA

For LPS dose-response experiments, BES obtained from
each patient were equally divided in four different wells in
a 1 ml culture medium and incubated with 0, 0.1, 1 or 10
ug/ml Pseudomonas aeruginosa LPS (Calbiochem, San
Diego, CA) for 24 h at 37°C, 5% CO2. Next, BES were
treated with 10 pg/ml LPS and supernatants collected at 1,
4, 8 and 24 h for time-course experiments.

Supernatants were separated to BES by centrifugation. IL-
8, PGE2 and LTB4 levels were measured in the superna-
tants using quantitative sandwich immunoassay tech-
nique (R & D Systems, Minneapolis, MN) following the
manufacture's instructions. The cell pellet of BES was
treated with RIPA buffer (50 nM Tris [pH 7.4], 150 mM
NaCl, 1% Igepal [vol/vol], 1% sodium deoxycholate [wt/
vol], 5 mM iodoacetamide, 0.1% sodium dodecyl sulfate
[SDS, wt/vol]) containing a protease inhibitor cocktail
(Roche Diagnostics GmbH, Mannheim, Germany). BES
protein concentrations were determined using BC assay
protein quantification kit (Interchim, Montlugon,
France). Levels of IL-8, PGE2 and LTB4 were normalized
to BES total protein concentrations, and were expressed in
pg.mg total protein-!. LPS-induced fold-increase of the
inflammatory mediators were determined as ratio of LPS-
induced and basal levels. Following LPS dose-response
and time course experiments, 10 pug/ml LPS and 24 h cul-
ture time were chosen as optimal conditions and were
used for subsequent experiments.

Table I: Physiological characteristics of study population.
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Next, levels of IL-8, PGE2, and LTB4 at basal state and
following LPS stimulation were assessed using BES from
well-characterized 16 COPD and 13 non-COPD smokers
(Table 1). BES from each patient were divided in two wells
and incubated with or without 10 pg/ml LPS for 24 h. IL-8,
PGE2 and LTB4 levels in supernatants were determined as
described above. Correlations between levels of inflamma-
tory mediators and the clinical/functional parameters of
patients were determined.

Statistical analysis

Data are expressed as mean + SD. A Mann-Whitney U-test
was used to compare the groups and the correlations
between variables were calculated by means of the Spear-
man's rank correlation test. A p < 0.05 was considered as
significant. A multivariate analysis, including variables
showing significance correlation to LPS-induced IL-8 in
the univariate analysis, was performed with a multiple lin-
ear regression model.

Results

BES exhibit characteristic features of intact bronchial
surface epithelium

Non dissociated epithelial sheets obtained by bronchial
brushings formed rapidly and spontaneously free-floating
bronchial epithelial spheroids (BES) rolling in the culture
medium (Fig. 1A, videomicroscopy). This 3-dimensional
structure consisted of a circular pseudostratified epithe-
lium containing columnar cells with cilia facing outside,
and small pyramidal cells with a low cytoplasmic/nuclear
ratio (Fig. 1B,C,D,E). Tight cell-cell junctions and inter-
digitations were maintained in BES (Fig. 1F). A central
lumen was present in most BES. Of interest, BES were

COPD Patients (n = 16) Non-COPD Smokers (n = 13) p value
Age, yr 575+99 568 |1.1 NS
Sex (M/F) 13/3 1172 NS
Weight, kg 77.1 £232 69.1 £ 15.1 NS
Height, m 1.71 £ 0.09 1.71 £0.10 NS
BMI, kg/m? 26.03 £ 6.85 23.40 + 3.84 NS
PostBD-FEV,, % 55.38 + 13.7 100.77 + 9.64 <0.01
FVC, % 8231 + 12.13 104.45 + 7.87 <0.01
Post-BD-FEV,/FVC, % 53.06 + 10.41 77.08 £ 2.96 <0.01
TLC, % 110.56 £ 19.22 9777 £ 9.42 <0.01
RV, % 155.69 + 49.63 96.89 + 28.01 <0.01
Keor % 69.63 + 21.07 87.30 + 10.00 <0.01
Smoking status, Current/Former 8/8 6/7 NS
Pack years of smoking 44.44 + 15.03 25.92 £ 9.37 <0.05
Moderate/Severe COPD 10/6 - -
MMRC Dyspnea scale 2.13 £ 0.62 - -
Distance walked in 6 min, m 339 £ 90 - -
BODE Index 3.25 £ 2.66 - -

BD = bronchodilator, BMI = body mass index, F = Female; M = Male; NS = statistically non significant. Values are presented as mean + SD.

Mann-Whitney U-test.
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Videomicroscopy

http://respiratory-research.com/content/8/1/86

Light Microscopy

Transmission Electron Microscopy

Figure |

Morphology of bronchial epithelial spheroids. Bronchial sheets were sampled by brushings from COPD and non-COPD
patients. (A) Videomicroscopy (see video online) shows bronchial epithelial sheets-derived spheroids. (B,C) Circular pseudos-
tratified epithelium with columnar ciliated cells facing outside, and small pyramidal basal cells. Note, the presence of a central
lumen. (D,E,F) Cohesive epithelial cells with close interdigitations and cilia facing outside. (G) Phenotypic and structural charac-
teristics of spheroids were maintained up to 8 days. Micrographs are representative of spheroids obtained from COPD and
non-COPD patients (n = | 1). A, x10; B, x40,C, x80; D, x800; E, x3000; F, x5000; G, x800. BC, basal cells; CC, ciliated cells;

Cil,, cilia; arrow indicates cell interdigitations.

maintained in culture up to 8 days without any noticeable
cell disaggregation. Structurally, BES cultured for 1
(Fig. 1D-F) or 8 (Fig. 1G) days showed similar features.

Immunofluorescence microscopy analyses found that
COPD and non-COPD BES comprised basal cells
(CK13+), ciliated cells (CK18+), and few secretory cells
(MUCS5ACH+) (Fig. 2A,B,C). Immunofluorescence staining
of ZO-1, Occludin and E-Cadherin revealed distribution
of these proteins in the intercellular junctions
(Fig. 2D,E,F; arrows). A non-specific patchy staining could
be observed on the apical (for ZO-1 and Occludin) and
basal (for E-cadherin) sides of spheroids.

No proliferation was observed as judged by the absence of
immunostaining for the nuclear marker Ki67 (data not
shown). BES remained tight throughout our study, as no
cell detachment or lysis was detected. Cell viability of BES
was >95% when evaluated by trypan blue exclusion assay.

The BES rolling, as shown by videomicroscopy, was asso-
ciated with ciliary beating (Fig. 3A, videomicroscopy).
Interestingly, the ciliary beat frequency was not different
between COPD and non-COPD BES (9.51 + 1.34 Hz ver-
sus 9.22 + 1.66 Hz, respectively) (Fig. 3B). Also, exposure
of BES to LPS (10 ug/ml LPS for 24 h) resulted in slight
but similar increase of ciliary beat frequency in both
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MUCSAC

Cell types

Figure 2
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Intercellular junctions proteins

Immunofluorescence staining of bronchial epithelium spheroids. | and Il) Right panels of immunostained BES using
antibodies specific to various cells types and intercellular junction proteins. Left panels show bright field images. (A) Anti-cytok-
eratin |3 antibody (CK|3) for basal cells. (B) Anti-cytokeratin 18 (CK|8) for ciliated cells. (C) Anti-mucin 5AC (MUCS5AC) for
secreted cells. (D,E,F) Antibodies against intercellular junction proteins zonula occludens-1 (ZO-1), Occludin (Occl) and E-Cad-
herin (E-Cad). Arrows depict staining for ZO-1 and Occludin in the intercellular junctions. Micrographs are representative of

spheroids from COPD and non-COPD patients (n = 7).

groups (Fig. 3B). Immunofluorescence staining for IL-8
found enhanced immunoreactivity following treatment of
BES with LPS (Fig. 3C). All together, these data suggest
that BES represent an intact bronchial epithelium that
responds to stimulation.

Enhanced release of LPS-induced IL-8, but not PGE2 and
LTB4, by COPD BES

Next, we determined the relevance of BES model to study
the contribution of the bronchial surface epithelium to
COPD airway inflammation. We obtained bronchial
brushings from well-characterized COPD and non-COPD
smokers. Freshly cultured spheroids were then exposed to
LPS, an ubiquitous contaminant endotoxin. We incu-
bated BES with different concentrations of LPS and exam-
ined their ability to induce the expression of the
mediators IL-8, PGE2 and LTB4. Following LPS treatment

for 24 h, IL-8, PGE2 and LTB4 levels increased in a LPS
dose-dependent manner (0.1 to 10 ug/mL) in both COPD
and non-COPD BES (Fig. 4A,B,C). These dose response
and time course experiments found that 10 pug/mL LPS
treatment resulted in a statistically significant increase of
IL-8, but not LTB4 and PGE2, in COPD BES (p < 0.001)
by comparison to non-COPD BES. Also, LPS-induced
release of IL-8 and PGE2 from COPD and non-COPD BES
increased progressively overtime and peaked by 24 h,
whereas LTB4 release increased up to 4 h and remained
constant thereafter (Fig. 4D,E F). All the subsequent stud-
ies were carried out with 10 ug/mL LPS and 24 h culture
time.

Next, we investigated BES obtained from larger patients
groups, 16 COPD smokers and 13 non-COPD smokers
(Table 1). Bronchial brushes collected from COPD and
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Figure 3

LPS
COPD

LPS-induced IL-8

Functional analyses of bronchial epithelial spheroids. (A) Videomicroscopy shows ciliary beating associated with rolling
of spheroids (see video online). (B). The ciliary beat frequency was similar in spheroids from both COPD and non-COPD
smokers (n = 7) both at basal state (Basal) and after LPS stimulation (10 pg/ml LPS for 24 h) (LPS). (C) Representative micro-
graphs of untreated (-LPS) and LPS-treated (+LPS) COPD spheroids showing LPS-enhanced expression of IL-8.

non-COPD smokers displayed the same capacity to gener-
ate BES in vitro. BES responses were compared in the
absence or presence of LPS. Untreated COPD and non-
COPD BES released the same levels of IL-8, PGE2 and
LTB4 (Fig. 5A,B,C). After LPS stimulation (10 pg/mL for
24 h), there was a 3-fold increase of IL-8 in COPD BES by
comparison to non-COPD BES (Fig. 5D), whereas LPS-
induced PGE2 and LTB4 release were similar in both
COPD and non-COPD BES (Fig. 5E,F).

LPS-induced IL-8 release by BES correlates with clinicall
functional parameters of patients

The LPS-enhanced secretion of IL-8 was inversely corre-
lated with the level of obstruction (post-bronchodilator
FEV,). No correlation was established between post bron-
chodilator FEV, and PGE2 or LTB4 release (Fig. 5G,H,I).
Because of the significant correlation between FEV, and
LPS-induced IL-8 release, other clinical and functional
parameters were examined. In univariate analysis
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Figure 4

Release of IL-8, PGE2 and LTB4 by bronchial epithelial spheroids in function of LPS dose and time. (A,B,C) BES
from non-COPD (open bars) and COPD smokers (filled bars) were exposed to various concentrations of LPS for 24 h. Data
are expressed as fold increase of IL-8, PGE2 and LTB4 by comparison to basal levels. The findings are illustrative of 5 independ-
ent experiments. (D,E,F) LPS treatment (10 pg/ml) of COPD and non-COPD smokers BES for I, 4, 8 and 24 h. Data of IL-8,
PGE2 and LTB4 protein levels are expressed in pg.mg total protein-'. The findings are illustrative of 4 independent experi-
ments.

including all COPD and non-COPD smokers, basal levels ~ correlation was observed between LPS-induced IL-8
of IL-8 release did not correlate with any clinical and func-  release and FEV,/FVC, RV and K., (Fig. 6A,B,C). The
tional parameters of the patients, and LPS-induced IL-8  smoking status (current/former) correlated with neither
release was not correlated with age, sex, weight, height  basal nor LPS-induced IL-8 release. In univariate analysis,
and BMI (data not shown). Interestingly, a significant  the number of pack-years of smoking was correlated with
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and LTB4 in untreated spheroids. Note, no significant differences could be detected between COPD and non-COPD BES.
Results are expressed as pg of mediators per mg protein of BES. (D,E,F) Levels of IL-8, PGE2 and LTB#4 after LPS stimulation (10
pg/ml LPS for 24 h). Results are expressed as fold increase by comparison to untreated conditions. (G,H,l) Correlations
between LPS-induced IL-8, PGE2 and LTB4 fold-increase and postbronchodilator FEV,. Results are obtained from 16 COPD
smokers (filled rhombs) and |3 non-COPD smokers (open rhombs). Mann-Whitney U test for comparisons between groups.
Correlations between variables were calculated by means of the Spearman'’s rank correlation test.

LPS-induced IL-8 release (p < 0.01). Multivariate analysis
demonstrated, however, that postbronchodilator FEV;,
but not pack-years of smoking, correlated independently
with LPS-induced IL-8 release (12 = 0.35, p < 0.001). No
correlation was observed between basal and LPS-induced
release of PGE2 and LTB4 by BES and clinical and func-
tional parameters of COPD and non-COPD patients (data
not shown).

Discussion
In the present study, we developed for the first time a 3-D

cell culture model, bronchial epithelial spheroids (BES)

that should better our understanding of the role of
bronchial epithelium inflammation in COPD. By com-
parison to other 2-D or 3-D epithelial culture systems, this
model offers several advantages. The development of this
culture system is less time-consuming and does not
require any specific treatment. In fact, by avoiding trypsin
or protease-mediated cell dissociation, bronchial cells are
kept in their native intact states and do not undergo
dedifferentiation and/or proliferation as occurs in most
models. This "explant" type like system derived from
bronchial brushings resembles a native surface bronchial
epithelium. Comparative analyses found that both COPD
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and non-COPD bronchial epithelial sheets have the
capacity to form spheroids. Morphologic analyses showed
in both COPD and non-COPD BES a fully differentiated
and polarized pseudostratified epithelium consisting of
basal cells, ciliated cells and secretory cells. Tight
junctions were maintained as judged by immunostaining
for intercellular junction complexes ZO-1, occludin and
E-cadherin. Of note, staining for these protein junctions
on the apical and basolateral sides of spheroids has been
reported in other studies using biopsies or lung specimen
[28-30]. Whether this corresponds to non-specific stain-
ing or the presence of epitopes recognized by the antibod-
ies remains to be determined.

Interestingly, BES could be maintained in culture for at
least 8 days. Contrary to previous studies using nasal epi-
thelium that showed a lower ciliary beat frequency in
COPD [31], no differences were found between COPD
and non-COPD BES either in the basal state or after LPS
treatment. Compared to nasal epithelial cells, BES are best
suited to investigate the inflammatory mechanisms of
bronchial epithelium and their contribution to COPD
pathogenesis. Furthermore, bronchial, but not nasal
brushings, generate sufficient numbers of spheroids to
carry out cellular and molecular studies.

To determine the relevance of our culture model to study
COPD, we chose purposely LPS as an injuring agent and
analyzed its effect on BES. We examined expression levels
of the neutrophil chemoattractant pro-inflammatory
mediators IL-8 and LTB4, and the anti-inflammatory
mediator PGE2 [32-34] in COPD and non-COPD BES. In
the absence of treatment, both COPD and non-COPD
spheroids released readily and similarly detectable
amounts of IL-8, PGE2, and LTB4. Our findings are in
contrast with others studies, which showed changes in lev-
els of the inflammatory mediator IL-8 [11-13]. These stud-

ies used 2-D primary epithelial cell cultures from
bronchial brushings or biopsies, suggesting that differ-
ences in data could be related to cell "manipulations”
(e.g., protease-induced cell dissociation, proliferation and
2-D culture). Exposure of BES to LPS resulted in an
enhanced release of IL-8 in a time and LPS dose-depend-
ant fashion and peaked by 24 h culture at 10 ug/ml LPS.
Of note, the LPS concentration needed to activate sphe-
roids was 10 to 100 fold higher than that used to stimulate
monocytes/macrophages [35,36]. We found that LPS-
stimulated COPD BES released higher levels of IL-8 than
non-COPD BES, suggesting an enhanced epithelial
inflammatory response to LPS in COPD. IL-8 is involved
in the recruitment and activation of neutrophils in COPD,
thereby contributing to COPD airway inflammation, par-
ticularly in the setting of infection-mediated COPD exac-
erbations [32,33]. Since toll-like receptor 4 (TLR-4) is
crucial for effective response to LPS [37-39], studies are
underway to investigate the role of this receptor in IL-8
expression in COPD.

To our knowledge no previous studies have analyzed
basal or LPS-induced PGE2 and LTB4 release by bronchial
epithelium in COPD. In the present work, we show that
BES produce PGE2 and LTB4. However, we did not
observe differences in the release of these mediators
between COPD and non-COPD BES. Other studies have
shown that levels of PGE2 and LTB4 are increased in
exhaled breath in COPD, and LTB4 is increased in sputa
and exhaled breaths in COPD exacerbations [40-43].
While the cellular sources of LTB4 and PGE2 in airways
include macrophages and neutrophils, cell co-culture
studies have shown that epithelial cells play a direct role
in the synthesis of inflammatory cell-derived LTB4 and
PGE2 [44,45]. The contribution of bronchial epithelium
to expression levels of these mediators and the develop-
ment of COPD remain to be defined.
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To determine the clinical importance of our findings to
COPD, we assessed the relationship between levels of
released inflammatory mediators and clinical/functional
characteristics of smokers with or without COPD. LPS-
induced, but not constitutive, IL-8 release correlated with
the degree of obstruction (FEV,, FEV,/FVC) and air trap-
ping (RV), but not with the smoking status. As expected, it
should be pointed that LPS-induced IL-8 levels varied
among COPD patients, suggesting that epithelial cell
responsiveness to LPS cannot alone explain the complex
inflammatory process of COPD.

Cigarette smoke accounts for more than 90% of COPD,
but only 15 to 20% of smokers develop clinically signifi-
cant COPD [5,7]. Our study compared for the first time
basal and LPS-induced inflammatory response of bron-
chial epithelium of smokers with or without COPD, and
demonstrated a clear differential epithelial inflammatory
response to LPS in COPD. The bacterial endotoxin LPS is
an ubiquitous contaminant of environment and bioactive
LPS constitutes 0.12-0.2 microgram/cigarette [46]. Exper-
imental LPS inhalation in healthy subjects induces an
increase of lung inflammatory cells and pro-inflammatory
mediators, and chronic exposure to endotoxin has been
shown to be associated with occupational COPD [47-50].
Hasday et al. suggested that cigarette-derived LPS contrib-
utes to COPD pathogenesis in smokers [46]. In mice,
chronic lung instillation of LPS induces a COPD-like
inflammation [51]. These observations together with our
data suggest the importance of LPS-mediated bronchial
epithelial response in the chronicity of inflammation in
COPD. Our data using spheroid model provide informa-
tion regarding the contribution of LPS (cigarette or bacte-
rial infection-mediated exacerbations) to long-term
decline in lung function in COPD |[3].

Conclusion

In conclusion, the spheroid culture model provides an
original system that should better our understanding of
COPD pathogenesis. This model should allow to investi-
gate the role(s) of bronchial epithelial cells in COPD as
well as other lung pathologies. In this culture system, not
only bronchial epithelial cells are kept in a native non-
transformed well-differentiated epithelium, but the cells
maintain their in vivo morphological and functional char-
acteristics. Thus, the mechanisms of interactions between
various injuring agents/inflammatory stimuli and airway
epithelium could be studied using the spheroid model in
order to enhance our understanding of COPD pathogen-
esis and perhaps other lung inflammatory diseases, with-
out the confounding effects frequently encountered in
other tissue culture models.
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