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Abstract

Gene expression quantitative trait loci (eQTL) are useful for identifying single nucleotide polymorphisms (SNPs) associated
with diseases. At times, a genetic variant may be associated with a master regulator involved in the manifestation of a
disease. The downstream target genes of the master regulator are typically co-expressed and share biological function.
Therefore, it is practical to screen for eQTLs by identifying SNPs associated with the targets of a transcript-regulator (TR). We
used a multivariate regression with the gene expression of known targets of TRs and SNPs to identify TReQTLs in European
(CEU) and African (YRI) HapMap populations. A nominal p-value of ,161026 revealed 234 SNPs in CEU and 154 in YRI as
TReQTLs. These represent 36 independent (tag) SNPs in CEU and 39 in YRI affecting the downstream targets of 25 and 36
TRs respectively. At a false discovery rate (FDR) = 45%, one cis-acting tag SNP (within 1 kb of a gene) in each population was
identified as a TReQTL. In CEU, the SNP (rs16858621) in Pcnxl2 was found to be associated with the genes regulated by
CREM whereas in YRI, the SNP (rs16909324) was linked to the targets of miRNA hsa-miR-125a. To infer the pathways that
regulate expression, we ranked TReQTLs by connectivity within the structure of biological process subtrees. One TReQTL
SNP (rs3790904) in CEU maps to Lphn2 and is associated (nominal p-value = 8.161027) with the targets of the X-linked
breast cancer suppressor Foxp3. The structure of the biological process subtree and a gene interaction network of the
TReQTL revealed that tumor necrosis factor, NF-kappaB and variants in G-protein coupled receptors signaling may play a
central role as communicators in Foxp3 functional regulation. The potential pleiotropic effect of the Foxp3 TReQTLs was
gleaned from integrating mRNA-Seq data and SNP-set enrichment into the analysis.
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Introduction

Phenotypic differences between populations have been shown to

be associated with variation in genes, the epigenome, the

environment and quantitative traits. Gene expression has been

used as a quantitative phenotypic trait to locate regions in the

genome that have polymorphisms governing differential transcrip-

tion within populations [1,2,3,4]. This type of inference termed

expression quantitative trait loci (eQTL) analysis has been used in

genome-wide association studies (GWAS) to map single nucleotide

polymorphisms (SNPs) to regions that affect gene expression [5].

Recently it has been shown that SNPs associated with a

phenotypic trait are more likely to be eQTLs [6]. The advantage

of understanding the contribution of genetic variations on the

expression of genes has major implications on the manner in

which pharmaceuticals are personalized for an individual and how

complex diseases are investigated.

A typical eQTL approach entails modeling the expression of a

single gene as a response variable with the genotypes of a single

SNP as the predictor variable. Variants of eQTL modeling take

the form of a pathway, network component, sparse factor, cluster

or the average of a group of co-expressed genes as the response

variable and/or predict the expression according to a set of SNPs

selected by LASSO, canonical correlation or interval mapping

[7,8,9,10,11,12,13,14]. The goal is to determine if there are

‘‘eQTL hotspots’’ [15] where a SNP leads to widespread changes

in the expression of genes that are coordinately regulated.

Hallmark examples of the power of eQTL analysis for determi-

nation of population differences are illustrated by several recent

bodies of work. For example, several investigators have demon-

strated the robustness of eQTLs to discern variation in gene

expression between populations due to environmental exposures

or geographic ancestry [16,17,18,19]. Others have shown that

gene expression can vary according to particular genotypes,

chemical agents and factors such as tissue type, gender, genotype

and age [20,21,22,23,24,25]. Also, many have successfully linked

genetic variants to transcriptional patterns within ethnic groups

[26] although batch effects and biological noise confounding the
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differences between the populations can distort the interpretation
of the results [27,28]. For instance, the SCAN database [29] is a
catalogue of the association of a given SNP to variations in gene
expression between Yoruba in Ibadan, Nigeria (African: YRI) and
CEPH-Utah residents with ancestry from northern and western
Europe (European: CEU) HapMap populations [30]. These
variants can be cis- or trans-acting whereby the effect is situated
proximal to the expressed gene or it is located elsewhere in the
genome, respectively. Although it has been suggested that SNPs
residing in transcription factors (TFs) have no significant
attributable effect on gene expression variation [11], it is unknown
whether a variant that affects the genes regulated by a TF operates
through a system of regulated pathways. Therefore, a more
comprehensive way to better understand the genetic component of
variation in gene expression within and between populations is to
address the problem on a systems biology level. In other words, on
a genome-wide scale, simultaneously model the expression of
genes that are downstream targets (DSTs) of a transcript-regulator
(TR) (Figure 1). A TR can be a TF, a cofactor, a complex, a
microRNA or combination of these which are involved in the
regulation of transcription and govern signaling pathways.

Li et al. [9] demonstrated the practicality of utilizing pathways

as a response variable to associate SNPs between two genotype

categories. They identified several genome-wide pathway regula-

tors that seem to mediate gene expression differences. The

advantages of this type of TReQTL approach are that the

covariance of the DSTs is used in the modeling, co-regulation of

the genes is inferred and the eQTL scan is genome-wide. Hence,

scanning for TReQTLs is more likely to reveal variants that confer

differences in gene expression between populations through

genetically-wired regulatory mechanisms. We used a multivariate

linear regression to model the DSTs of TRs with SNPs typed in

CEU and YRI populations. The DSTs of the TRs were obtained

from the TRANSFACH knowledgebase - a biological resource that

catalogs experimentally-proven binding and regulation of genes by

various TRs [31,32]. For all TRs with two or more DSTs, we

detected 234 SNPs in CEU and 154 in YRI representing 36 and

39 independent (tag) SNPs as TReQTLs and affecting the DSTs of

25 and 36 TRs respectively. The expression of the DSTs of 24

TRs was associated with SNPs in both populations. Mapping to

within 1 kb of a gene and controlling for multiple testing revealed

one cis-acting tag SNP in each population as a TReQTL. In CEU,

a TReQTL SNP was found to be associated with the DSTs of the

X-linked breast cancer suppressor Foxp3 but is not significant in

the YRI dataset. The Foxp3 TReQTL SNPs were overrepresent-

ed in evolutionary conserved regions (ECRs) of the genome in

CEU and enriched in splice junctions (SJs) in YRI.

Results

Analysis Strategy
Typical expression quantitative trait loci (eQTL) analyses take

the form of a strategy where a single gene is used as a response

variable and individual single nucleotide polymorphisms (SNPs)

the predictor variable to determine if there is association of a

particular phenotype with a variant. The correlation of co-

regulated genes is not taken into consideration. We used a

multivariate approach to leverage the covariance of the gene

expression of downstream targets (DSTs) of a transcript-regulator

(TR) to perform genome-wide associations for SNPs that are

potentially linked to changes in gene expression across genotypes.

The genotype data (phase-II, release 24, forward strand, non-

redundant) from the 60 Yoruba in Ibadan, Nigeria (African: YRI)

and from the 60 CEPH-Utah residents with ancestry from

northern and western Europe (European: CEU) populations were

obtained from the International HapMap Project [30]. Gene

expression data from the profiling of Epstein-Barr virus (EBV)-

transformed lymphoblastoid cell lines from the individuals in each

CEU and YRI HapMap population [33] were obtained from the

National Center for Biotechnology Information Gene Expression

Omnibus (GEO) database under accession number GSE10824.

Figure 1 illustrates that using this model, TReQTLs can be

identified which are associated with the downstream targets of

TRs. The genetic variation attributed to the association are

imbedded, and therefore discovered in the network of regulatory

pathways that govern the co-regulation behind the phenotypic

trait. The TReQTLs may be within a single gene (cis), spread

across several genes (trans) or located in regions of unknown

biological function. In addition, the case may be that several

TReQTLs for the DSTs of TRs may share the same variants or

portions of the same variants. To investigate the regulatory

component of TReQTLs, we first sort out to determine if two

populations (YRI and CEU) had shared or varied signaling

transduction mechanisms robust enough for a more refined

association analysis.

Figure 1. Strategy to identify transcript-regulator eQTLs (TReQTLs). The gene expression of downstream targets (DSTs) of a transcript-
regulator (TR) is used as quantitative traits to associate with individual single nucleotide polymorphisms (SNPs). In some cases the SNPs map to the
same gene, different genes, the TR or are intergenic.
doi:10.1371/journal.pone.0034286.g001

Population Differences in TReQTLs
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Downstream Targets of Transcript-regulators
Using the TRANSFAC [31,32] and TRANPATH [34]

databases of components of signal transduction and regulatory

pathways respectively, 2,743 TRs were mapped from the

approximately 9,000 probe sets on the Affymetrix Human HG-

Focus Target GeneChip Array, 1,438 signaling pathways were

identified as comprised of at least one of the TRs and 78 TRs were

mapped to one or more pathways. As shown in Figure 2, 333 TRs

were determined to have two or more DSTs. These regulate 1,931

DSTs. The TRs consist of transfactors (TFs), cofactors, complexes

and miRNAs. Three TFs, all stimulating proteins (Sp), regulate

more than 60 DSTs. The median value for the TR DSTs is 3 and

the mean is 5.8.

Significant Signaling Transcript-regulators of Individual
Populations

To determine the extent of co-regulation of genes within CEU

and YRI populations, the correlation of the gene expression of

pairs of the genes which are DSTs of TRs was assessed.

Significance (p-value,or<0.05) was determined from a non-

parametric distribution of correlation scores obtained from 10,000

random cases. The correlation score is the sum of the squares of

the Pearson correlations (r) among all pairs of genes determined to

be DSTs of a TR (see the Materials and Methods section for more

detail). For illustrative purposes, Table 1 reports the significance of

the correlation of DSTs of only those TRs where disease-causing

SNPs are located in the TR target site. The disease-causing SNPs

were obtained from the NHGRI GWAS Catalog (www.genome.

gov/gwastudies) and mapped to the TRANSFAC position weight

matrix consensus sequence for the binding of at least one of the

DSTs of the TR. Interferon-stimulated gene factor 3 (ISGF3), X-

box binding protein 1 (XBP1) and hepatocyte nuclear factor 4-

alpha (HNF4-a) are significant in the CEU and YRI populations.

Signal transducers and activators of transcription 21 (STAT1),

activating transcription factor 1 (ATF1) and peroxisome prolif-

erator activating receptor gamma (PPAR-c) are significant in YRI

only whereas upstream transcription factor 1 (USF1), the Sp1:Sp3

complex and the retinoid X receptor alpha (RXR-a):PPAR-c
complex are significant in CEU only.

Genome-wide Analysis for Transcript-regulator
Expression Quantitative Trait Loci

To search for eQTLs that are tied to genes which are co-

regulated in a given population, a multivariate linear regression

was used to model the gene expression of the DSTs of TRs as

response variables and the genotypes of SNPs as the predictor

variables. The analysis was restricted to i) the 333 TRs which were

found in the TRANSFAC database to have two or more DSTs

(1,931 of the 8,399 unique UniGene transcripts represented by

probe sets on the microarrays) and ii) to approximately 1.5 million

SNPs on the autosomal chromosomes that passed the filtering

criteria (see Materials and Methods) and were in common between

CEU and YRI (common set), the 416,160 SNPs among the 1.5

million common set at a minor allele frequency (MAF). = 0.05

and linkage disequilibrium (LD) r2.0.5 (tag set) and the 184,616

independent (tag) SNPs which are within 1 kb of a gene (cis-acting

set). For multiple testing correction, we used the 6.16107 p-values

from the cis-acting set to control the false discovery rate

(FDR = 45%). For the three TRs with 60 or more DSTs, the

modified F-statistic [9,35,36] was used to obtain the nominal p-

value for the TReQTL. A preliminary analysis considered a

nominal p-value less than 161026 for detecting TReQTLs.

Although this cut-off is extremely high and subject to many false

positives, we were initially interested in the overall robustness of

the method to screen for putative associations. As illustrated in

Figure 3, the TReQTLs for the CEU and YRI populations are

widely different with 234 and 154 SNPs detected in CEU and YRI

respectively. These represent 36 tag SNPs in CEU and 39 in YRI

affecting the DSTs of 25 and 36 TRs respectively (Supplemental

Materials Table S1). None of the TReQTL SNPs in the two

populations overlap. At an FDR of 45%, two cis-acting tag SNPs

(one in each population) are considered TReQTLs. In CEU, the

SNP (rs16858621) in the pecanex-like 2 (Pcnxl2) gene was highly

associated with the DSTs of the cAMP responsive element

modulator (CREM) transfactor whereas in YRI, the SNP

(rs16909324) was linked to the targets of miRNA hsa-miR-125a.

As shown in Figure 4, there are a few cases where the SNPs are

mapped relative to a TR (i.e.,2 Mb). In CEU, the DSTs of TRs

alpha-CBF (T00081) and ENKTF-1 (T00255) possessed 13 and 4

TReQTL SNPs respectively but are not displayed as these DST

genes have not been characterized and hence, have no genomic

location. Four tag SNPs were associated with the DSTs of the

HIF2A:arnt complex (T10852) in CEU whereas 2 tag SNPs were

associated with the DSTs of miRNA hsa-miR-125a (T09819) in

YRI. Interestingly, in CEU, one tag SNP (rs16858621) was

associated (p-value,561027) with the DSTs of miRNA has-miR-

15a (T09712) and TF CREM (T01803) both of which regulate

Ccnd1 [37,38]. Thus, presumably, this represents a case where a

SNP may affect a master regulator that controls not only a TF but

a miRNA as well both of which share the role of regulating a

common gene. In YRI, there are several cases where a tag SNP is

associated with the DSTs of more than one TR. Although several

sets of DSTs of TRs were found to have a fair number of

significant tag SNPs mapped to them, two miRNAs (hsa-let-7e

(T09710) in CEU and hsa-miR-200a (T09837) in YRI) have

hotspots (SNPs in a region affecting multiple transcripts [15])

associated with the variation of expression of their DSTs according

to the genotypes at the alleles. When restricting the comparison of

the populations to the ,1.5 million SNPs in common, several of

the TReQTL overlapped between CEU and YRI. The expression

Figure 2. Distribution of the number of genes as downstream
targets (DSTs) of transcript-regulators. The x-axis is the # of
genes as DSTs and the y-axis is the count. The table inset is a summary
of the frequency distribution for the count of the DSTs (two or more)
per TR.
doi:10.1371/journal.pone.0034286.g002

Population Differences in TReQTLs

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e34286



Figure 3. Manhattan plot displaying distribution of TReQTLs. The x-axis is the relative position of the SNPs across the genome in Mb. The
chromosomes are illustrated by alternating shaded and unshaded sections of the plot. The order of the chromosomes is from #1 to #22 from left to
right. The y-axis represents the –log10 p-value of the SNP association with the gene expression of DSTs of the TRs. p-values of SNPs from CEU are
denoted as red circles, p-values of SNPs from YRI are denoted as green triangles. For visualization purposes, only SNPs having a p-value,0.002 in any
of the 333 TRs are plotted.
doi:10.1371/journal.pone.0034286.g003

Table 1. Co-regulation of DSTs of TRs where disease-causing SNPs are located in the TR binding site of at least one of the TR DSTs.

TR ID TR Symbol # of DSTs CEU GCS CEU p-value YRI GCS YRI p-value

T00428 ISGF-3 3 0.796 0.0055 0.328 0.0532

T00221 E2F:DP 7 1.374 0.3006 1.463 0.0629

T00902 XBP-1 2 0.565 0.0009 0.533 0.0001

T09484 NF-E2p45 4 1.148 0.0073 0.427 0.1163

T09998 c-Myc 3 0.541 0.0276 0.284 0.0821

T01804 NF-YA 13 6.222 0.0766 4.749 0.0482

T04759 STAT1 11 2.076 0.9201 3.452 0.0482

T09328 usf1 6 1.769 0.0268 0.607 0.4227

T10359 sp1:sp3 2 0.252 0.0316 0.064 0.2137

T00167 ATF-2-xbb4 3 0.078 0.7219 0.073 0.6045

T03828 HNF-4alpha 12 6.445 0.0187 4.570 0.0222

T04870 MafG 2 0.284 0.0250 0.300 0.0062

T00968 ATF-1 4 0.544 0.1565 0.564 0.0459

T05351 PPARgamma 2 0.193 0.0660 0.184 0.0339

T08618 RXR-alpha:PPARgamma 2 0.237 0.0395 0.006 0.7065

GCS – Group correlation score. The disease-causing SNPs were obtained from the NHGRI GWAS Catalog (Available at: www.genome.gov/gwastudies. Accessed 3/3/
2010) with selected SNP-trait associations limited to those with p-values,161025.
doi:10.1371/journal.pone.0034286.t001

Population Differences in TReQTLs
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of the DSTs of 24 TRs was associated with SNPs in both

populations (Table 2). These were SNPs mapped within or in

proximity to genes involved in transcription regulation, cell

communication, transport, kinase activity, growth and develop-

ment. Interestingly, several of the TReQTL SNPs in CEU are

mapped to pseudogenes.

Cohesive TReQTL Biological Process Subtrees Reveal
Descriptive Molecular Events

Each TReQTL is comprised of a SNP, a TR and a set of DSTs.

Each constituent is associated with a gene. We mapped the

constituents, except for cases where the TR is a miRNAs, to genes

and then determined the GO biological process term each was

annotated to. The collection of terms was then used to construct a

GO biological process subtree. All ancestors of a term were

included in the subtree. Our adjusted cohesion score (ACS) is an

ad hoc way to i) measure the amount of connectivity between

terms, ii) account for the significance of the TReQTL and iii)

consider the average number of paths per term. As listed in

Table 3, the top ranked TReQTLs have the more cohesive

subtrees and are more descriptive with respect to the term with

most paths associated with it (The full list is in supplemental

material Table S2 (CEU) Table S3 (YRI)). These associations

within the subtree can lead to new insight into the possible role of

the TReQTL SNP in the pathophysiology of diseases. For

instance, in YRI, the rs12258754 allelic variant is associated with

the DSTs of activating transcription factor 3 (Atf3) and produced a

subtree with vascular smooth muscle cell (VSMC) contraction as

the granular biological process node (Figure 5A). Interestingly, in

CEU, four SNPs associated with the variation of expression for the

DSTs of miRNAs hsa-mir-181b-1 (MI0000270) and hsa-mir-

181b-2 (MI0000683) are mapped to the peptidyl-prolyl cis-trans

isomerase A-like pseudo-gene and generated a subtree with

synaptic transmission as the most descriptive biological process

term (Figure 5B).

TReQTL interaction network
Many of the variants map to Online Mendelian Inheritance in

Man (OMIM) associated disease genes (data not shown). For

instance, one TReQTL in the CEU population is associated with

the DSTs of the X-linked breast cancer suppressor gene Foxp3

(T04280) transfactor [39]. Foxp3 belongs to the Forkhead box

family of genes, is located on chromosome X and is essential for

the production and normal function of regulatory T-cells. As

shown in Figure 6, interleukin 2 (Il2) and colony stimulating factor

2 (CSF2), the DSTs of Foxp3, are two cytokines whose gene

expression co-regulation (correlation = 0.56) is significantly associ-

ated with the variants of tag SNP rs3790904 (p-value = 8.1 1027)

which maps to the latrophilin homolog 1 (Lphh1/Lphn2) G-protein

couple receptor (GPCR) gene. This association is not significant in

YRI (p-value = 0.89). Other significant SNPs in CEU that are

linked to the DST of Foxp3 map to an additional GPCR gene

(Lphn3) as well as a membrane ion channel (KCNJ1), a

phosphatidic acid phosphatase type 2 enzyme (Ppapdc1a) and an

uncharacterized gene. An interaction network of Foxp3, its DSTs

and genes that the TReQTLs map to revealed tumor necrosis

factor (TNF) and NF-kB as central hubs along with carcinoem-

bryonic antigen-related cell adhesion molecule 3 (CEACAM3),

Tgf-beta, and hepatocyte growth factor (HGF) as connectors

(Figure 7). Interesting enough, negative regulation of NF-kappaB

TF activity, cAMP response element-binding (CREB) activity and

T-cell cytokine production/positive regulation of regulatory T-cell

differentiation are biological processes within the Foxp3 TReQTL

subtree that are highly connected (Data not shown).

Over-representation of the Foxp3 TReQTL SNPs in
Genomic Regions

SNPs in multi-species/evolutionary conserved regions (ECRs)

may imply similarity of function across species [40] and those

within splice junctions (SJs) or splicing enhancers may play a role

in gene expression regulation through exon splicing [21,41] . In

other words, genetic variants that are related to gene expression

differences between populations are more likely to be in genomic

regions conserved across species and/or possibly involved in

regulating transcription by altering splice forms of transcript

messages. As an anecdotal example, we used 472 SNPs from the

union of the Foxp3 TReQTL SNPs between CEU (n = 233) and

YRI (n = 239) with a more liberal nominal p-value threshold

,161024 to determine over-representation within ECRs and SJs.

As displayed in Table 4, using SNP-set enrichment analysis [42],

the SNPs are significantly over-represented in 5-way ECRs for

CEU (p-value = 0.006) but not YRI (p-value = 0.9) and enriched in

SJs for YRI (p-value = 161024) but not CEU (p-value = 0.9). Fisher

exact tests confirm significance of the over-representation of these

TReQTL SNPs in 5-way ECRs for CEU (p-value = 0.0079) and in

SJs for YRI (p-value = 0.0001).

Discussion

Genetic and transcriptional variations are important key factors

in the evolution of biology and the dispensation of diseases. Single

nucleotide polymorphisms (SNPs) are one type of DNA sequence

alteration that is commonly used as a marker for tracking genetic

variation. The allelic frequency of a SNP at a given locus can vary

between populations and the genotype may code for a SNP that

results in a particular phenotype, trait or disease [43,44,45,46].

Within populations and under certain biological conditions genes

are coordinately regulated by transcript-regulators (TRs) such as

transcription factors (TFs), cofactors, complexes of TFs and

miRNAs (Table 1). These co-expressed genes often times share

biological functions and work in concert to mediate cellular events

such as biological processes and molecular pathways. Although it

has been shown that TFs do not harbor trans-acting variants [11],

coupling coordinately regulated genes as a quantitative trait for a

loci (eQTL) with the genotype of SNPs as a genome-wide

association study (GWAS) can presumably help to elucidate

variation in gene expression (TReQTLs) on a genomic and

systems biology scale that code for particular phenotypes and

complex diseases [9].

Tailoring the GWAS eQTL analysis by considering genes with

coordinated expression is of added value to reveal master

regulators of transcriptional genetic variation (Figure 1). We used

a multivariate linear regression with the gene expression of known

downstream targets (DSTs) of TRs (Figure 2) as the response

variable and individual SNPs as predictor variables to identify

TReQTLs in European (CEU) and African (YRI) HapMap

populations. At a nominal p-value threshold of ,161026 we

discovered 234 SNPs in CEU and 154 in YRI as putative

TReQTLs (Figure 4). These represent 36 and 39 independent (tag)

SNPs in CEU and YRI affecting the DSTs of 25 and 36 TRs

respectively. Two SNPs (one in each population) are cis-acting

TReQTLs (within 1 kb of a gene) at a false discovery rate (FDR) of

45%. One of them, a SNP in the pecanex-like 2 (Pcnxl2) gene was

found in CEU to be highly associated with the DSTs of the cAMP

responsive element modulator (CREM) transfactor whereas in the

YRI dataset, a SNP was linked to the DSTs of miRNA hsa-miR-

125a. Although the FDR may seem abnormally high and one

would expect at least one if not both of the TReQTLs to be false

positives, it can be misleading as others have demonstrated that

Population Differences in TReQTLs
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Figure 4. Dot plot of significant TReQTLs. A) CEU B) YRI. Each circle represents a TReQTL SNP with a p-value,161026. The x-axis is the relative
position of the TReQTL SNPs across the genome in Mb. The chromosomes are illustrated by alternating shaded and unshaded sections of the plot.
The order of the chromosomes is from #1 to #22 from left to right. The y-axis is the relative position of the TR across the genome in Mb. The order of
the chromosomes is from #1 to #22 from bottom to top. The points were jittered to enhance the display of TReQTLs in close proximity. TReQTLs
near the diagonal line have the potential to be cis-regulated.
doi:10.1371/journal.pone.0034286.g004

Population Differences in TReQTLs
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adjusting for biases which arise from correlations in eQTL analysis

is a major challenge and a substantial overestimation of the

number of false positives [47,48,49].

Interestingly enough, the gene expression of the DSTs of 24

TRs was associated with SNPs (albeit different ones) in both

populations (Table 2) but the majority differed (Figures 3 and 4).

The overlap in the TReQTLs probably reflects the ubiquity of

certain basic biological processes such as transcription regulation,

cell communication, transport, kinase activity, growth and

development. On the otherhand, one TReQTL tag SNP

(rs3790904) in the CEU population is associated (p-val-

ue = 8.161027) with the DSTs of the X-linked breast cancer

suppressor gene Foxp3 (Figure 6) but is not significant in YRI (p-

value = 0.89). The interaction network of the Foxp3 TReQTL in

CEU revealed that tumor necrosis factor (TNF), NF-kappaB and

variants in G-protein coupled receptors (GPCR) signaling may

play a central role as communicators in Foxp3 functional

regulation (Figure 7). Although the Foxp3 tumor suppressor is

biologically relevant in the pathogenesis of breast cancer, some

have shown that SNPs in the germline of the gene are not

associated with the risk of the disease [50]. Our TReQTL analysis

reveals other potentially interesting loci which might be causative

in the etiology of complex diseases.

Another difference between the two populations based on the

TReQTLs was the connectivity of the underlining Gene Ontology

(GO) biological processes that the genes of the TReQTL represent

(Figure 5). In CEU, several SNPs associated with the variation of

expression for the DSTs of two miRNAs (hsa-mir-181b-1

(MI0000270) and hsa-mir-181b-2 (MI0000683)) are mapped to

the peptidyl-prolyl cis-trans isomerase pseudo-gene and yields a

subtree with synaptic transmission as the more cohesive descriptive

GO term (Table 3). The activity of this enzyme has been suggested

to be necessary for memory formation and may be involved in

complex neurodegenerations such as Alzheimer’s disease [51]. In

YRI, a SNP (rs12258754) controlling the variation of expression

for the DSTs of activating transcription factor 3 (Atf3) yielded a

subtree with vascular smooth muscle cell (VSMC) contraction as

the more descriptive GO term (Table 3). Although much is not

currently known about the function of Atf3 in VSMCs [52],

mutations in the actin, alpha 2 (Acta2) smooth muscle gene have

been shown to result in a variety of vascular diseases [53].

Transcriptional networks such as these have been recently shown

to be hubs with high connectivity and association with controlling

higher-ordered biological function such as lipogenesis, lipid

trafficking and surfactant homeostasis [54]. Our approach

embraces this strategy by using the SNPs within the TReQTLs

as an adjudicator for the identification of master regulators of these

genetic networks. Although it is expected that a TR and its DSTs

will share a common signaling pathway, what is not certain is that

the SNP associated with the eQTL from the TR and DSTs will

reside near or in a gene with biological functionality that forms a

cohesive GO biological process subtree. Bear in mind that it is not

known where the true regulating TR associated with a candidate

TReQTL actually exerts its biological functionality and to date,

there is no independent data set with gene expression and

genotype calls from another sample of the YRI and CEU

Table 2. TRs in common between CEU and YRI TReQTLs.

TR ID TR Symbol CEU SNP Gene ID CEU SNP Gene Symbol CEU SNP YRI SNP Gene ID YRI SNP Gene Symbol YRI SNP

T00250 Elk-1 rs9838549 131185 LOC131185 rs965676 6638 SNRPN

T00255 ENKTF-1 rs10510093 2263 FGFR2 rs6864839 4488 MSX2

T00498 alpha-enolase rs1029741 54543 TOMM7 rs12358485 359779 MRPS35P3

T00902 XBP-1 rs11686328 129563 DIS3L2 rs6111734 27131 SNX5

T00910 YB-1 rs17586344 1956 EGFR rs11120212 100505832 LOC100505832

T01814 pax6-isoform5a rs3212243 11035 RIPK3 rs10755971 137902 PXDNL

T01931 RelB rs9610774 29775 CARD10 rs289838 9111 NMI

T02689 GATA-6 rs13345832 55769 ZNF83 rs2937889 57509 MTUS1

T04870 MafG rs1153303 150000 ABCC13 rs12691592 53353 LRP1B

T04953 TFIIIA rs11692860 729009 FTH1P20 rs7755681 5071 PARK2

T04959 GKLF-isoform1 rs9484664 100420742 LOC100420742 rs16848653 55137 FIGN

T04996 ZBP89 rs6691852 467 ATF3 rs6549604 5067 CNTN3

T05324 LXR-alpha:RXR-alpha rs11157248 6955 TRA-alpha rs7072859 2894 GRID1

T06135 p63gamma rs6670238 51018 RRP15 rs1558561 9717 SEC14L5

T08465 C/EBPalpha rs9068 220988 HNRNPA3 rs6570819 23328 SASH1

T08618 RXR-alpha:PPARgamma rs1331584 150928 PTMAP5 rs4596085 11280 SCN11A

T09159 pitx2a rs1983600 9742 IFT140 rs6966461 154664 ABCA13

T10331 NRF-1 rs7272098 6238 RRBP1 rs1347038 2043 EPHA4

T10852 HIF2A:arnt rs2741270 248 ALPI rs28740902 4487 MSX1

T11264 CP2 rs1020344 100130101 LOC100130101 rs3819726 4121 MAN1A1

T13796 TLS rs10143078 55333 SYNJ2BP rs870181 55275 VPS53

T14942 hsa-miR-181b rs17543080 392285 LOC392285 rs10797531 148641 SLC35F3

T15206 N-Myc rs2268943 4070 TACSTD2 rs1181164 148979 GLIS1

T15913 RXR-alpha:NR1B1 rs1855625 643954 RPSAP43 rs17238405 4734 NEDD4

doi:10.1371/journal.pone.0034286.t002
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populations to replicate our results. However, once the genotype

data from Idaghdour et al. [16] are made publicly available, we

will be able to use it to determine if our TReQTLs can discern

between Moroccan populations according to geographical loca-

tions, regional differences and ancestry. Furthermore, in depth

functional analyses on TR targets will presumably shed light on

these TReQTL regulatory networks and perhaps biologically

confirm our results.

McCauley et al. [40] reported that SNPs in multi-species

conserved sequences (MCS) are useful as markers linking to

complex diseases. Recent evidence suggests that SNPs that influence

alternative splicing are enriched within splice junctions (SJs) or

disrupt splicing enhancers [21,41]. Our analysis of Foxp3

TReQTLs revealed SNPs overrepresented within 5-way (human,

mouse, chimp, rhesus monkey and dog) evolutionary conserved

regions (ECRs) in CEU and in SJs of YRI defined by RNA-Seq

mapping (Table 4). These results support the notion that genomics,

genetics and transcriptomics play an intricate role in sustaining

population diversity and structure [16]. It would be interesting to

determine how environmental factors, population structure and

geographical differences affect transcript abundance as a quantita-

tive trait when co-regulation of gene expression is considered.

Although the identification of TReQTLs is useful for deter-

mining genetic variants regulating gene expression, there are

limitations to the approach and guidelines with interpretation of

the results. First, there is a paucity of information about the genes

which TRs control. We restricted our analysis to only 333 TRs

with two or more DSTs known at a given time to be regulated by

TRs. This does not capture the full array of genetic variants which

might contribute to the gene expression differences between the

two populations. However, as advances in functional genomics

leads to improved knowledge about gene regulation and biological

function on a genome-wide scale, the discovery of TReQTLs

should advance and be more informative. In addition, the study of

the transcript-regulation of genes by miRNA is in its infancy and

there is a small number of miRNAs known to regulate genes.

Furthermore, our analysis only tested the association of a single

SNP with sets of coordinately expressed genes. It is very likely that

the variation in expression is due to the synergistic effect of two or

more SNPs. In fact, there may be other mediators of complex

diseases other than SNPs acting alone or symbiotically. Finally,

our work relied on samples from immortalized lymphoblastoid cell

lines (LCLs) and not from a disease state. Therefore, it is debatable

whether or not the genetic associations of SNPs with gene

expression in LCLs will carry over to tissue samples from organs

[55]. However, there is some indication, albeit a paucity of

evidence, that the DNA repair capacity of LCLs from breast

cancer samples is significantly lower than control subjects [56],

that tumor-infiltrating Foxp3+ regulatory T cells can distinguish

between high-risk breast cancer patients and those at risk of a late

relapse [57] and that a fraction of eQTLs derived from the analysis

of UK Adult Twin registry LCLs gene expression and genotype

data overlap with those identified in a HapMap population [47].

Despite the caveats noted above, the advantages of associating

genetic markers such as SNPs to quantitative traits such as co-

regulated genes is promising and of value as an additional strategy

when investigating the role of a genetic variant and master

regulators in the etiology of a complex diseases.

Materials and Methods

Genotype Data
Genotype data (phase-II, release 24, forward strand, non-

redundant) from the 60 Yoruba in Ibadan, Nigeria (African: YRI)
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and from the 60 CEPH-Utah residents with ancestry from

northern and western Europe (European: CEU) populations were

obtained from the International HapMap Project [30]. SNPs with

a call rate ,95%, minor allele frequency (MAF),0.05, or Hardy-

Weinberg equilibrium [58] p-value,0.05 within each population

separately were removed and we restricted our analysis to

autosomal markers only. About 2 million SNPs in CEU and

,2.2 million SNPs in YRI were retained after filtering. The

approximately 1.5 million SNPs in common between the two

populations after filtering (common set) were used for TReQTL

preliminary analysis using a nominal p-value threshold of

,161026. To account for correlated SNPs, we used the LRTag
approach [59,60] with linkage disequilibrium (LD) correlation

(r2).0.5 and MAF. = 0.05 to tag 416,160 independent SNPs (tag

set) of the 1.5 million in the common set. In addition, for multiple

testing correction, we used the p-values of the tag SNPs that are

within 1 kb of a gene (cis-acting set) to obtain an FDR. For the

SNP association portion of the study, we focused the sample set on

the 60 CEU and 55 YRI individuals that had corresponding gene

expression data.

Figure 5. TReQTL Gene Ontology (GO) biological process subtrees. A) Based on the GO biological processes from the gene that the YRI
TReQTL SNP rs12258754 map to and those of the DSTs of activating transcription factor 3 (Atf3) and of Atf3 itself. B) Based on the GO biological
processes from the gene that the CEU TReQTL SNP rs10976413 map to and those of the DSTs of miRNAs hsa-mir-181b-1 (MI0000270) and hsa-mir-
181b-2 (MI0000683).
doi:10.1371/journal.pone.0034286.g005
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Microarray Gene Expression Data
Gene expression data from the profiling of Epstein-Barr virus

(EBV)-transformed lymphoblastoid cell lines from the individuals

in each CEU and YRI HapMap population were acquired from

assaying total RNA on Affymetrix Human HG-Focus Target

GeneChip Array [33] containing about 9,000 probe sets and

representing about 8,600 UniGenes (NetAffx array annotation

release 29, March 30, 2009 UniGene build 219). The data are

available in the National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO) database [61,62] under

accession number GSE10824. The data were log2 transformed

and normalized using the robust multi-array average method [63].

The gene expression data from probe sets that mapped to the same

UniGene cluster were averaged resulting in 8,399 unique

UniGene transcripts represented by probe sets on the array.

RNA-Seq Data
We obtained raw sequence reads from the whole transcriptome

sequencing of the CEU and YRI populations [64,65]. These reads

were mapped to the reference human genome (hg18, NCBI 36)

using the Bowtie program [66]. Splice junctions (SJs) were

mapped using the Tophat program [67]. Transcript abundance

was calculated by the Cufflinks program [68] and normalized

using the FPKM (Fragment Per Kilobase of Exon per Million

reads) method [69]. At a nominal p-value,161024 there are a

total of 7,149 and 7,040 TReQTL SNPs in the CEU and YRI

populations respectively. Each SNP was evaluated for its presence

in SJs in each individual from both populations. The total number

of SNPs in each population was calculated based on their presence

or absence in any individual of the population.

Signal Transduction Pathway Profiling
The Affymetrix GeneChip array probe sets were collapsed into

approximately 8,600 UniGene transcript clusters using the March

30, 2009 release of UniGene (build 219). The gene expression data

from probe sets that mapped to the same UniGene cluster were

averaged resulting in 8,399 UniGene transcripts. The UniGene

downstream targets (DSTs) of transcript-regulators (TRs: tran-

scription factors (TFs), miRNAs, cofactors and complexes) were

obtained from the March 26, 2010 release (version 2010.1) of the

TRANSFACH database [31,32]. TRs were mapped to signaling

pathways using the June 26, 2009 release (version 2009.2) of the

TRANSPATHH database [34]. Significance of signal transduction

pathway profiling was determined as previously described [70].

Briefly, for each population individually, significant TRs were

based on a Group Correlation Score

GCS~
X
i=j

r2
i,j ð1Þ

defined as the sum of the squares of the Pearson correlations (r)

among all pairs of genes i and j determined to be DSTs of the TR.

Significant pathways made up of TRs are based on an Exclusive

Group Correlation Score

EGCS~
X

TR ið Þ\TR jð Þ~0

r2
i,j ð2Þ

defined as the sum of the squares of r over all pairs of genes i and j

in a pathway that do not share any TR. This eliminates the

contribution of the co-expression of DSTs that share TRs. The p-

Figure 6. Scatter plot of differential expression of the DSTs of Foxp3. The x-axis is the genotype for SNP rs3790904 - Latrophilin homolog 1
(Lphh1/Lphn2). The SNP genotype is also coded as number of minor alleles. The y-axis is the log 2 gene expression. The green dots are the expression
from colony stimulating factor 2 (Csf2) and the blue dots are the expression from interleukin 2 (Il2). The Pearson correlation of the expression from
Csf2 and Il2 is +0.56.
doi:10.1371/journal.pone.0034286.g006
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value for a score was determined from a non-parametric

distribution of correlation scores obtained from random cases

(B = 10,000 reshuffles of the genes) and the number of times (n) one

of these permuted scores is greater than the observed correlation

score. Thus, p{value~n=B: For both correlation scores, GCS

and EGCS, this null hypothesis keeps the structure and overlap of

all pathways fixed, but changes the identity of the genes.

TReQTL Analysis
For each population and TR, we performed a genome-wide

scan by regressing the log2 expression levels of the DSTs on each

SNP genotype (Z) (coded 0, 1, and 2 representing the number of

minor alleles) separately across the genome. The following

multivariate linear regression (MVR) model was used

Yij~b0jzZib1jzeij ð3Þ

where Yij denotes the log2 expression levels of the DST j (j = 1,…,

m) for a TR for subject i (i = 1,…,n), m is the number of DSTs of

the TR, Zi is a SNP genotype, åij is an error and ei = (ei1,…, eim)

follows a multivariate normal distribution with mean 0 and

covariance S. To test for the null hypothesis of association

between a SNP and a TR, we performed the likelihood ratio test

for testing the null hypothesis H0: b11 = … = b1m = 0, which follows

a chi-square distribution with m degrees of freedom for m,n. Let

the chi-square test statistic D = 22(ln(likelihood null model)–

ln(likelihood full model)) where the null model is the MVR model

without the genotypes corresponding to the SNP and the full

model is the MVR model with the genotypes corresponding to the

Figure 7. Foxp3 TReQTL network. The interaction network was generated by Ingenuity Pathway Analysis (IPA) software. Based on the IPA curated
knowledgebase dashed lines represent indirect interactions and solid lines denote direct interactions. The arrow represents the process of acting on a
target. Vertical rectangles are G-protein couple receptors, ovals are transcription regulators, squares are cytokines, double circles are complexs/
groups and single circles are other types of biological molecules. Shaded nodes represent genes of molecules from the TReQTL for Foxp3 (those that
the SNPs map to, the DSTs and the TR).
doi:10.1371/journal.pone.0034286.g007

Table 4. Over-representation of TReQTL SNPs in genomic
regions.

Genomic Region CEU YRI

5-way Conservation 0.006 0.900

17-way Conservation 0.071 0.870

Splice Junctions 0.893 1.0E-04

10 K permutations of 472 SNPs with a p-value,161024 in either CEU or YRI.
doi:10.1371/journal.pone.0034286.t004
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SNP. The p-value for each association of a SNP and set of DSTs

for a TR was obtained from the distribution of D<x2 with degrees

of freedom = m. For cases where m. = n, an approximate F-

statistic [9,35,36] was used in order to avoid situations where the

covariance matrix from the MVR model is not full rank. In these

cases, the p-value for statistical significance of each association of a

SNP and a set of DSTs for a TR was assessed by permuting the n

rows and n columns of the F-statistic G (Gower’s centered) matrix

(16106 times) and determining the number of times one of these

bootstrapped scores is greater than the observed score. We fit

model (3) by regressing the DSTs of a TR on each SNP separately

across the genome. For multiple testing correction, we used the

6.16107 p-values from the regression of the DSTs of the 333 TRs

on the 184,616 independent (tag) SNPs that are within 1 kb of a

gene (cis-acting set) to control the FDR [71] at 45%.

SNP Set Enrichment Analysis
To determine whether a set of SNPs representing TReQTLs

are enriched within the genome, a variation of gene set

enrichment analysis [72] was used. Rather than enrich for SNPs

within pathways as previously described [42], we test for

enrichment of SNPs within particular genomic regions. The

regions of interest are either evolutionary conserved regions

(ECRs) or splice junctions (SJs). The rationale is that variants

which are related to gene expression differences between

populations are more likely to be in genomic regions conserved

across species and\or possibly involved in regulating transcription

by altering splice forms of transcript messages. The ECRs are from

5-way (human, mouse, chimp, rhesus monkey and dog) and 17-

way (human, chimp, macaque, mouse, rat, rabbit, dog, cow,

armadillo, elephant, tenrec, opossum, chicken, frog, zebrafish,

Teraodon, and Fugu) conservation scores for the +/2 20 kbp

flanking regions of the genes. Overlapping chromosomal location

intervals for phastCon scores [73] were segmented and the highest

conservation score within the interval was obtained. SJs were

mapped using Tophat [67]. Transcript abundance was calculated

by Cufflinks [68] and normalized using FPKM [69] (see the

RNA-Seq methods section). For each TR, given a combined set L

of SNPs associated with significant TReQTLs within the CEU or

YRI population, their corresponding p-values and the +1 or 21

indication (flag) of the assignment of the SNP either within or not

within genomic region set Si, an enrichment score (ES) is obtained

by the ranking of the SNPs in ascending order (most significant to

least significant), and then summing up the assignment flags. The

ES is calculated by screening this list from the top to the bottom

and increasing (decreasing) a running sum Kolmogorov–Smirnov-

like statistic [72] when encountering or not encountering a SNP in

a genomic region. A normalized ES (NES) is obtained by

accounting for the size of the genomic region set Si. The p-value

for enrichment was determined from a non-parametric distribu-

tion of NESs obtained from random cases (10,000 reshuffles of

the assignment of the SNP (either within or not within a genomics

region)) and the number of times one of these permuted scores is

greater than the observed NES. Significance of enrichment was

also confirmed using a two-tailed Fisher’s exact (parametric) test.

Ranking of the TReQTL SNPs
The ranking of TReQTL SNPs was performed by first measuring

the cohesion of GO biological process terms in TReQTL i:

ai~
mi

Ni Ni{1ð Þ
2

ð4Þ

where Ni is the number of nodes (biological process terms)

represented in TReQTLi and mi is the number of the edges

between nodes. The edges were derived from the structure of GO

subtree for each TReQTLi created from the biological process

terms of the gene that the SNP maps to or is in close proximity,

those of the TRs (excluding miRNAs) and the DST genes. The

cohesion measure ai is then weighted by the p-value of TReQTLi to

give a weighted rank. The weight is computed as 22log10(p-value).

Finally, the number of paths and the number of biological process

terms within the subtree were used to derive of the adjusted

cohesion score

ACSi~
ai {2log10(p{valuei)ð Þ Ni=Mi

� �

Pi=Ni

� � ð5Þ

where for the ith TReQTL, Mi is the maximum number of paths of

a biological process term and Pi is the number of paths.

Gene Interaction Network
Ingenuity Pathway Analysis (IPA) software version 8.8 and

canonical pathway content version 3204 were used to build gene

interactions from Foxp3, its DSTs (CSF2 and Il2) and the

significant TReQTL genes from CEU and mapped on chromo-

some 1 (KCNJ1, LPHN2 and LPHN3).

Supporting Information

Table S1 The TReQTLs for the CEU and YRI populations.

Tab-delimited text file.

(TXT)

Table S2 Gene Ontology biological process subtrees from the
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Table S3 Gene Ontology biological process subtrees from the

YRI TReQTLs. Tab-delimited text file.
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