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Abstract

Background: The human epidermis is comprised of several layers of specialized epithelial cells called keratinocytes. Normal
homoeostasis of the epidermis requires that the balance between keratinocyte proliferation and terminal differentiation be
tightly regulated. The mammalian serine/threonine kinases (ROCK1 and ROCK2) are well-characterised downstream
effectors of the small GTPase RhoA. We have previously demonstrated that the RhoA/ROCK signalling pathway plays an
important role in regulation of human keratinocyte proliferation and terminal differentiation. In this paper we addressed the
question of which ROCK isoform was involved in regulation of keratinocyte differentiation.

Methodology and Principal Findings: We used RNAi to specifically knockdown ROCK1 or ROCK2 expression in cultured
human keratinocytes. ROCK1 depletion results in decreased keratinocyte adhesion to fibronectin and an increase in terminal
differentiation. Conversely, ROCK2 depletion results in increased keratinocyte adhesion to fibronectin and inhibits terminal
differentiation.

Conclusion: These data suggest that ROCK1 and ROCK2 play distinct roles in regulating keratinocyte adhesion and terminal
differentiation.
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Introduction

The human epidermis is comprised of several layers of

specialized epithelial cells called keratinocytes. As keratinocytes

are lost from the outermost epidermal layers, they are replaced

through a process of terminal differentiation in which keratino-

cytes in the basal layer exit the cell cycle, down-regulate adhesion

to the extracellular matrix (ECM) proteins of the basal lamina and

migrate upwards through the supra-basal, differentiated layers,

until they eventually reach the outermost cornified layer [1]. The

basal lamina is made up of various ECM proteins, including

fibronectin, collagens and laminins. Keratinocytes in the basal

layer of the epidermis adhere to these ECM proteins via integrin

adhesion receptors and there is considerable evidence that

adhesion to ECM plays a key role in regulating epidermal

function [1]. Disruption of integrin-ECM interactions results in

initiation of keratinocyte terminal differentiation in vitro [1–3].

Hence, normal epidermal function requires that the balance

between keratinocyte proliferation, adhesion to ECM proteins and

terminal differentiation be tightly regulated. Previous data from

our laboratory and others suggest that signalling though Rho

family GTPases is required for keratinocyte terminal differentia-

tion [4–6]. RhoA is a member of the Rho family of small GTPases

and acts as a molecular switch to regulate a plethora of cellular

processes including organisation of the actin cytoskeleton, cell

adhesion and motility and gene expression [7]. The best-

characterised downstream effectors of RhoA are the serine/

threonine kinases ROCK1 and ROCK2 (also known as ROKb
and ROKa, respectively) [8,9]. Both ROCK isoforms are

comprised of an N-terminal region, a kinase domain, a coiled-

coil domain containing a Rho binding site, a PH domain and a C-

terminal domain [10]. Both isoforms share a high amino acid

sequence identity, with 92% identity across their kinase domains.

However, the two kinases only share 65–70% sequence identity

across their PH domains, which may account for the observed

differences in cellular localisation of the two isoforms [8,9,11].

Most studies to date have either used over-expression of ROCK or

pharmacological inhibition of ROCK [4,12,13]. Neither of these

methods allows discrimination of isoform-specific functions.

Recently, functional differences between the two ROCK isoforms

have become more apparent. In vivo data show that, despite their

structural similarities, ROCK1 or ROCK2 expression cannot

compensate for loss of the other isoform during murine embryonic

development [14–16]. In vitro studies utilising ROCK isoform

specific RNAi knockdown in fibroblasts also suggest that ROCK1

and ROCK2 may have distinct, and sometimes opposing, roles in

the cell [11,17]. In this study we used RNAi to specifically

knockdown ROCK1 or ROCK2 expression in cultured keratino-

cytes and analysed adhesion to various ECM proteins and the

differentiation status of the cells. Our data suggest that both

ROCK isoforms play distinct and important roles in regulating

keratinocyte differentiation status and keratinocyte adhesion to the

ECM protein fibronectin.
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Results

HaCaT keratinocytes were stably transfected with GFP-IRES-

shRNAmir constructs specifically targeting ROCK1 or ROCK2

or a non-silencing control nonsense mRNA sequence (NSC) to

generate HaCaT-ROCK1-KD, HaCaT-ROCK2-KD and Ha-

CaT-NSC cells respectively. A stable decrease in ROCK1

expression was observed in HaCaT-ROCK1-KD cells, compared

to HaCaT-NSC and HaCaT-ROCK2-KD cells (Figure 1A, B).

Similarly, a significant decrease in ROCK2 expression was

observed in HaCaT-ROCK2-KD cells, when compared to

HaCaT-NSC and HaCaT-ROCK1-KD cells (Figure 1C, D).

Depletion of ROCK1 or ROCK2 had no effect on expression of

the other, non-targeted, ROCK isoform (Figure 1A, C). To further

characterise these cell lines following ROCK isoform knockdown,

HaCaT-NSC, HaCaT-ROCK1-KD and HaCaT-ROCK2-KD

cell lysates were immunoblotted to assess changes in phosphory-

lation of two known ROCK targets - myosin phosphatase (MYPT)

and myosin light chain (MLC). Both ROCK1 and ROCK2 are

able to directly phosphorylate MYPT1 on threonine residue 696

Figure 1. ROCK isoform-specific knockdown affects phosphorylation of downstream targets. HaCaT-NSC, HaCaT-ROCK1-KD or HaCaT-
ROCK2-KD cell lysates were immunoblotted to assess ROCK1 expression (A) or ROCK2 expression (C). B and D show densitometric analysis of
knockdown of ROCK1 (B) or ROCK2 (D) relative to non-silencing (NSC) control cells and are the mean of 3 separate experiments (** p,0.01).
Phosphorylation of myosin phosphatase-1 residue Thr696 (p-MYPT) and myosin light chain residue Ser19 (p-MLC) were also analysed and data shown
are representative of 3 separate experiments (E).
doi:10.1371/journal.pone.0008190.g001
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whereas serine 19 of MLC is phosphorylated by ROCK1 but not

ROCK2 [18–20]. Decreased MYPT phosphorylation was ob-

served in both HaCaT-ROCK1-KD and HaCaT-ROCK2-KD

cells when compared to HaCaT-NSC cells (Figure 1E). Consistent

with MLCpSer19 being a ROCK1 substrate but not a ROCK2

substrate, a decrease in phosphorylated MLC was observed in

HaCaT-ROCK1-KD cells, but not in HaCaT-ROCK2-KD or

HaCaT-NSC cells (Figure 1E). These results confirm that stable

knockdown of ROCK1 and ROCK2 expression in these HaCaT

keratinocyte cell lines is isoform specific and has functional

consequences in terms of phosphorylation of known downstream

effectors.

Previous work has established clear functional links between

adhesion to fibronectin, integrin signalling and keratinocyte

terminal differentiation. [1,2,21]. To assess the role of ROCK1

and ROCK2 in keratinocyte adhesion we analysed adhesion to

various extracellular matrix proteins. Following ROCK1 deple-

tion, a significant decrease in keratinocyte adhesion to full-length

fibronectin was observed when compared to HaCaT-NSC cells

(Figure 2A). In contrast, ROCK2 depletion resulted in a

significant increase in cell adhesion to fibronectin (Figure 2A).

Similar results were observed using recombinantly expressed

FIII9-10 integrin-binding domain of fibronectin as a ligand (Figure

S1). Adhesion to the ECM proteins collagen IV and laminin-332

(previously called laminin V) was also assessed. Both are known

keratinocyte ligands, but no significant differences in HaCaT

adhesion were observed following ROCK1 or ROCK2 knock-

down, when compared to HaCaT-NSC cells (Figure 2B, C). Over

the duration of the assay no obvious differences in cell morphology

were observed between any of the cell lines (data not shown).

Having observed clear differences in cell adhesion to

fibronectin between ROCK1 and ROCK2 depleted keratino-

cytes, we assessed the differentiation status of both cell lines.

HaCaT-NSC, HaCaT-ROCK1-KD and HaCaT-ROCK2-KD

cells were cultured for 2 days post-confluence to induce

differentiation and cells lysed and immunoblotted to assess

expression of basal and suprabasal keratins. Loss of the basal

keratinocyte marker, keratin 5, is observed during keratinocyte

differentiation and expression of keratin 5, was greatly reduced

following ROCK1 depletion when compared to HaCaT-NSC

cells (Figure 3A). Increased expression of keratin 10, a supra-

basal marker of keratinocyte terminal differentiation, was also

observed in HaCaT-ROCK1-KD cells (Figure 3A). Conversely,

expression of keratin 5 was increased, and expression of keratin

10 was decreased in HaCaT-ROCK2-KD cells, when compared

to HaCaT-NSC cells (Figure 3A). This would be consistent with

an inhibition of keratinocyte terminal differentiation following

ROCK2 depletion. To further characterise this differentiation

phenotype we used different RNAi methodology and an

alternative keratinocyte cell line to analyse spontaneous differ-

entiation in sub-confluent cells. SCC12f cells are derived from a

squamous cell carcinoma but grow and differentiate in a manner

similar to that seen in normal primary keratinocytes and are a

well-established model for keratinocyte function [22]. We

transiently transfected SCC12f keratinocytes with siRNA oligos

targeted against ROCK1 and ROCK2. The target sequences

used were different to those targeted using the shRNAi vectors.

As a control, SCC12f cells were also transfected with non-

silencing control oligos (NSC). Following transient transfection

with siRNA oligos, sub-confluent SCC12f cells were cultured,

lysed and immunoblotted. As shown in Figure 3B, we observed

isoform-specific knockdown of ROCK1 and ROCK2 in SCC12f

cells although the knockdown of ROCK2 was not complete. To

assess the rate of spontaneous differentiation in these cells,

expression of the cornified envelope precursor involucrin, a

commonly used marker for differentiation, was analysed.

Transiently transfected, sub-confluent, SCC12f were fixed and

Figure 2. ROCK isoform-specific knockdown regulates cell
adhesion to fibronectin. Adhesion of HaCaT-NSC, HaCaT-ROCK1-KD
or HaCaT-ROCK2-KD to the extracellular matrix ligands fibronectin (A)
collagen IV (B) and laminin 332 (C) was analysed. The mean and
standard error of 3 separate experiments are shown in each case.
Statistical analysis was carried out using unpaired two-way Student’s T-
test (** p,0.01).
doi:10.1371/journal.pone.0008190.g002
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the percentage of cells expressing involucrin was quantified by

immunocytochemistry. siRNA-mediated knockdown of ROCK1

expression resulted in a 2-fold increase in the percentage of

cells expressing involucrin, when compared to NSC controls

(Figure 3C). In contrast, knockdown of ROCK2 expression

resulted in a significant decrease in the percentage of involucrin

expressing cells (Figure 3C and Figure S2). These data are

consistent with the changes in keratin 5 and keratin 10 expression

observed in HaCaT-ROCK1-KD and HaCaT-ROCK2-KD

cells (Figure 3A). Taken together, these data suggest that loss of

ROCK1 expression promotes keratinocyte terminal differentia-

tion and that loss of ROCK2 expression has the opposite effect,

inhibiting keratinocyte terminal differentiation.

Discussion

Our data confirm that both ROCK isoforms are expressed in

cultured human keratinocytes and that each isoform can be

specifically depleted, with no effect on the expression of the other

(Figure 1A–D). We observed that depletion of either ROCK1 or

ROCK2 results in decreased phosphorylation of MYPT on

Thr696 (Fig 1E). This is consistent with published data where

both ROCK1 and ROCK2 have been reported to phosphorylate

MYPT on Thr696, leading to its inactivation [18–20]. In contrast,

we observed a specific loss in phosphorylation of MLC on Ser19 in

ROCK1 depleted cells but not in ROCK2 depleted cells

(Figure 1E). Again, this is consistent with recent studies describing

MLC as a ROCK1-specific target [11,14,23]. This implies that

continued expression of one isoform cannot compensate for the

loss of the other, suggesting specific functional differences in

human keratinocytes. Previous work from our laboratory has

shown that the Rho/ROCK signalling pathway is important in

regulating keratinocyte function [4]. Here we have shown that the

two ROCK isoforms have distinct roles in the regulation of

keratinocyte adhesion to fibronectin (Figure 2A). One possible

explanation for the differences in adhesion to fibronectin in

ROCK1-depleted keratinocytes might be a consequence of loss of

actinomyosin contractility affecting adhesion complexes. Howev-

er, under the conditions used in the adhesion assays (1 hour

adhesion) we observed no differences in adhesion complex size

(data not shown). The role of ROCK1 function in adhesion to

fibronectin has been analysed in rat embryo fibroblasts which,

when seeded on fibronectin, displayed significantly higher

ROCK1 activity than ROCK2 [11]. This led the authors to

conclude that the adhesion process has a particular requirement

for ROCK1 [11]. This would appear to be consistent with our

data in which we see a decrease in adhesion to fibronectin in

ROCK1-depleted keratinocytes but it is worth noting that

adhesion to fibronectin-coated beads was unaffected in ROCK1-

depleted fibroblasts [17]. Alternatively, it might be a consequence

of altered fibronectin matrix assembly, as has been observed in

fibroblasts [17]. However, this is unlikely to have been a factor in

the relatively short period of adhesion used in our assays. It is

unclear why adhesion to fibronectin is affected by depletion of

ROCK1 or ROCK2 but adhesion to laminin-332 or collagen IV,

both of which are known keratinocyte ECM ligands, is unaffected

(Figure 2B,C). One possibility is that ROCK1 and ROCK2

regulate expression and/or function of keratinocyte fibronectin

receptors (e.g. a5b1 integrin). We have analysed expression and

function of the most abundant fibronectin-binding integrin, a5b1,

but did not observe any consistent or significant changes in

expression or activity (data not shown). This does not rule out the

possibility that other fibronectin-binding integrins (e.g. avb5) are

involved and this is currently being investigated.

Figure 3. ROCK isoform-specific knockdown regulates kerati-
nocyte differentiation. A, HaCaT-NSC, HaCaT-ROCK1-KD or HaCaT-
ROCK2-KD cells were cultured for 2 days post-confluence and lysed.
Expression of keratin 5, keratin 10 and tubulin were assessed by
immunoblotting (A). SCC12f keratinocytes were transiently transfected
with siRNA oligos to specifically knockdown ROCK1 or ROCK2 As a
control SCC12f cells were transfected with a non-silencing control oligo
(NSC). Cells were lysed and immunoblotted to assess ROCK isoform
knockdown (B) or fixed and immunostained to assess involucrin
expression (C). The means and standard errors from 3 separate
experiments are shown. Statistical analysis was carried out using
unpaired two-way Student’s T-test, ** p,0.01, * p,0.05.
doi:10.1371/journal.pone.0008190.g003
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Previous data from our laboratory also demonstrated that

expression of the constitutively active kinase domain of ROCK2

in human keratinocytes promoted terminal differentiation [4].

Consistent with this, inhibition of ROCK using Y-27632

inhibited keratinocyte differentiation [4]. However, as these

experiments involved over-expression of the kinase domain

alone, it is possible that the constitutively active mutant would be

targeted inappropriately within the cell. Furthermore, Y-27632

inhibits both isoforms of ROCK as well as other kinases such as

PRK2 and PKN [13,24]. The approach we have adopted here,

using ROCK isoform-specific RNAi, allows a more detailed

analysis of the role of ROCK in keratinocyte terminal

differentiation. Interestingly, we found that the two ROCK

isoforms have opposing roles in regulating keratinocyte terminal

differentiation. Knockdown of ROCK1 promotes keratinocyte

terminal differentiation whereas knockdown of ROCK2 has the

opposite effect and inhibits keratinocyte terminal differentiation

(Figure 3A,C). One possible explanation for these observations is

that a ROCK1-interacting protein is involved in promoting

differentiation and one candidate here might be RhoE/Rnd3,

which binds specifically to ROCK1, and has recently been linked

to the stratification and differentiation of human keratinocytes

[6,25].

In summary, we have used RNAi to specifically knockdown

ROCK1 or ROCK2 expression in cultured keratinocytes. The

data presented in this paper support our previous report of a

pivotal role for ROCK signalling in keratinocyte function and

extend those observations by reporting that ROCK1 and ROCK2

play distinct and opposing roles in regulation of keratinocyte

adhesion and differentiation.

Materials and Methods

Reagents and Antibodies
Primary antibodies used were: involucrin (SY-5, Abcam,

Cambridge, UK); ROCK1 (H-85, Santa Cruz, USA); ROCK2

(BD Transduction Laboratories, Oxford, UK); tubulin (T6199,

Sigma, MO, USA); phospho-MYPT1 (Thr-696-MYPT1, Upstate

Cell Signalling Solutions, USA); phospho-MLC (Thr18/Ser19-

Myosin Light Chain 2, Cell Signaling Technology, Inc., MA,

USA); total MLC (Myosin Light Chain, MY-21. Sigma, MO,

USA); keratin 10 (Thermo Fisher Scientific, CA, USA); keratin 5

(Abcam, Cambridge, UK); pan-keratin (Zymed, South San

Francisco, CA, USA). Secondary antibodies were purchased from

Jackson Immunoresearch (West Grove, PA, USA). All other

reagents were purchased from Sigma.

Cell Culture
SCC12f keratinocytes [22] were co-cultured with mitotically

inactivated feeder fibroblasts using the method of Rheinwald and

Green as described elsewhere [26]. HaCaT keratinocytes [27]

were cultured in DMEM media containing 5% FBS and 1%

penicillin/streptomycin. Cell culture medium and reagents were

purchased from Invitrogen.

Plasmids and siRNA Oligos
HaCaT immortalized human keratinocytes were stably trans-

fected with GFP-IRES-shRNAmir constructs purchased from

Open Biosystems, UK, to knockdown ROCK1 (RHS4186-

97556976 pGinZeo), ROCK2 (RHS4430-98854581 pGipZ) or a

nonsense mRNA sequence (Non-Silencing Control) (RHS4346

pGipZ) using the Amaxa HaCaT nucleofection solution V (VCA-

1003, Amaxa Inc., MD, USA) according to the manufacturers

instructions. Plasmid-expressing HaCaT cells were cultured in

1.5 mg/ml puromycin or 400 mg/ml G418 as appropriate. Cells

were lysed at sub-confluence or 2 days post-confluence, as

described in the text. SCC12f keratinocytes were transiently

transfected with siRNA oligos targeting ROCK1 (ON-TARGET-

plus siRNA J-003536-06-0020, J-003536-07-0020, Thermo Sci-

entific, USA), ROCK2 (S102223746, S102223753, QIAGEN,

UK) or a non-silencing control sequence (S103650325, QIAGEN,

UK) using Lipofectamine RNAi MAX reagent (Invitrogen)

according to manufacturers instructions.

Involucrin Immunostaining
SCC12f keratinocytes were fixed with 4% paraformaldehyde in

PBS, permeablised with ice-cold methanol and stained with

antibodies against involucrin and pan-keratin as described

elsewhere [4,28]. Cells were stained with pan-keratin antibody

to ensure only keratinocytes (and not residual fibroblasts) were

analysed. Cells were visualized using a Leica DMRB microscope

equipped with a Hamamatsu ORCA camera, and images were

captured and processed using OpenLab software (Improvision).

For each immunostaining, the same exposure time was used to

capture images. The percentage of involucrin positive cells

compared to the total number of pan-keratin positive cells was

calculated and expressed as fold change, with the mean and

standard error of 3 separate experiments given. For each

experiment a minimum of 3 fields of view (minimum of 150 cells

per field) per condition were scored and all experiments were

scored blind.

SDS-PAGE and Western Blotting
Protein lysates were prepared in 3x Laemmli buffer, separated

by SDS-PAGE, and immunoblotted as described elsewhere [12].

All experiments were performed on three separate occasions, with

representative blots shown.

Adhesion Assays
Keratinocytes were re-suspended in serum-free medium and

plated in 96-well plates (Immulon II; Thermo Electron) previously

coated with either full length fibronectin (Sigma) or collagen IV

(Sigma) diluted in PBS or a laminin-332-enriched substrate and

blocked in bovine serum albumin/PBS for 1 h. After incubation

for 1 h, non-adherent cells were removed by washing in PBS,

and numbers of adherent cells were assessed by analysis of

endogenous hexosaminidase activity [29]. The laminin-332

enriched substrates were prepared as described elsewhere [30].

Statistical analysis was performed using unpaired two-way

Student’s T-tests.

Supporting Information

Figure S1 ROCK isoform-specific knockdown regulates cell

adhesion to the FIII9-10 integrin-binding domain of fibronectin.

Adhesion of HaCaT-NSC, HaCaT-ROCK1-KD or HaCaT-

ROCK2-KD to recombinant FIII9-10 was analysed. The mean

and standard error of 3 separate experiments are shown. Statistical

analysis was carried out using unpaired two-way Student’s T-test

(** p,0.01, * p,0.05).

Found at: doi:10.1371/journal.pone.0008190.s001 (2.65 MB TIF)

Figure S2 ROCK isoform-specific knockdown regulates kera-

tinocyte differentiation. SCC12f keratinocytes were transiently

transfected with siRNA oligos to specifically knockdown ROCK1

or ROCK2 As a control SCC12f cells were transfected with a

non-silencing control oligo (NSC). Cells were fixed and immu-

nostained to assess involucrin expression. Cells were also stained
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with a pan-keratin antibody to exclude fibroblasts from the

analysis.

Found at: doi:10.1371/journal.pone.0008190.s002 (3.67 MB TIF)
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