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Abstract: CD154, an inflammatory mediator also known as CD40 ligand, has been identified as a
novel binding partner for some members of the integrin family. The αIIbβ3, specifically expressed
on platelets, was the first integrin to be described as a receptor for CD154 after CD40. Its interaction
with soluble CD154 (sCD154) highly contributes to thrombus formation and stability. Identifying
αIIbβ3 opened the door for investigating other integrins as partners of CD154. The αMβ2 expressed
on myeloid cells was shown capable of binding CD154 and contributing as such to cell activation,
adhesion, and release of proinflammatory mediators. In parallel, α5β1 communicates with sCD154,
inducing pro-inflammatory responses. Additional pathogenic effects involving apoptosis-preventing
functions were exhibited by the CD154–α5β1 dyad in T cells, conferring a role for such interaction
in the survival of malignant cells, as well as the persistence of autoreactive T cells. More recently,
CD154 receptors integrated two new integrin members, αvβ3 and α4β1, with little known as to their
biological significance in this context. This article provides an overview of the novel role of integrins
as receptors of CD154 and as critical players in pro-inflammatory and apoptotic responses.

Keywords: integrins; CD154; active/inactive conformation; receptor–ligand binding; inflammation;
apoptosis; malignancy

1. Introduction

Integrins are transmembrane adhesion receptors that have crucial functions in cell
adhesion, survival, proliferation, and many other highly significant processes in normal
and disease states. They are a family of heterodimeric receptors mediating cell interac-
tions, anchorage, and migration. In mammals, 18 α and 8 β subunits combine to form
24 integrins [1]. Alternative splicing [2] and post-translational modifications [3] ensure a
high diversity in integrin structure. Such diversity in subunit composition contributes to
their expanded ligand recognition, binding to the extracellular matrix (ECM), and coupling
to downstream signaling pathways [4–9]. They bind to ECM proteins, transmembrane
adhesion molecules, glycoproteins in circulation, and other ligands. Interestingly, CD154,
which is a co-stimulatory molecule belonging to the tumor necrosis factor (TNF) family,
has been identified as a new integrin ligand. CD154 binds to several integrins—namely,
αIIbβ3 [10], αMβ2 [11], α5β1 [12], αvβ3 [13], and α4β1 [14].

2. CD154

CD154 is a 33–39 kDa type II transmembrane protein composed of an extracellular re-
gion of 215 amino acids (AAs), a 24-AA transmembrane domain, and a 22-AA intracellular
tail [15]. CD154 is mainly expressed on the surface of activated T cells and platelets but has
also been described in mast cells, basophils, and eosinophils [15,16]. Monomeric CD154
molecules non-covalently link to each other, forming a homotrimer, which is of absolute
importance for CD154 biological function [17–19]. Intracellular and membrane-bound
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CD154 (mCD154) molecules are prone to cleavage, releasing a soluble form involving
residues 113-261, which is biologically active (trimeric) [20]. Studies by various groups,
including ours, have demonstrated that soluble CD154 (sCD154) is released from activated
platelets and T cells by proteolytic cleavage at its methionine residue at position 113 (M113),
mediated by various members of the metalloproteinases family and initiated by the in-
teraction of the ligand with CD40 in cleavage from T-cell surface (Figure 1) and/or with
αIIbβ3 in platelets cleavage [20–25]. Although the physiological role of sCD154 in vivo
remains unclear, increased levels were reported in many inflammatory disorders [26–28].
In addition, it has been proposed that cleavage of CD154 from the cell surface serves
to attenuate the CD40-mediated immune response since mCD154 was shown to exhibit
stronger effects in CD40-positive cells than its soluble counterpart [29–31]. Indeed, while
mCD154 expressed on platelets was capable of promoting activation of endothelial cells
(ECs) by inducing and/or upregulating their surface expression of adhesion molecules
such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion
molecule-1 (ICAM-1), and their release of IL-8 and monocyte chemoattractant protein-1
(MCP-1), its soluble counterpart failed to stimulate such effect. Furthermore, mC1D54 but
not sCD154 was capable of inducing apoptosis of CD40-positive malignant cells [29,30].
Later studies, including ours, provided more proof as to the higher potency of mCD154
in inducing signaling and biological responses in CD40-positive cells, thus outlining the
importance of the CD154 cleavage process in attenuating CD40-mediated effects [24,31].
In addition to confirming this hypothesis [24], our recent observations strongly suggest
that cleavage of CD154 into sCD154 is also necessary for binding to certain integrin re-
ceptors [32]. As a matter of fact, most studies that demonstrated an interaction between
CD154 and integrins used the soluble form of the latter [10–14]. In the case of α5β1, our
data showed that membrane-bound CD154 is capable of interacting with the integrin only
when both molecules are expressed on the same cell surface, i.e., a cis-type of interaction
(discussed in detail below) [32]. Preliminary data from our lab have shown that cells
expressing the αIIbβ3 or αMβ2 (also known as Mac-1) integrins on their surface were not
capable of interacting with other cells expressing CD154 (CD154-transfected Jurkat E6.1 T
cells). However, a previous study by Wolf et al. in 2011 suggested that Mac-1 could interact
with CD154 expressed on the cell surface [33]. Thus, additional studies are now in place by
our group to further characterize this issue. It is essential to point out here that even though
we, and probably others, failed to demonstrate binding between mCD154 and integrins
expressed on the cell surface, this does not exclude the existence of such binding, probably
at a low binding affinity, hence the need for deeper research into this type of interaction.
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mCD154) is capable of binding to CD40 and inducing a bidirectional intracellular signaling cascade 
and subsequent biological responses in both CD40-positive and CD154-positive cells (A). In order 
to put a halt to the CD154–CD40 biological response, CD154 expressed on the surface of T cells is 
cleaved into soluble CD154 (sCD154) upon its binding to CD40. Soluble CD154 may be also released 
from the intracellular milieu (B). Both mCD154 and sCD154 are capable of binding and activating 
CD40 inducing biological responses in CD40-positives cells. Engaging CD40 induces recruitment of 
TRAFs, i.e., TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6, and subsequent triggering of intracellular 
signaling events. Abbreviation: TRAF, TNFR-associated factor. 

3. CD40: The Classical CD154 Receptor 
CD40 is a 45–50 kDa phosphorylated type I integral membrane glycoprotein initially 

regarded as the only receptor for CD154 [15]. It is expressed on a variety of immune and 
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a function ensured by TNFR-associated factors, TRAFs. TRAFs 1, 2, 3, 5, and 6 have been 
shown to work with CD40 in its cell activation mission. Upon ligation of CD40 and its 
subsequent recruitment of TRAFs, several signaling cascades are triggered, activating 
nuclear factor κ B (NFκB), mitogen-activated protein kinases (MAPKs) p38, and 
extracellular signal-regulated kinase 1/2 (ERK1/2), phosphatidylinositol- 3 kinase (PI-3K), 
Akt, c-Jun N-terminal kinase (JNK), STAT3, etc. [34,37–40]. Bidirectional signaling has 
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biological responses. CD154 expressed on the surface of T cells (membrane-bound, mCD154) is
capable of binding to CD40 and inducing a bidirectional intracellular signaling cascade and sub-
sequent biological responses in both CD40-positive and CD154-positive cells (A). In order to put a
halt to the CD154–CD40 biological response, CD154 expressed on the surface of T cells is cleaved
into soluble CD154 (sCD154) upon its binding to CD40. Soluble CD154 may be also released from
the intracellular milieu (B). Both mCD154 and sCD154 are capable of binding and activating CD40
inducing biological responses in CD40-positives cells. Engaging CD40 induces recruitment of TRAFs,
i.e., TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6, and subsequent triggering of intracellular signaling
events. Abbreviation: TRAF, TNFR-associated factor.

3. CD40: The Classical CD154 Receptor

CD40 is a 45–50 kDa phosphorylated type I integral membrane glycoprotein initially
regarded as the only receptor for CD154 [15]. It is expressed on a variety of immune and
non-immune cells including B lymphocytes, monocytes, macrophages, dendritic cells (DCs),
fibroblasts, endothelial and epithelial cells, etc. [15,16,34,35]. The primary function of CD154
was believed to be only linked to humoral immunity via its interaction with CD40 [36].
Today, it is well-established that CD154 has a larger role than originally described, as it is
involved in a variety of inflammatory immune responses [15,35].

CD40 is a transmembrane protein lacking direct intracellular enzymatic activity, hence
its dependence on adaptor molecules for the proper relay of signals inside the cell, a function
ensured by TNFR-associated factors, TRAFs. TRAFs 1, 2, 3, 5, and 6 have been shown to
work with CD40 in its cell activation mission. Upon ligation of CD40 and its subsequent
recruitment of TRAFs, several signaling cascades are triggered, activating nuclear factor κ B
(NFκB), mitogen-activated protein kinases (MAPKs) p38, and extracellular signal-regulated
kinase 1/2 (ERK1/2), phosphatidylinositol- 3 kinase (PI-3K), Akt, c-Jun N-terminal kinase
(JNK), STAT3, etc. [34,37–40]. Bidirectional signaling has been established upon ligation
of mCD154 to CD40, which elicits responses in both CD40-positive and CD154-positive
cells—namely, T cells (Figure 1) [24,41–46].

By engaging CD40 on the surface of B cells, CD154 was shown to co-stimulate and
enhance activation and maturation of these cells, inducing, together with IL-4 produced by
T cells, the formation of germinal centers, antibody production, and Ig switching. The im-
portance of CD40–CD154 interaction in T-cell-dependent B-cell responses in vivo emerged
when point mutations or deletions in the gene coding for CD154 were shown to cause
X-linked hyper IgM syndrome (HIGM) [47]. Patients suffering from this syndrome have
a normal number of circulating B cells but low levels of serum IgG, IgA, and IgE and
elevated IgM. As a result, they develop an increased susceptibility to various infections
(reviewed in [47]). In addition, the CD154–CD40 interaction is involved in cell-mediated
immunity by activating monocytes, macrophages, ECs, DCs, fibroblasts, and other types
of cells, upregulating their co-stimulatory and adhesion molecule expression and their
cytokine release [48,49]. Engaging CD40 on macrophages promoted their pro-inflammatory
phenotype by enhancing their production of inflammatory mediators such as IL-1β, IL-6,
IL-12, TNF-α, MCP-1 as well as matrix metalloproteinases (MMP)-2 and MMP-9 [50,51].
Similarly, CD40-mediated effects in DCs included upregulating their release of IL-1, IL-6,
and IL-12 cytokines [52,53]. Additional target cells of CD154, specifically in the vascu-
lature, include ECs. The stimulation of ECs with CD154 enhances their production of a
plethora of cytokines/chemokines, including IL-6, IL-8, IL-15, MCP-1, MCP-3, macrophage
inflammatory protein-3 (MIP-3) and regulated upon activation, normal T-cell expressed,
and secreted (RANTES), highly contributing to the role of the endothelium in athero-
genesis [51,54,55]. In addition to this inflammatory function in the context of cytokine
enhancement, CD154–CD40 dyad upregulates the expression of activation markers and ad-
hesion molecules on the surface of macrophages and DCs—namely, CD80/CD86, ICAM-1,
and LFA-3, on the surface of ECs (E-selectin, ICAM-1, and VCAM-1), as well as other cell
types [15,56–60]. All these findings outline an important signature for the CD154–CD40
dyad in a wide range of inflammatory responses [15,27,35], some of which lead to the
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pathogenic process of chronic inflammatory autoimmune diseases, including rheumatoid
arthritis, systemic lupus erythematosus, multiple sclerosis [61], autoimmune thyroiditis [62],
Sjögren’s syndrome [63], type I diabetes [64,65], polymyositis, dermatomyositis [66], lep-
rosy [67], inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis [68],
as well as vascular diseases such as atherosclerosis and restenosis [48,49,65,69].

In addition to the above-described functions, there is growing evidence to support
the role of the CD154–CD40 dyad in cancer immunotherapy [70]. The antitumor effect
of this axis was first demonstrated in studies showing that co-culturing CD4-positive T
cells expressing CD154 with DCs leads to maturation of these latter and an enhancement
of their antigen (Ag)-presentation capacity [70–72]. Subsequently, CD154-stimulated DCs
can activate CD8-positive cells and their cytotoxic functions against tumor cells. A more
direct role of CD154 in cancer regulation is represented by its capacity to halt growth or
induce apoptosis of malignant cells via its interaction with CD40 on their surface [29,73].
Indeed, sCD154 was shown to inhibit the proliferation of CD40-positive urothelial cells
of normal or malignant origin, while the membrane-bound ligand induced apoptosis in
these cells [74]. Ligating CD40 on B cells from higher grade malignancies such as large
cell lymphoma of B-cell origin or Epstein-virus-induced B-cell lymphoma arrested their
growth and even reduced tumor development in animal tumor models [75]. The apoptotic
function of CD40 via its interaction with membrane-bound ligands was shown to involve
the upregulation of TRAF3/TRAF6 and activation of JNK and activator protein-1 (AP-1),
ERK1/2, caspases 3, 8, and 9 [76,77]. It is worth noting here some evidence pointing to
the rather potential causative role of CD154 in tumor development. Indeed, CD154 was
shown to induce the proliferation of some malignant cells and boost their immunogenicity,
motility, and metastatic capacity [78–80]. Mechanisms involved in the tumor-promoting
effect of the CD154–CD40 dyad include activation of NF-κB and enhancing the production
of angiogenic/growth factors such as platelet-activating factor (PAF) [78–81].

All these data and observations outline the critical role played by CD154 in immune,
inflammatory, and immunotherapeutic responses by interacting with its classical receptor,
CD40 (Figure 1). However, the story becomes more complicated with the discovery of
additional receptors for CD154, all members of the integrin family.

4. Novel Receptors of CD154

It is now well-established that CD154 binds to receptors other than CD40, belonging
to the integrin family—namely, the αIIbß3 [10], αMβ2 [11], α5β1 [12], αvβ3 [13], and
α4β1 [14] integrins, and to be implicated as such in the pathogenesis of multiple diseases
and disorders (Figure 2).

4.1. Structural Interaction of CD154 with Its Receptors

The interaction of CD154 with its receptors was analyzed by site-directed mutagene-
sis [82] and co-crystal analysis [83]. Residues of CD154 involved in its binding to CD40 were
defined as K143, Y145, Y146, R203, and Q220 [82]. According to André et al., CD154–αIIbβ3
interactions are mediated by the RGD residues of murine CD154 and the KGD residues
of human CD154 (at positions 115-117) [10,84]. Upon substitution with alanine (A) of the
CD154 D117 residue, the CD154–αIIbβ3 interaction was abrogated, suggesting that D117
is the major binding residue implicated herein. Although our observations demonstrated
the ability of CD154 to bind the α5β1 integrin, they do not support the involvement of the
KGD domain in this interaction [12]. To identify the CD154 residues involved in α5β1 and
αMβ2 binding, a panel of CD154 mutants has been generated [85] and used for functional
and binding analyses [12,86]. Our data showed that CD154 ligation to α5β1 is totally
independent of its binding to αIIbβ3 and CD40 molecules [86,87] and that residues N151
and Q166 of CD154 are required for α5β1 binding, whereas CD154 residues required for
the interaction with the αMβ2 integrin, Y145, and R203 are shared with those involved in
CD40 binding [86]. CD154 residues implicated in the binding with very recently identi-
fied receptors—αvβ3 and α4β1 integrins—have not yet been identified, even though an
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integrin-binding site in the trimeric interface of CD154 has been suggested [13]. Although
all belong to the integrin superfamily, CD154 was capable of binding to its relatively new
receptors in different states of their activation. While it was shown to interact with inactive
α5β1 and with active αMβ2, αvβ3, and α4β1, CD154 bound to both inactive and active
forms of αIIbβ3 [10–14] (Figure 2).
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Figure 2. Model representing the interaction of CD154 with integrins. CD154 is capable of binding to
its receptors belonging to the integrin family, the αIIbβ3, α5β1, αMβ2, αvβ3, and α4β1 integrins,
in their active and/or inactive forms depending on the integrin. Distinct residues of CD154 are
implicated in its interaction with integrins. The CD154–integrin binding participates in various
biological responses and as such is involved in the pathology of numerous disease conditions.

4.2. The αIIbβ3 Integrin as a Receptor of CD154

Belonging to the group of RGD-recognizing integrins and binding to RGD-containing
peptides including fibrinogen, αIIbβ3 integrin, mainly expressed on platelets and their pre-
cursors, megakaryocytes, is a critical element in the process of platelet aggregation. In 2002,
αIIbβ3 was identified as a receptor for CD154 [10]. The authors demonstrated the direct
binding of the ligand to αIIbβ3 via the D117 residue in the KGD region of human CD154
(RGD in murine), inducing platelet spreading and allowing platelet–platelet interaction [10].
Using CD154 knockout (KO) mice and their wild-type (WT) littermates, CD154 was shown
to be involved in thrombus stabilization, as evidenced by the increased thrombi rupture
in injured arterioles of CD154 KO mice, owing to their low platelet content, compared
with WT ones. Furthermore, treatment of CD154 KO platelets with recombinant sCD154
enhanced their thrombin-induced aggregation under high sheer stress conditions [10]. The
same group subsequently investigated signaling events underlying the CD154–αIIbβ3
interaction and demonstrated the capacity of sCD154 to induce tyrosine phosphorylation of
the integrin β chain and the abrogation of such signal in the presence of antibodies directed
against β3 tyrosine phosphorylation or in mice with mutated β3 tyrosine residues. As such,
by activating the integrin, CD154 promoted outside-in signaling in platelets, the formation
of platelet microparticles, and enhancement of fibrinogen binding [88]. Soluble CD154
was later shown to enhance the production of reactive oxygen and nitrogen species in
platelets via binding to αIIbβ3 in a mechanism involving activation of p38 MAPK as well as
Akt [89]. Another study rather aiming at characterizing the CD154–CD40 dyad in platelet
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signaling outlined a role of CD154 in activating PI-3K and Akt independently of CD40 and
probably involving the other CD154 receptor on platelets, the αIIbβ3 integrin [90]. The
relationship between CD154 and the αIIbβ3 integrin was further underlined by the finding
that ligand-induced activation of αIIbβ3 upregulates expression of CD154 on the surface of
platelets, promoting in this matter their crosstalk with CD40-expressing endothelial cells, a
critical phenomenon in vascular injuries [91]. Unlike other ligands, CD154 binds to active
and inactive forms of αIIbβ3 [10,88], highlighting the significance of the CD154–αIIbβ3
interaction under various conditions, including static ones.

4.3. The αMβ2 Integrin as a Receptor for CD154

The αMβ2 integrin, a member of the leukocyte-specific or LDV-binding group of
integrins [92], is mainly expressed on cells of the myeloid lineage, including monocytes,
macrophages, and granulocytes, and of lymphoid descent such as natural killer (NK
cells) [93]. It binds to a variety of ligands, such as C3bi, intercellular adhesion molecule-1
(ICAM-1), heparin, fibrinogen, vitronectin, fibronectin, etc. [94–99]. This integrin, also
known as Mac-1, is implicated in the adhesion of myeloid cells to the ECM upon interaction
with one of its ECM ligands. In addition, Mac-1 is mainly involved in the adhesion and
rolling of myeloid cells and, more specifically, monocytes onto ECs via its binding to
adhesion molecules such as ICAM-1 [100], receptor for advanced glycation end-products
(RAGE) [101] and endothelial protein C receptor (EPCR) [102] usually expressed on the
latter cell type. In 2007, Zirlik et al. identified CD154 as a new ligand of Mac-1 [11]. Using
monocytes and Mac-1-transfected Chinese hamster ovary (CHO) cells, it was shown that
CD154 induces activation of these cells, their migration, their adhesion even under sheer
conditions, and their myeloperoxidase (MPO) release by binding to their Mac-1, especially
the active form of the molecule. The authors also reported the role of the CD154–Mac-1
dyad in recruiting monocytes into the peritoneal injury site in vivo and further outlined
the role of such interaction in atherosclerosis development using mouse models of the
disease [11]. It is important to mention here that the role of Mac-1 in vascular abnormalities
has been demonstrated way before its identification as a receptor for CD154 and more as
a receptor for different ECM-associated proteins, initially in an angioplasty setting and
later in atherosclerosis development [103–105]. Thus, the implication of Mac-1 in vascular
diseases involves several mechanisms and the interaction with different types of ligands.

Back to the CD154–Mac-1 dyad, more recent studies have recognized the I domain
of the αM chain, involved in the binding of the Mac-1 integrin to many ligands, as also
mediating its interaction with CD154 [33]. A binding epitope (E162-L170) has been identified
in this matter using a set of peptides designed to match various areas within the αM I
domain, with one of the peptides capable of binding to labeled CD154 and specifically
inhibiting the interaction of CD154 with Mac-1-expressing cells. Using this inhibitory
peptide, the role of the CD154– Mac-1 dyad was further confirmed in leukocyte adhesion
and rolling onto the endothelial layer, peritoneal inflammation, and even atherosclerotic
lesion development and stability [33]. The same group later demonstrated the efficiency of
a monoclonal antibody (mAb) directed against the E162-L170 epitope of Mac-1 in specifically
abolishing leukocyte recruitment without affecting other integrin-related responses [106].
This inhibitory peptide has more recently been used to outline yet another signature of the
CD154–αMβ2 interaction as a mediator of allograft rejection [107]. Treatment of engrafted
mice with the inhibitory peptide increased their graft survival, attenuated their CD8-
positive- and innate-mediated alloimmunity, and even potentiated the allograft-protecting
effect of an antagonistic anti-CD40 Ab. These findings suggest a crosstalk between both
CD154 receptors—Mac-1 and CD40—in alloimmunity [107].

In spite of the growing interest in the CD154–Mac-1 interaction and its role in vascular
diseases and immune pathologies, little is known about the underlying signaling events.
Since CD154 was shown to bind to the active form of Mac-1 [11], the intracellular proteins
that are usually recruited by β2 integrins, ensuring their activation and association with the
cytoskeleton, including Talin-1 and Kindlin-3 [108,109], should be already in their integrin-
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binding position when CD154 interacts with Mac-1. Similar to other ligands, engaging
Mac-1 with CD154 might involve the downstream activation of Src-family tyrosine kinases,
hematopoietic cell kinase (HCK), and spleen tyrosine kinase (SYK) [109,110]. Such areas of
research await further exploration.

In addition to the ligand–receptor interaction, a different kind of relationship exists
between CD154 and Mac-1. Indeed, by interacting with its CD40 receptor on neutrophils,
CD154 was shown to enhance the expression as well as a PKCζ-dependent activation of
Mac-1 in these cells, mediating their adhesion to platelets and transmigration through a
platelet layer in vitro or in a denuded vessel in restenosis mouse models [111,112].

Furthermore, recent data have shown a role for the CD154–αMβ2 dyad in IL-12 pro-
duction and Th1 immune responses against Leishmania major infections [113]. Researchers
have shown that CD154 KO mice and not CD40 KO ones exhibited reactivation of their
infection due to a reduced IL-12 and IFN-γ production by their DCs and monocytes in
a Mac-1-dependent manner. The protection of CD40 KO mice against reinfection was
abolished upon their treatment with anti-Mac-1 antibodies [113].

Altogether, these data identify yet another member of the integrin family—Mac-1, also
known as αMβ2—as a receptor for CD154 and outline a new pathological signature of this
latter in vascular diseases.

4.4. The α5β1 Integrin as a Receptor for CD154

The α5β1 integrin belongs to the subfamily of RGD-recognizing integrins [92]. Nu-
merous types of cells express the α5β1 integrin on their surface, including T and B cells,
platelets, monocytes, endothelial and epithelial cells, etc. [114,115]. Upon binding to its
natural ligand, fibronectin, the α5β1 integrin promotes several cellular functions involving
adhesion, proliferation, survival, and motility [114,115]. Based on studies showing that
the absence of CD154 but not CD40 protected mice against bronchial hyperresponsive-
ness [116], that treating monocytes with sCD154 upregulated their tissue factor expression
independently of CD40 [117], and that a CD154–αIIbβ3 dyad is involved in platelet activa-
tion and stabilization of thrombus [10], our group further investigated into the interaction
of CD154 to yet other receptors. We reported that sCD154 is capable of binding to a
CD40-negative/α5β1-positive (and obviously αIIbβ3-negative) monocytic cell line [12].
The binding of sCD154 to these cells was inhibited by soluble α5β1 and anti-α5β1 mAb,
whereas the binding of sCD154 to CD40-positive B cells was only inhibited by an anti-
CD40 mAb [12]. Engaging α5β1 with sCD154 activated signaling molecules including
the ERK1/2 MAPK and upregulated IL-8 gene expression. Interestingly, sCD154 induced
translocation of α5β1 to lipid rafts, ensuring their communication to the cell cytoskeleton.
Soluble CD154 interaction with monocytes was shown to involve the inactive conformation
of α5β1 integrin since activation of α5β1 by Mn2+ or DTT that leads to an increase in the
binding of α5β1 to its natural ligand fibronectin [118], resulted in a decreased ligation of
α5β1 integrin by sCD154 [12].

While CD154-induced response in α5β1-positive monocytes could be prevented by
soluble α5β1, the resulting activation of intracellular signaling in CD40-positive B cells
was not affected, suggesting that sCD154 may bind concomitantly to both CD40 and α5β1.
Indeed, and as mentioned above, our group subsequently demonstrated that engaging
simultaneously CD40 and α5β1 with specific mAbs activated p38 and ERK1/2 MAPK
and concurrently enhanced the production of inflammatory factors such as MMP-2 and -9,
suggesting a high level of communication between both receptors [87].

In a recent study further investigating the interrelation between α5β1 and CD40 using
a docking model, it was reported that α5β1 might be interacting with monomeric CD154
at the interface of its trimeric structure [13]. In accordance with the earlier study that
described α5β1 as a receptor for CD154 [12], the CD154–α5β1 binding outlined herein
was also shown to be independent of the KGD motifs of CD154; however, it involved an
interaction with the active form of the integrin. Mutating this predicted binding region in
CD154 inhibited its interaction with α5β1 and the subsequent antiapoptotic function. In
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addition, this CD154 mutant, while still capable of binding to CD40, exhibited an abrogated
CD40-mediated signaling and responses in B cells. Thus, researchers have suggested
the existence of a CD40–CD154–α5β1 ternary complex [13]. In addition, these findings
further leveled up the role of the CD154–α5β1 dyad and suggested its implication in the
pathogenesis of hyper IgM syndrome, as some of the mutations characterizing this disease
condition fall within the CD154 trimeric interface region involved in the interaction with
the integrins [13,14].

4.4.1. Inflammatory Function of the CD154–α5β1 Dyad

Initial studies identifying α5β1 as a new receptor for CD154 demonstrated the role of
this dyad in pro-inflammatory responses [12]. The CD154–α5β1 interaction was shown to
induce ERK1/2 phosphorylation in monocytes, promoting their pro-inflammatory func-
tions and release of IL-8 [12]. The crosstalk between T cells and asthmatic fibroblasts via
their CD154 and α5β1, respectively, promoted IL-6 release and could be also responsible
for upregulating the binding of these fibroblasts to fibronectin [119]. A further role of the
CD154–α5β1 dyad in inflammation was demonstrated as part of a synergistic response
with a CD154–CD40 interaction, enhancing intracellular MAPK activation and the release
of inflammatory mediators, including MMP-2 and MMP-9, as mentioned above [87].

Since platelet activation has been recently categorized as part of the inflammatory
process [120,121], the following observations add to the inflammatory functions of the
CD154–α5β1 dyad. Indeed, platelets, the membrane fragments of bone-marrow megakary-
ocytic cells, harbor the ligand, CD154 and most of its receptors, CD40, and integrins
αIIbβ3, α5β1, and αvβ3 [48,122,123]. As mentioned above, the interaction of CD154 with
CD40 [124], as well as with αIIbβ3 integrin [10,84] on the platelet surface, was shown
to potentiate or, depending on the concentration, induce platelet activation, adhesion,
and/or aggregation. A recent study outlined α5β1 as another receptor involved in platelet
activation upon its ligation to sCD154 [125]. Indeed, the use of specific blocking antibod-
ies against the α5β1 integrin inhibited sCD154-induced platelet activation. The authors
suggested an interplay between the various CD154 receptors on platelets and approved
of a previous theory made by our group on the capacity and possibility of simultaneous
binding of CD154 to multiple receptors expressed on the surface of the same cell. This
point is based on data demonstrating that CD154 interacts with its various receptors via
distinct residues [86] and the fact that CD154 exists and is biologically active as a trimeric
molecule [17,18]. Such argument is of high importance in most CD154-mediated responses,
given the diversity of expression patterns of CD154 receptors. A synergistic, additive, or
even an inhibitory interaction could result from such a simultaneous interaction.

4.4.2. Role of the CD154–α5β1 Interaction in Cell Survival

The implication of β1 integrins in abrogating apoptosis: Interesting findings have demon-
strated an important role for β1 integrins in promoting the survival of immune cells,
particularly T cells, of normal or malignant nature in chronic inflammatory diseases, as
well as hematologic malignancies (Figure 3) [126–132]. Stimulating β1 integrins of T cells
was shown to enhance their proliferative processes including activation of their focal ad-
hesion kinase (FAK) and its downstream effectors including PI-3K and Akt [133]. FAK
in T cells has also been described as a contributor to an important immunoregulatory
process, termed activation-induced cell death (AICD) (Figure 3A) [134]. Upon antigen
stimulation of T cell receptors (TCRs) of primed T cells or T-cell activation with anti-CD3
or PMA/ionomycin, T cells upregulate their gene expression of Fas/Fas ligand and are,
thus, more prone to Fas-induced apoptosis [135–137]. The β1 integrins and their FAK
have been reported as important regulators of this process. Indeed, the α2β1 integrin by
interacting with its collagen ligand or with activating monoclonal antibodies was shown to
abrogate AICD in T cell lines via activation of their FAK and downregulation of Fas ligand
mRNA [138]. Another member of β1 integrins, α5β1, was also shown to be part of this



Cells 2022, 11, 1747 9 of 18

T-cell protection squad. Indeed, α5β1 was reported to enhance the AICD-inhibiting as well
as the proliferation-stimulating effects of TGFβ on CD8-positive T cells [139].
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Figure 3. Mechanistic of the apoptosis-inhibiting role of β1 integrin–ECM and α5β1–CD154 dyads:
(A) activating TCR/CD3 via binding to Sag–MHC–II complex (which binds to the variable region
of the TCR β chain and activates T cells without being processed by APCs) or to anti-CD3 Abs,
in a process termed activation-induced cell death (AICD), enhances surface expression of Fas and
Fas ligand on T cells, thus promoting cell apoptosis. Binding of extracellular matrix (ECM) ligands
or activating antibodies to β1 integrins abrogates this AICD by inducing signaling events such
as activation of FAK, ERK1/2, and PPA2 and maintaining the survival signal, Mcl-1, leading to
caspase-8 inhibition; (B) binding of sCD154 to α5β1 integrin inhibits apoptosis induced by Fas–FasL
interaction, as well as by other death signals—namely, TNF-α and TRAIL, interacting with their
respective receptors via activating survival signals including PI-3K, ERK1/2, and p38 to also lead
the inhibition of caspase-8 cleavage. The α5β1 is capable of interacting with sCD154, as well as with
mCD154, but in a cis-manner of binding (when both ligand and receptor are expressed on the surface
of the same cell). Abbreviations: APC, antigen-presenting cell; ERK, extracellular-signal-regulated
kinase; FAK, focal adhesion kinase; Mcl-1, myeloid cell leukemia-1; MHC-II, major histocompatibility
complex II; PI-3K, phosphoinositide-3 kinase; PPA2, protein phosphatase A2; SAg, superantigen;
TNF-α, tumor necrosis factor-α; TNFR1, TNF receptor 1; TRAIL, TNF-related apoptosis-inducing
ligand; TRAILR1/R2, TRAIL receptors R1 and R2; TCR, T-cell receptor.
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In malignant T cells, the interaction of β1 integrins with ECM components is a critical
step, both for their survival as well as their spread and migration. Acute lymphoblastic
leukemia (ALL) T cells exhibited an increased survival rate and an enhanced migration
upon stimulating their α2β1 integrins with collagen type I in a mechanism dependent
upon ERK1/2 MAPK activation and maintenance of the Bcl-2 family member, prosurvival
protein, Mcl-1 [140]. Malignant T cells were also shown to develop resistance to doxorubicin-
induced chemotoxicity upon ligation of their α4β1 and α5β1 integrins. Engaging the α4β1
integrin enhanced Ca2+ influx via an association between a juxtamembrane cytoplasmic
region of its α4 chain and the Ca2+ binding protein, calreticulin [141]. In the same line of
work, the collagen–α2β1 interaction was reported to implicate additional signaling events
in its antiapoptotic function in T cells—namely, phosphorylation of protein phosphatase
2A and inhibition of caspase-8 activation [142].

Direct evidence of the implication of β1 integrins in promoting the persistence of T cells
in chronic inflammatory diseases was reported in a recent study outlining the abrogation
of their Fas-induced apoptosis upon exposure to the synovial fluid of RA patients in a
p38 MAPK/caspase-8 complex-dependent mechanism [126]. Treating this system with
anti-β1 integrin antibodies reversed the response back to apoptosis. On the other hand,
transfecting T cells with an auto-active form of β1 enhanced p38 phosphorylation, further
confirming the role of β1 integrin in the p38-mediated persistence of T cells [126]. These
studies outlined the role of β1 integrins in cell survival involving apoptosis-inhibiting
mechanisms rather than via enhancing mere adhesion to ECM.

The CD154–α5β1 dyad in T cell survival: With the identification of sCD154 as a new
ligand for α5β1, an interesting line of research further promoted the antiapoptotic role of the
CD154–α5β1 dyad (Figure 3B). Preventing apoptosis of cells and allowing their sustained
presence and function is one of the main actors in the pathogenesis of inflammatory diseases
where persistent inflammatory cells would aggravate the condition and of malignant
disorders where stubborn cancerous cells would promote cancer perseverance and even
invasion. Indeed, our recent results showed that sCD154 is capable of binding to several
ALL T cell lines via their α5β1 integrin inducing the activation of their p38, ERK, and PI-
3K/Akt [143]. We also demonstrated that treatment of these malignant cells with sCD154
entirely abrogated their Fas-induced cell death, in a mechanism involving the above
signaling pathways mainly PI-3K activation, and also a decreased cleavage of caspase-8
(Figure 3B) [143]. These findings outline an interesting and novel role of CD154 as a player
in the pathogenesis of cancer and, more specifically, hematological ones involving T cells.

The antiapoptotic role of CD154 was further explored with other death signals.
Our group demonstrated that this prohibitory effect of CD154 was not restricted to
Fas-induced cell death but was also directed against apoptotic events induced by other
death signals [32]—namely, TNF-α and TNF-related apoptosis-inducing ligand (TRAIL)
(Figure 3B) [144,145]. Given these observations, we then demonstrated that the antiapop-
totic effect of CD154 is also seen in human primary T cells and, more importantly, exhibited
in CD4-positive than CD8-positive T cells, suggesting that α5β1 integrin engagement with
CD154 could be a critical pathway contributing to the survival and persistence of effector T
cells in inflammatory diseases [32].

These exciting observations opened the door for new interpretations of already existing
data as to the implication of CD154 and β1 integrins in the pathogenesis of inflammatory
conditions. An interesting example here is a study by Nakayamada et al., which might be
highly suggestive of a role for the CD154–α5β1 integrins in SLE development. Peripheral T
cells from SLE patients with active disease were shown to overexpress β1 integrins on their
surface, compared with T cells from normal subjects. Activating β1 in these cells promoted
their proliferation and activation, the latter assessed by an upregulated CD154 cell surface
expression [129]. Interestingly in this matter, even though not discussed in the study itself,
the overexpressed CD154 in these SLE T cells could be playing a role in their persistence by
acting on α5β1 integrins also expressed herein.
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All these observations were demonstrated upon the interaction of α5β1 with soluble
CD154. As a matter of fact, and as mentioned above, most lines of evidence of bindings
between integrins and CD154 were revealed using the soluble form of the latter [10–14]. The
next evident step was to evaluate the binding of membrane-bound CD154 to α5β1, more
particularly to demonstrate their effect on apoptosis in T cells, cells where both the ligand
and the receptor are expressed on the surface. The interaction of membrane-bound CD154
with α5β1 on the surface of T cells was shown to be solely undertaken in a cis-fashion
(Figure 3B), i.e., when both the ligand and the receptor are expressed on the same cell
as opposed to a trans-interaction when the ligand and the receptor are expressed on the
surface of two different cells. The cis-binding on the cell surface was revealed for other
ligand–receptor couples and protein–protein interactions [146–149]. Its role might be to
secure the sequestration of the ligand by the receptor, thus decreasing its availability to
interact with other receptors expressed on other cells as a form of an immune checkpoint.
By binding CD154, α5β1 confiscates the ligand to its antiapoptotic function and leaves little
CD154 available to bind to CD40, for instance, expressed on the surface of other cells [32].

Altogether, these data demonstrate the significant role of the α5β1 integrin as a
receptor for CD154 in immune responses, inflammation, cancer, and even hemostasis.
Defining all these novel functions of α5β1 puts it on the list of CD154-related targets for
the development of treatment/prevention approaches.

4.5. The αVβ3 Integrin as a Receptor for CD154

The αvβ3 integrin, another member of the RGD-binding subfamily of integrins, with a
vast range of ligands from ECM proteins and adhesion molecules to growth mediators [150],
is involved in attachment to the cytoskeleton, as well as in the survival, proliferation, and
motility of various types of cells including angiogenic ECs and malignant cells [151,152].
This integrin has recently been identified by the group of Takada as a new receptor for
CD154. Researchers reported that CD154 is capable of binding to soluble αvβ3 in the
presence of Mn2+ cations and, therefore, the active form of the molecule but in a KGD-
independent manner [13]. It is important to mention here that while describing α5β1 as
a receptor for CD154, our group reported the inability of the ligand to bind to αvβ3. The
reason could be attributed to the inactive state of this latter, as it was in the presence of no
cations in the solution [12,13]. Further elaboration of the CD154 binding region to αvβ3,
using a simulation docking model, revealed such region to be within the monomeric CD154
at the interface of its trimeric structure, overlapping that involved in α5β1 binding and
important for proper interaction of CD154 with its CD40 receptor.

Some CD154 missense mutations, usually reported under HIGM conditions, were
shown to abrogate the binding of CD154 to both α5β1 and αvβ3 integrins [13]. The same
authors later described on αvβ3 as well as on α5β1 and α4β1 integrins, an allosteric site
termed site 2, in distinction from the RGD-binding site, site 1, as involved in the binding
of these integrins to CD154. The interaction of CD154 with αvβ3, and with α5β1 and
α4β1 in this matter, induces integrin activation and subsequent signal transduction and
response [14].

Awaiting a thorough investigation of the biological significance of a CD154–αvβ3
interaction and its underlying signaling events, this dyad is probably at play in vascular or
cancer settings given the high expression of both the ligand and receptor at this level [13].
It is worth noting at this point that αvβ3 integrin, in spite of being a receptor for CD154
and present on the surface of platelets just like CD40 and other of its integrin equals, is not
involved in sCD154-induced activation of platelets [125].

4.6. The α4β1 Integrin as a Receptor for CD154

The most recently identified CD154 receptor is the α4β1 integrin [14]. This integrin,
also known as very late antigen-4 (VLA-4), is widely expressed in immune cells including
lymphocytes, natural killer cells, monocytes, macrophages, eosinophils, basophils, etc. [153].
It is implicated in homing of these cells, their migration, differentiation, and activation.
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Natural ligands of α4β1 include VCAM-1, mucosal addressing cell adhesion molecule
(MAdCAM) as well as fibronectin [154]. Recent data have demonstrated the capacity of
CD154 to “allosterically” bind to α4β1, as well as to α5β1 and αvβ3. Indeed, in addition
to the usual RGD-binding sites on these integrins, what is termed site 1, a second region
(site 2) with allosteric properties was shown to be also implicated in the interaction of
integrins with inflammatory ligands such as Fractalkine, the stromal cell-derived factor 1,
and phospholipase A2 type IIA [155–157]. CD154 was shown to bind to α4β1, α5β1, and
αvβ3 via their site 2 as well, as mentioned above. The interaction of the ligand with
site 2 is implicated in some HIGM conditions and is capable of influencing CD154–CD40
interaction [14].

A deeper investigation of the biological consequence of the CD154–α4β1 interaction
is called for. We expect the CD154–α4β1 to exert highly significant functions, given the
importance of both ligand and receptor in numerous aspects of cellular response (adhesion,
migration, differentiation, activation, survival, etc.).

5. Conclusive Remarks

Integrins, major players in numerous cellular processes and involved in various
aspects of human health and pathological states, are now identified as receptors for the
co-stimulatory, immunomodulating, and pro-inflammatory molecule, CD154. Describing
this new port of entry by which integrins are contributing to human health and disease
via their interaction with CD154 constitutes a braking point for the identification of novel
therapeutic targets and the development of therapeutic approaches for the treatment of
integrin/CD154-mediated diseases. Abrogating the CD154–Mac-1 interaction has been
successfully evaluated as a therapeutic tool in atherosclerosis and graft rejection. While one
of the functions of the α5β1–CD154 dyad is promoting tumor cell survival in the context of
cancer and enhancing inflammation as well as T-cell persistence in autoimmune conditions,
such an axis represents a promising therapeutic target in these diseases, with minimal
collateral side effects. Indeed, therapeutic strategies directed against the interaction of
integrins specifically with their ligand CD154 could provide a better treatment approach
for a plethora of inflammatory, autoimmune, and malignant diseases.
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