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INTRODUCTION – WHY?

One size does not fit all! Or does it? For treatment
of many – if not most – inflammatory skin condi-
tions, the dermatologists’ first choice over the last
50+ years has been a topical glucocorticoid (1),
most often yielding astonishing anti-inflammatory
effects: rapid relief of itch and ease of rash, bring-
ing the inflamed skin back to a ‘near-normal’ state
within a few days (Box 1).

But if such an efficient, universal, and inexpen-
sive treatment is already available, where, then, is
the unmet need for personalized medicine and tar-
geted therapy? One may even argue that treatment
with glucocorticoids is targeted therapy! Because
glucocorticoids specifically bind to their molecular
target, the cytosolic glucocorticoid receptor, and
thereby induce downstream anti-inflammatory
effects. These effects are brought about via several
mechanisms: non-genomic direct activation of anti-
inflammatory proteins, DNA-dependent (genomic)
induction of anti-inflammatory proteins, and pro-
tein interference (via transcription factors, such as
NF-jB) causing repression of inflammatory

proteins (4, 5). Now, as glucocorticoid receptor
activation produces pleiotropic (multiple and
diverse) effects, and because the receptor is univer-
sally expressed – albeit to a varying degree – in
most cell types, this accounts both for the high
anti-inflammatory efficacy, the broad mode of
action, and for the adverse effects associated with –
in particular: long-term – glucocorticoid treatment.
One such major adverse effect is skin atrophy, pos-
sibly mediated by the glucocorticoid receptor chap-
erone FKBP51 (6), but also systemic side-effects are
observed, such as suppression of the hypothalamus-
pituitary-adrenal (HPA) axis, due to percutaneous
glucocorticoid absorption (7). Moreover, if large
areas of the skin are covered with lesions, topical
treatment is not a feasible solution. Therefore, and
because of extensive disease heterogeneity – not all
patients (especially, those with severe disease)
respond to glucocorticoids, and all patients differ
with respect to their genetic makeup – there is still
a need for better, and more targeted therapy. In
particular, the two most common inflammatory
skin diseases, atopic dermatitis (AD) and psoriasis
(PSO), have both a complex pathogenesis including
several pathophysiological mechanisms (8), and a
multitude of clinical manifestations (9, 10), whichReceived 11 January 2019. Accepted 31 January 2019
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make them exemplary diseases for a personalized
medicine strategy calling for improved stratifica-
tion, development of targeted treatment, and pre-
vention (11, 12).

Often, the term ‘personalized medicine’ is used
synonymously and sometimes confused with preci-
sion/stratified/individualized/tailored/P4 medicine,
targeted therapy, and pharmacogenomics. Here, I
will mainly use ‘personalized medicine’, though, for
clarity, the conceptual nuances of this and its
related terms are summarized in Box 2.

FROM DISEASE UNDERSTANDING TO

BIOMARKERS, ENDOTYPES, AND

TARGETED TREATMENT

Theory

In theory, the logic is simple: If we can understand a
disease, then we can also treat it. In particular, if we
gain sufficient knowledge of its underlying molecular
pathophysiology, then we can identify disease-driv-
ing pathways and target relevant proteins. Or, better
yet, it may be possible to take preventive measures
even before the disease has manifested. Today, pre-
ventive medicine is made possible with the advent of
new omics technologies, in particular, next-genera-
tion sequencing (NGS) that enables determination of
an individual’s entire DNA sequence (six billion
base-pairs in a human diploid genome) in less than a
day.1 For the 6000+ human (mostly rare) diseases
caused by a single gene mutation, including the more
than 600 known monogenic dermatoses (27), a

correct molecular (genetic) diagnosis is crucial, both
in terms of counseling and preventive measures [e.g.
statin treatment of familial hypercholesterolemia)
and in terms of avoiding ineffective and often stress-
ful, even deadly treatments (such as cancer
chemotherapy for multidrug resistant tumors (28)].
In the best-case scenario, it may even guide treat-
ment. A striking example of such a case was recently
reported for a seven-year-old boy suffering from a
life-threatening skin disease, junctional epidermoly-
sis bullosa. After genetic analysis revealed the cause
to be a splice-site mutation in the LAMB3 gene, the
patient was treated successfully with transgenic ker-
atinocyte stem cells, which resulted in regeneration
of the entire epidermis (29).

Practice

In practice, most disorders are not as simple as
that; they are polygenic, complex, and multifacto-
rial, meaning that multiple genetic, epigenetic, life-
style, and environmental factors play a role in the
clinical manifestation of the disease. Such diseases
include diabetes, cancer, and hypertension, as well
as many inflammatory conditions, including
asthma, inflammatory bowel disease (IBD), psoria-
sis, and atopic dermatitis. In these cases, a genomic
‘DNA fingerprint’ will give a static picture of the
genetic susceptibility of an individual,2 but will not
fully capture the dynamic nature of cells or
diseases.

To this end, one needs to identify other relevant
and robust biomarkers that reflect the various clini-
cal phenotypes, and which eventually can form the
basis for stratification of endotypes.3

Box 1. Size matters

One size fits all, the paradigm of traditional medicine.

One size does not fit all, a mantra of personalized

medicine, the goal of which is to provide ‘The right

dose of the right drug for the right indication for the

right patient at the right time.’ This is another mantra

of personalized medicine, a much publicized quote

ascribed to former FDAGenomics associate director,

Felix Frueh, when he captured the essence of person-

alized medicine at the Annual FDA Science Forum in

2005 (2).Avariant of the aboveprinciples canbe found

in the ‘5R framework’ for improving research and

development productivity in the pharma industry,

with focus on ‘right target, right tissue, right safety,

right patients, and right commercial potential’ (3).

1And for less than 400 EUR. At this price for WGS, direct-

to-consumer genomics is a reality.

2and is extremely useful for stratifying according to pharma-

cokinetics (responders/non-responders, fast/slow metabolizers,

etc.), risk factors and targets [such as the around 300 driver

genes and 3400+ driver mutations identified in cancer, crucial

for precision oncology (30)], and an absolute prerequisite for

pharmacogenomics.
3Endotype: a subtype of a disease or a subgroup of a popula-

tion defined by a shared, underlying disease mechanism (31).

Diseases like asthma (32) and AD (33) encompass several

endotypes (for example, those with or without filaggrin muta-

tions), each with their characteristic, underlying pathophysiol-

ogy. This is in contrast to the Phenotype: the appearance of a

disease or an individual, i.e. its observable features or traits

(size, shape, pattern, color, behavior, etc.). The phenotype is

determined by the sum of interactions between genotype, epi-

genetic factors, and the environment. Endophenotype: Also

known as an ‘intermediate phenotype’ is a quantitative, bio-

logic characteristic that lies between the phenotype and geno-

type, but is mechanistically closer to the disease than its

clinical phenotype; in this context, it corresponds to a biomar-

ker profile (34).
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Box 2. WHAT? The different flavors of personalized medicine

Numbers in parentheses correspond to count of Google hits as per February 19th 2019

Both American ‘-ized’ and British ‘-ised’ spellings have been included.

Personalized medicine

(5.2M) is an approach to both preventive care (e.g. identifying genetic risk factors to guide behavioral changes and

preventive treatment, such as statins for hypercholesterolemia) and to drug therapy (e.g. early and accurate

diagnostic tests that can guide targeted treatment and diminish side-effects) based on the individual’s genetic (and

other relevant) information.

The term ‘personalized medicine’ – albeit with a slightly different, ethical connotation – can be found already in a 1971

article byW.M.Gibson, who envisages the family practitioner’s role as a scientist-physicianwho ‘Within a few years will

likely have available to him a computer programmed formedicine providing himwith a great store of knowledge literally

athis fingertips’ (13).Thus, in the earlyyears, personalizedmedicine focusedonthe ethical dimensionsofpatient-centered

practice (14). But actually, the foundation for personalizedmedicine can be traced all the way back toHippocrates (460–
370 BCE), who famously said ‘It’s farmore important to knowwhat person the disease has thanwhat disease the person

has’, thus introducing the patient-centric concept (15). Interestingly, today, such patient-centricity is widely embraced by

the pharma industry, which is increasingly engaging in a dialog with patients during the drug development process (16).

Due to concern that ‘personalized medicine’ can be misinterpreted as implying that a unique treatment can be designed

for each individual, the National Research Council preferred the term ‘precision medicine’ in their 2011 report Toward

Precision Medicine (17).

Precision medicine

(5.5M) is defined as ‘tailoring of medical treatment to the individual characteristics of each patient’. (17) But this

does not mean that drugs are being developed uniquely for a patient, rather, it means that individual patients can be

classified into subpopulations that differ in their response to a specific treatment. Thus, the focus is on identifying

which treatments will work for which patients based on their individual genetic – and epigenetic – characteristics

(for example, treatment of breast cancer patients with herceptin will only work for patients that overexpress HER2).

An issue with the term precision, however, is that interpreted technically, it is a measure of statistical variability, and

as such, it can be argued that medicine is not precise (18).

Targeted therapy

(3.6M) is often used synonymously with molecularly targeted therapy, molecular medicine, and biologic therapy,

mainly to distinguish it from traditional chemotherapy in the context of cancer treatment. However, targeted

therapy is neither limited to cancer, nor to biologics, as today, both small molecules and monoclonal antibodies are

used in the targeted treatment of a wide variety of diseases, including asthma, atopic dermatitis, and psoriasis. The

target concept is an old one and marks the beginning of modern pharmacology; it was developed by Paul Ehrlich

around 1900, when he was studying antibodies and envisioned a hypothetical drug that would reach and kill its

target (microbe) without harming the host; the magic bullet (German: Zauberkugel) (19). Indeed, today Ehrlich’s

vision has become a reality, where numerous highly specific monoclonal antibody-based therapies are being applied

or are in clinical development.

Pharmacogenomics

(2.9M) refers to the study of how genes affect an individual’s response to drugs. The term is a combination of

pharmacology and genomics, with the aim of developing safe and effective treatments. When it is applied to the study

of drug metabolism, it is largely termed pharmacogenetics, while pharmacogenomics is a broader term encompassing

all genes that may impact drug response (20). A typical use includes identification of fast and slowmetabolizers due to

single nucleotide polymorphisms (SNPs) in the CYP450 system, where the former will achieve suboptimal drug levels,

while the latter will have increased risk of adverse drug reactions, and in worst case, death (21).
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Biomarkers for personalized medicine can be
classified as diagnostic, prognostic, or predictive.

Diagnostic biomarkers

Ideally, diagnostic biomarkers can detect diseases
before they become symptomatic. Examples include
early detection of prostate cancer by evaluation of
serum prostate-specific antigen (PSA) [albeit with
relatively low sensitivity and specificity (35) and
detection of other cancers by measuring circulating
tumor cells in liquid biopsies (36)]. But diagnostic
biomarkers are more than just binary indicators of
the absence or presence of disease. If they reflect
the molecular pathology of the disease, then they
may be able to precisely define and stratify its
endotypes, and thus guide selection of the most
effective targeted therapy. This also points to a

need for improved molecular disease taxonomy (11,
37), because currently, for most diseases – including
inflammatory skin diseases – endotypes are not
incorporated in the WHO’s latest revision of Inter-
national Classification of Diseases, ICD-11 (38).

Prognostic biomarkers

Prognostic biomarkers can, in principle, project the
disease trajectory, i.e. indicate the likelihood of pro-
gression, remission, and future clinical events.4 In
oncology, classical clinicopathologic biomarkers are

Individualized medicine

(357K) is the term preferred by Eric Topol (founder and director of the Scripps Translational Science Institute),

mainly because it relates both to the medicine and the medical information – including both omics and digital

technology – that is particularized to an individual, and because it is supposedly less ambiguous compared to the

terms personalized and precision medicine (22). Note, however, that individualized medicine can also be understood

as ‘truly’ individualized, such as a cancer vaccine based on the patient’s particular tumor. In this respect,

individualized medicine lies in one end of the therapeutic continuum, empirical medicine is at the other end, while

the field of stratified medicine lies in between (23).

Stratified medicine

(112K) aims at matching a therapy with a specific patient population – who will have a therapeutically meaningful

benefit of the treatment – by use of clinical biomarkers, which are, therefore, of utmost importance (e.g. as

companion diagnostics, such as the FDA-approved HercepTest that quantifies HER2, identifying patients who are

likely to benefit from Herceptin), because they link the patient subpopulation with the therapy (23).

P4 medicine

(40K) stands for predictive, preventive, personalized, and participatorymedicine. The term was coined by Leroy Hood (a

pioneer of systems biology and co-founder of the Institute for Systems Biology in Seattle) with special emphasis on the

participatorypart. The idea is that the digital revolution and rise of the Internetwill empower consumers,whoby their use

of social media, mobile healthcare apps andwearables (24) generate the big data needed for systemsmedicine (25). Thus,

Hood envisaged the emergence of a whole new healthcare system based on systems biology, big data, and networked

consumers, who focus on both disease and wellness care, moving toward a holistic view on biological complexity.

Tailored medicine

(15K) emphasizes the move from the ‘one size fits all’ paradigm of traditional drug development and usage, to

personalized medicine, where stratification of patient populations allows identification of responder subpopula-

tions. One ethical issue with such an approach is that most participants in clinical trials in the US are white from

higher socioeconomic levels, while ethnic minorities, who make up 40% of the population, are underrepresented.

This disparity is problematic because certain diseases are more prevalent among ethnic minorities, who have a

different genetic makeup and thus are likely to differ both in pathophysiology and response to treatment (26).

Box 2. Continued

4Again, Hippocrates should be recognized for introducing the

central concept of prognostics, about which he remarked: ‘he

will manage the cure best who foresees what is to happen

from the present state of matters. For it is impossible to make

all the sick well.’ (39)

© 2019 The Authors. APMIS published by John Wiley & Sons Ltd

on behalf of Scandinavian Societies for Medical Microbiology and Pathology 389

PM IN AD AND PSO



tumor size, number of tumor-positive lymph nodes,
and distant metastases, which are used for staging
and prognosis indication. In clinical trials, prognos-
tic biomarkers are used to enrich for populations
that are more likely to progress, as this increases
statistical power and thus, reduces cost of drug
development, and also guides decisions regarding
the aggressiveness of the treatment (40).

Predictive biomarkers

Predictive biomarkers are most important for guid-
ing personalized medicine, because they have the
potential to identify individuals that are more or less
likely to respond to a given treatment. In clinical tri-
als, predictive biomarkers are used to stratify the
study population into biomarker positive (likely
responders) and negative (non-responders) patients,
with the hope of meeting the clinical primary end-
point in the biomarker positive group (40).5 Exam-
ples of predictive biomarkers include polymorphisms
in the cytochrome P450 superfamily [responsible for
the hepatic – as well as extrahepatic – metabolism of
most drugs, and thus, of immense importance for
their pharmacokinetics (42)] and variants of the
human leukocyte antigen B (HLA-B, associated with
several hypersensitivity reactions, including toxic epi-
dermal necrolysis); many more such gene variant–
drug relationships can be found in PharmGKB (The
Pharmacogenomics Knowledge Base, www.phar
mgkb.org), a public, knowledge-sharing resource
that captures, curates, and integrates pharmacoge-
nomics data, and which currently contains around
21 000 variant annotations and 132 PK/PD focused
drug-pathway diagrams (43). As targeted therapies,
e.g. those based on monoclonal antibodies, are
expensive and display variable response rates both in
AD and PSO, it is important to identify and validate
biomarkers for prediction of treatment outcome, as
recently reviewed by Ovejero-Benito et al. (44).

Biomarker combinations

Because heterogeneous treatment responses can be
due to a combination of factors, including disease
complexity (multiple endotypes), genetic, epigenetic,
and environmental effects, a single biomarker has
only limited ability to capture all these aspects into a
prediction of a patient’s response to a given drug.
Therefore, patient stratification may rely on the iden-
tification of multiple biomarkers, entailing multivari-
ate statistical analysis and machine learning for
finding the optimal linear and non-linear biomarker

combinations (45), i.e. those with highest sensitivity
and specificity (maximizing the AUC of the ROC
analysis) for a given classification. For example, we
recently identified and validated a diagnostic miRNA
classifier based on a linear combination of three
miRNAs (miR-155, miR-203, and miR-205) that
could discriminate cutaneous T-cell lymphoma
(CTCL) from benign inflammatory skin diseases
with 95% classification accuracy (46, 47). One
advantage of using a biomarker panel as opposed to
a single biomarker is that individual differences in
the baseline levels of the biomarkers can be
accounted for, in particular if the biomarkers of
interest are normalized to a set of reference biomark-
ers. Other recent examples include a plasma protein
(MMP-2, sTNF-R2, TSLP) panel for identification
of ischemic stroke (48), a cell surface protein (CD25,
CD64, CD69) panel for flow cytometric detection of
sepsis (49), and a serum nuclear magnetic resonance
(NMR) metabolomics-derived biomarker (alanine,
pyruvate, glycine, sarcosine) panel for early detection
and grading of prostate cancer (50). For atopic der-
matitis, Thijs et al. applied a panel of 147 serum
biomarkers to stratify 193 AD patients into four
main clusters, which may represent endotypes (51),
although their analysis suggests that AD is very
heterogeneous and may even reflect a disease spec-
trum rather than distinct endotypes.

Note, however, that the above examples only
consider combinations of biomarkers of the same
biological type or layer, such as genomic (DNA),
transcriptomic (RNA), proteomic (proteins), or
metabolomic (amino acids) markers. With the explo-
sive development, both in omics technologies (sum-
marized in Box 3) and in bioinformatics and
computational tools, the natural next step is to move
out of and across (between) the individual layers, in-
tegrating the various orthogonal (independent) bio-
logic approaches in an integrative ‘multi-omics’,
systems biology strategy, also referred to as inte-
gromics (52–54). Conceptually, the layers in such an
integrative approach can be compared to Google
Maps (maps.google.com), which render a multilay-
ered visualization of both spatial (locations, streets,
landmarks) and real-time temporal (traffic) data (22).
And this is exactly the ambition of integromics6 on a
human scale; to be able to visualize the various layers
(mapping the genomic, epigenomic, transcriptomic,
proteomic, metabolomic, etc. landscapes) of biologic
pathways, as well as to be able to predict the
dynamic effects of perturbations, such as targeting

5Sometimes such identification of responders (theratypes) to

therapy is also called theratyping (41).

6or ‘panoromic’, a term coined by Eric Topol to emphasize

the wide-angle view of multiple approaches (22), although one

could argue that it is not only a wide, but also a deep view

across layers.

390 © 2019 The Authors. APMIS published by John Wiley & Sons Ltd

on behalf of Scandinavian Societies for Medical Microbiology and Pathology

LITMAN

http://www.pharmgkb.org
http://www.pharmgkb.org


Box 3. Omics technologies for integrative, personalized medicine

Genomics

Next-generation sequencing (NGS) is key to generating the vast amounts of DNA data for whole-genome sequencing

(WGS) and whole-exome sequencing (WES) projects (55). Because the exome only comprises 1.5% (40 Mb) of our

genome, it can be sequenced at a deeper coverage (>1009 compared to 309), faster (hours compared to days), and at

lower price compared toWGS.However, it appears thatmost (80%)of the loci involved in complex diseases are located

in the 98.5% noncoding – but important regulatory – regions of the genome (22). Therefore, and because the price of

WGS continues to drop, it is today cost-efficient to performWGS for single-nucleotide polymorphism (SNP) analysis,

genotyping, pharmacogenomics and genome-wide association studies (GWAS). If cost is a concern, then microarray-

or bead-based SNP analysis can be considered, albeit with considerably lower coverage than WGS.

A powerful tool to reveal the cellular complexity of in particular tumors (56), but also of individual genomic variation

(mosaicism), is single-cell sequencing, which is gaining momentum as the methodologies for whole-genome

amplification (WGA) and sequencingmature (57). This technique (aswell as scRNA-seq, see below) can also be used to

profile T- andB-cell receptor repertoires at the single-cell level, thus enabling a full picture of the immune landscape and

its dynamics (58).

Transcriptomics

Since the late 1990s, global gene expression analysis has been performed by use of microarrays (59). Today, due to

improvements in next-generation sequencing (NGS) technology (longer and more reads) and a concomitant drop in

price,7 RNA sequencing (RNA-seq) is the preferred method for transcriptomic profiling (60). A major advantage of

quantifying gene expression is that it reflects the dynamicsof the cellular systemunder investigation. This is also amajor

caveat, becausewhat ismeasured is a snapshotof the transcriptome,which tends tovary extensivelywith timeand space.

Thus, when comparing transcriptomic profiles of biologic samples it is of utmost importance that the experimental

conditions are as standardized as possible (a notion that also applies to proteomics, and, in particular, metabolomics);

i.e. the specimens should be comparable, both with respect to location (more on this later, with special reference to skin

biopsies), and timing, including sampling time and time from sampling to freezing and RNA extraction. Optimally, a

time course experiment (multiple samples taken at different time points) should be performed to investigate the

expression profiles’ temporal dependence (60, 61), which is also of importance for the selection of biomarkers, as some

maydisplay transient expression,while others aremore stable, and thereforemore robust in a clinical setting. Just as for

DNA sequencing, single-cell RNA-sequencing (scRNA-seq) is now opening a window to the cellular phenotype, as it

allows for unprecedented detail analysis of cellular heterogeneity and development (62, 63). Finally, novel in situ

sequencing techniques such as fluorescent in situ sequencing of RNA (FISSEQ) (64) and STARmap (65) allow for

determination of the actual, 3-dimensional location of gene expression in cells and tissues (66).

Epigenomics

At least three types of epigenetic systems co-exist: DNA methylation, histone modification, and noncoding RNA

(ncRNA, including miRNA, lncRNA, snoRNA, and many more).

DNA methylation is typically assessed by bisulfite treatment of the DNA – converting non-methylated C’s to U’s,

while methylated C’s are protected from this conversion – followed by either microarray analysis or WGS (which

captures all 29 million CpGs in the human genome, albeit at 10 times the cost of methylation arrays) enabling

epigenome-wide association studies (EWAS; 67). The interpretation of such studies, however, can be difficult, in

particular if the starting material contains a mixture of different cell types, each with their own, highly cell-type

specific epigenome. Thus, it is necessary to perform cell-type specific deconvolution of the signal in order to identify

relevant epigenetic changes rather than just a shift in proportion of cell types (66, 68).8

7less than 200 EUR, including strand-specific library preparation and 30 million paired-end reads per sample
8The same consideration applies to ‘standard’ gene expression analysis, where the observed differential gene expression between

two samples can be due to both redistribution of different compartments and to actual up- or down-regulation of gene expression.
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For studying the ‘histone code’, genome-wide histone modification assays apply chromatin immunoprecipitation

(ChIP) and histone modification-specific antibodies (to precipitate the DNA–histone complexes), followed by NGS

(ChIP-seq) to identify the bound DNA fragments. This has resulted in mapping of several human epigenomes (69)

with promise for identification of epigenetic biomarkers (70) and with implications for epigenetic drugs, such as

histone deacetylase (HDAC) inhibitors (70, 71).

Numerous microRNAs have already been identified – by microarrays, qRT-PCR, and small RNA-seq – as potential
diagnostic, prognostic, and predictive biomarkers in cancer (72–77), diabetes (78), and many other diseases,

including inflammatory skin conditions like psoriasis (79, 80) and atopic dermatitis (81, 82). What remains to be

seen is the potential of an emerging class of ncRNA, namely the long ncRNA (lncRNA, of which around 16 000

human variants have been found so far), in precision medicine, cancer (83) and inflammatory diseases (84).

Proteomics

Studying the proteome–by various mass spectroscopy methods – is important because gene expression levels are

only approximations of the corresponding protein levels (85). Firstly, because not all mRNA is translated into

protein – sometimes because miRNAs bind to the 30UTR of their target genes, thus blocking translation (85, 86),

and secondly, because post-translational modifications, such as phosphorylation/dephosphorylation, are important

determinants of protein function, which is why phospho-proteomics is a relevant measure of protein function and

dynamics of cellular signaling (87).

Metabolomics

The analysis – either by NMR or GC–MS – of the complete set of small-molecule intermediates, including lipids

(the lipidome, a subset of the metabolome) in a biological sample, provides a sensitive snapshot of its physiology,

and can thus guide discovery of biomarkers (53, 87, 88). Application examples include ‘breathomics’, breath-based

metabolomics, where quantification of volatile organic compounds has diagnostic potential (89), urine metabolite-

based diagnosis of urinary tract symptoms (90), as well as assessment of glucocorticoid-induced changes of the lipid

profile of human skin (91). In particular, when combined with other – orthogonal – omics technologies, one can

obtain mechanistic insight, e.g. on metabolic and inflammatory pathways (53).

Glycomics

The study of glycans (polysaccharides) includes analysis of glycosylated proteins (glycoproteins) and lipids

(glycolipids), mainly by MS or HPLC. Since most human proteins are glycosylated, and glycans play important

roles in many cellular processes, including cell adhesion, trafficking, and inflammation, individual variations in

glycosylation patterns may serve as biomarkers for disease risk and response to therapy (92, 93). For example,

heterogeneity in N-glycosylation of immunoglobulin G (IgG) can modulate its inflammatory effect, with

implications for regulation of the immune system (94).

Phenomics

A detailed description of the phenome, i.e. an account of the phenotypic traits of an organism, is crucial for building

the translational bridge from genome-scale biology to disease understanding, i.e. for establishing the genotype–
phenotype relationship (95). In practice, it entails deep phenotyping of individuals, including collection of

multidimensional clinical data (e.g. biochemical tests, pathology reports, physical examination, family history,

demographics, and imaging), and importantly, a precise, comprehensive, and standardized description (metadata)

of such data. This makes the data accessible and searchable and facilitates its integration with omics data for

translation into disease endotypes and eventually, personalized medicine (96). To aid in connecting genomics and

phenomics, a formal ontology (standardized vocabulary and annotation of phenotypes and relations to diseases)

has been proposed by The Human Phenotype Ontology (HPO) project (97), which today links more than 13 000

Box 3. Continued
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9This EWAS acronym is not to be confused with the epigenome-wide association studies mentioned before.

phenotypic terms and over 156 000 disease annotations. Additionally, phenomics can be applied for construction of

large-scale disease trajectories based on information on comorbidities pulled from real-world data (RWD) (98), such

as observational data from disease registries and electronic health records (EHR). One such study used the Danish

National Patient Registry (covering the whole population of Denmark, 6.2 million patients followed over 15 years)

for generation of disease trajectories that can prove useful for predicting (and ultimately, preventing) disease

progression of individual patients (99).

Microbiomics

A growing research field, initiated by the human microbiome project (100), and with potential for personalized

medicine is the study (by NGS) of our microbiome, which is the sum of microorganisms (bacteria, archaea, fungi,

and viruses) in and on our body (skin, mouth, nose, lung, gut, and vagina). In particular, the gut microbiome has

been extensively researched and shown to play an important role in nutrition, metabolism, immune function, and

numerous diseases, including inflammatory bowel disease (IBD), type II diabetes, cardiovascular disease, asthma,

atopy (101, 102), and autism (103). The microbiome is also implied in drug interactions – studied by

pharmacomicrobiomics (104, 105) – and e.g. digoxin has been shown to be metabolized and inactivated by

specific gut bacteria (106). In the context of chronic, inflammatory skin diseases, dysbiosis of the skin microbiome

has been associated with both PSO (107) and AD (108, 109). This opens possibilities for targeted, preventive

intervention, such as administration of prebiotics (non-digestible food components, like fibers) and probiotics (live

microorganisms, such as Lactobacillus strains). Notably, the microbiome is dynamic; it undergoes temporal (e.g.

circadian) and spatial fluctuations, both in composition and metabolic activity (110). The question of composition is

addressed by targeted 16S rDNA taxonomic profiling and by – more comprehensive – metagenomics shotgun

strategies (whole-metagenome sequencing). But to capture the true dynamics of the microbiome, a full functional

analysis must include both metatranscriptomics and metabolomics. The former addresses the question of which genes

are expressed (collectively by the microbiome at a given time and condition), while the latter provides important

information on which metabolites (both microbiota- and host-derived) are present and interplay at the host–
microbiome interface (111).

Exposomics

Genetic factors alone explain only a fraction of what we consider genetic diseases, including cancer (112). The

remainder, perhaps more than 90%, can be attributed to environmental factors, also known as the exposome. The

term exposome was coined by CP Wild in 2005, who broadly defines it as ‘every exposure to which an individual is

subjected from conception to death’ (113). It encompasses three domains: internal, specific external, and general

external. The internal exposome consists of endogenous factors, including circulating metabolites, hormones, lipids,

oxidative stress, and our microbiome (114). The specific external factors include radiation, infections,

contaminants, pollutants, diet, medicine, tobacco, and alcohol, while the general external factors encompass

socioeconomic status, education, stress, environment (urban/rural), and climate, among others. Thus, due to the

diversity of the exposome, and because it is in constant flux, the challenge is to decide what (which biomarkers of

exposure are available, if any) and when to measure (113). One approach has been to apply metabolomics on

consecutive saliva samples, assessing the ‘saliva exposome’, as it is easy to collect and measure, and can be used to

monitor individual health trajectories (115). Biomarkers of exposure also enable exposome-wide association studies

(EWAS)9 (116, 117), which have promise in the near future. Why? Because the digital revolution has opened for

disruptive technologies, such as continuous, cloud-based tracking of big data [such as the Internet of Things, IoT,

with a plethora of physical devices that connect, collect, and exchange data for IoT-enabled health care (118)],

Box 3. Continued
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central molecules in the pathways, creating ‘road-
blocks’ that will stop or diverge the traffic (informa-
tion, signaling) flow in the system, to remain in the
Google Maps analogy.

Next, let us see how the above considerations
apply to personalized medicine in inflammatory
skin diseases, with special emphasis on atopic
dermatitis and psoriasis.10

generated by wearable, environmental monitors and biosensors coupled to our smartphones – a realization of the

‘quantified self’ (119).

Integromics

Also known as integrated/integrative omics, combine two or more omics layers in order to identify relevant overlaps

between these. For example, a five-layer approach may include genomics, epigenomics (three sublayers: DNA

methylation, histone code, miRNA), transcriptomics, proteomics, and metabolomics, which coupled to phenotype

(phenomics) data appears as an ‘obvious’ integrative omics approach, and one that we are currently exploring.

However, so far, most published studies are limited to three layers, namely genomics–transcriptomics–proteomics,

which will capture post-transcriptional regulatory mechanisms, whenever there is discrepancy between gene and

protein expression (52), but which do not take advantage of the orthogonal information that e.g. metabolomics adds

to the (almost) full picture (52, 53). A major concern about integromics analysis and sharing of such big medical

data is the difficult question regarding privacy and security (120), which needs to be solved before a massive open

online medical (MOOM) repository can become a reality (22).

Box 3. Continued

Box 4. Basic characteristics of PSO and AD

PSO AD

ICD-10
CM codes

L40 Psoriasis; L40.0 Psoriasis vulgaris, plaque
PSO (90%)
L40.1 Generalized pustular PSO (GPP, rare)
L40.4 Guttate PSO (2%); L40.8 Other

L20.9 Atopic dermatitis, unspecified
L20.8 Other atopic dermatitis

Epidemiology
& Comorbidity

Affects 1–8% of the adult population (121),
amounting to at least 130 million people
worldwide.
Two peaks in age of onset: 20–30 years and
50–60 years.
PSO is a systemic condition with several
serious comorbidities, including psoriatic
arthritis (20–30%), inflammatory bowel
disease, metabolic syndrome, and
cardiovascular diseases (122).

Affects 10–25% of all children and 2–10% of the
adult population (123), corresponding to at least
320 million people worldwide,11 and with wide
regional variation (125).
85–95% of all cases begin before the age of 5 years
(126)
Prevalence has more than doubled within the last
50 years (127), which suggests environmental
effects,12 including lifestyle changes – such as
‘Westernization’ and the hygiene hypothesis (128).
AD is associated with other atopic diseases,
including asthma (50% risk), food allergy (30%
risk), and allergic rhinitis/hay fever (up to 75%
risk), which underlines its systemic nature (127).

Disease burden Overall, measured by disability-adjusted life years (DALYs, excluding mortality; i.e. years of healthy
life lost due to disease/disability), skin diseases are the fourth leading cause of disability worldwide
(129). Due to the chronic and pruritic nature of both PSO and AD, they negatively impact quality
of life (QoL) of most patients (and their families) and impose a major socioeconomic burden (130).

10The principles for personalized medicine outlined for PSO and AD also apply to other inflammatory skin diseases, including allergic

conditions such as contact dermatitis and urticaria, and autoimmune diseases like vitiligo, alopecia areata, and lichen planus.
11Based on a world population estimate of 7.7 billion (124) of which 26% are children of age 0–14.
12Because genetic changes take much longer (evolutionary) time to manifest. In addition, increased disease awareness (such as access

to the Internet) may also partly explain the increase in prevalence.
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Personalized medicine in inflammatory skin diseases

Psoriasis

Psoriasis typically presents as thick, erythematous,
scaly plaques due to hyperproliferation of ker-
atinocytes. Therefore, it was originally considered an
epidermal, keratinocyte-specific disorder, and it was
not until themid-1980s, when first, immunosuppression

by cyclosporine (164) and later, bone marrow trans-
plantation (165) resulted in remarkable clearance of
psoriatic plaques that a major paradigm shift occurred,
and psoriasis appeared as a Th1 cell driven, systemic
disease (131). Another paradigm shift was precipitated
by the discovery of a new T-cell subset of IL-23-regu-
lated IL-17-producing Th17 cells in the experimental
autoimmune encephalomyelitis (EAE) mouse model
(166). This, together with the findings of increased
levels of Th17 cells (167) and of IL-23, the ‘master’

Box 4. (continued)

PSO AD

Etiology Unknown, but high heritability and numerous
susceptibility loci suggest complex, polygenic
predisposition combined with environmental
triggering factors, autoantigens, and systemic
inflammation (131).

Unknown, but high heritability and several
susceptibility loci suggest a complex genetic disease
including epidermal barrier dysfunction, immune
dysregulation, and environmental triggers (132).

Risk factors
and triggers

Family history (genetics, HLA-Cw6),
psychogenic stress, skin injury (Koebner
phenomenon), streptococcal infections,
medications, smoking, obesity (131).

Family history, FLG mutations, cold dry climate,
irritants (detergents, wool), infections (S. aureus),
allergens (house dust mites, pollen), cats (133),
food allergens (132).

Pathogenesis IL-23/Th17 axis key driver (134)
For details, see Fig. 1.

Th2 axis (IL-4/IL-13/IL-5/IL-31) dominating (134)
For details, see Fig. 2.

Genetics Concordance rate, monozygotic twins: 33%
Concordance rate, dizygotic twins: 17%
Heritability: 60–75% (135)

Concordance rate, monozygotic twins: 44–86%
Concordance rate among dizygotic twins: 10–23%
Heritability: 69–86% (136)

GWAS HLA-Cw6: strongest known risk allele, OR
4.32 (126)
Nine PSO susceptibility regions, PSORS1-9,
containing mostly immune-related genes
+60 PSO susceptibility regions (137)

FLG: strongest known risk factor (138), more than
40 LOF mutations described (139) OR 1.61–1.92
(140)
31 susceptibility loci, most related to innate immune
system (141) OR 0.90–1.14 (except for FLG)
+70 gene variants (population-specific) described (139,
142)

Transcriptomics +2600 DEG between lesional PSO and healthy
skin (143)
~1800 DEG between lesional and non-
lesional skin (144)

+1300 DEG between lesional AD and healthy skin
(145)
~ 600 DEG between lesional and non-lesional skin
(146)

Potential
biomarkers

IL-19 blood levels correlate with disease
activity (147)
IL-2, IL-5, IL-10, IL-12, IL-22, GM-CSF
serum levels correlate with treatment effect
(148)
Skin transcriptome response to etanercept
(149), ixekizumab (150), brodalumab (151),
guselkumab (152), risankizumab vs
ustekinumab (153)

FLG stratifies for early-onset persistent AD (154)
IgE blood levels stratify for intrinsic/extrinsic AD
(155)
TARC (CCL17) in serum correlates with disease
activity (155)
IL-31 levels associated with itch (155)
IL-33 serum levels correlate with disease severity
(156)
Skin transcriptome response to UVB (157),
cyclosporin A (158), dupilumab (159), apremilast
(160), fezakinumab (IL-22) (161).

Top-20 targets13 CARD14 TYK2 IL12B TRAF3IP2 JAK2
PDE4A ITGB2 TNF IL17RA IL17A VDR
ERAP1 IL23R TNFAIP3 NOD2 JAK1 JAK3
IL23A CD2 NR3C1

IL13 FLG IL4R RXRA SPINK5 PPIA JAK2
FKBP1A CD2 NR3C1 VDR HRH1 CYSLTR1
JAK1 PLA2G7 IGHE RXRB PDE4B RARG
RXRG

13According to opentargets.org
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regulator of Th17 development, in psoriatic lesions
(168), identified psoriasis as amixed Th1/Th17 disease.

Today, the central role of the IL-23/Th17 inflam-
matory pathway in the immunopathogenesis of PSO
(summarized in Fig. 1) is firmly established and
has paved the way for development of novel tar-
geted therapies that disrupt IL-23/IL-17 signaling
(Fig. 3A) (12, 169). And the results are impressive:
For moderate-to-severe plaque psoriasis, PASI 7514

was obtained for 75–91% of patients treated for
12 weeks with the IL-17A antagonists ixekizumab or
secukinumab, PASI 90 was reached for 54–73%
(172, 173), while 78% and 53% of patients treated
with the IL-17RA inhibitor brodalumab achieved
PASI 90 and PASI 100 (complete clearance), respec-
tively, after 52 weeks (174). Brodalumab blocks sig-
naling by the five IL-17 dimers (IL-17A/F/C/E/AF)
through the IL-17RA subunit (Fig. 3A). This causes
inhibition of the downstream pleiotropic effects of
IL-17RA and probably explains the potentially
higher clinical efficacy obtainable by receptor block-
ade compared to neutralization of a single ligand
(175–177). In line with the efficacy of blocking

downstream cytokine signaling are the impressive
Phase II data on the TYK2 inhibitor BMS-986165,
where PASI75 was obtained for 75% of patients at
week 12 (178).

Different forms of PSO are associated with different
pathways; chronic plaque psoriasis (also known as pso-
riasis vulgaris, the most common form) is dominated
by the above-mentioned IL-23/Th17 pathway, while
acute, erythrodermic psoriasis is characterized by Type
I interferon (IFN-a) producing plasmacytoid den-
dritic cells, and pustular psoriasis is associated with the
IL-36/IL-1 pathway and accumulation of neu-
trophils15 (179). This heterogeneity in immunopatho-
genesis highlights the complexity of psoriasis, as well
as provides guidance – by identification of biomarkers
reflecting the different endotypes – for novel and opti-
mized targeted therapies. These therapies include
promising new modalities, such as bispecific (e.g.
blocking both TNF-a and IL-1716) (180, 181), and
even trispecific antibodies (182), as well as vaccines
(183). A compilation of these new and emerging treat-
ment options for psoriasis can be found in Table 2.

The basic characteristics of psoriasis are summa-
rized in Box 4, of which the following are of partic-
ular relevance for personalized medicine:

Comorbidities
Because PSO is a systemic disease associated with
multiple severe comorbidities, including psoriatic

Box 4. (continued)

PSO AD

Current treatment
guidelines

Topical coal tar: antipruritic, combined with
UVB (162)
Topical corticosteroids: anti-inflammatory
Topical vitamin D analogues: calcipotriol
(often in combination with betamethasone
dipropionate) inhibits epidermal
hyperproliferation, induces differentiation,
anti-inflammatory
Topical salicylic acid: keratolytic effect
Oral: methotrexate, cyclosporin A, acitretin
(for severe PSO), apremilast (PDE4
inhibitor), fumaric acid esters
Biologics: etanercept, infliximab, adalimumab
(TNF-a); ustekinumab (IL-12/IL-23);
secukinumab, ixekizumab (IL-17A);
brodalumab (IL-17RA); guselkumab,
tildrakizumab (IL-23)

Emollients: for moisturizing the skin (lipid-rich)
Antiseptics: bleach (sodium hypochlorite 0.0005%)
bath (163)
Topical corticosteroids: anti-inflammatory, relieve
itch, e.g. hydrocortisone, betamethasone valerate,
clobetasol
Topical calcineurin inhibitors: tacrolimus (Protopic)
or pimecrolimus (Elidel)
Oral calcineurin inhibitor: cyclosporin A (severe AD)
Antibiotic creams: to fight skin infections, e.g.
fucidin/fucicort
Biologics (monoclonal antibodies), injectable: targeted
therapy, e.g. dupilumab (anti-IL-4R)

14PASI 75 is a response rate and indicates the percentage of

patients who have reached a 75% or more improvement (re-

duction) in their Psoriasis Area and Severity Index (PASI)

score compared to baseline. PASI is a quantitative, composite

measure of the severity and extent of psoriatic lesions taking

into account erythema, thickness, and scaling of the lesions as

well as percentage area affected. It is the most widely used

tool in clinical trials for assessing psoriasis severity, although

alternative, simpler to apply approaches, such as the Physician

Global Assessment (PGA), have recently been proposed (170).

As treatments become more effective, higher response rates

are often reported, including PASI 90 and even PASI 100

(complete clearance of all disease) (171).

15Note, however, that accumulation of neutrophils is not lim-

ited to pustular forms of psoriasis, as Munro’s microabscesses

containing large collections of neutrophils in the stratum cor-

neum of psoriasis vulgaris are considered a hallmark of PSO.
16Albeit promising, the dual IL-17A/TNF inhibitors have been

terminated in development due to safety concerns.
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arthritis (PsA) and cardiovascular disease (CVD)
(122), targeted treatment of e.g. the IL-23/Th17
pathway may not only reverse the cutaneous mani-
festations of the disease, but also the systemic,
inflammatory comorbidities.

Genomics
GWAS (genome-wide association studies) have
already identified more than 60 risk loci, including
several psoriasis susceptibility regions (PSORS),
most of which contain immune system related genes
(137). The increasing amount of genomic data may
allow for identification of new variants (endotypes)
of PSO, possibly predict who will develop the dis-
ease, identify responders to specific drugs, and guide
further development of targeted therapies.

Epigenomics
EWAS (epigenome-wide association studies) on PSO
are emerging (184) and a recent study on 39 Indian
PSO patients suggested that differential DNA methy-
lation (comparing lesional to non-lesional skin) can
regulate the expression of key genes involved in the
pathogenesis of PSO (185). In addition to DNA
methylation, histone modification, specifically methy-
lation of H3K27 and H3K4, showed some promise
as pharmacoepigenetic biomarkers in a study of pso-
riasis patients’ response to biologics (186). Common
for both of the above cases is that larger independent
validation cohorts are needed to confirm the initial
findings. Finally, several inflammation-associated
miRNAs, such as miR-146a, miR-21, miR-31, miR-
221, and miR-222, are consistently found to be
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Fig. 1. Pathways in the pathogenesis of PSO. Environmental triggers (e.g. drugs, infections, physical and psychological
trauma) cause predisposed individuals to develop an autoimmune reaction, although the exact initiation mechanism is still
poorly understood. One explanatory model (258) suggests that the autoantigen is LL37 (cathelicidin antimicrobial peptide,
encoded by CAMP), which complexes with DNA and RNA released from stressed keratinocytes. This induces plasmacy-
toid dendritic cells (pDCs) to produce IFN-a, which activates dermal dendritic cells (DCs). These cells migrate to skin-
draining lymph nodes, where they secrete IL-12 and IL-23, hereby stimulating na€ıve T-cells to differentiate into Th1, Th17,
and Th22 cells. The Th cells are attracted into the dermis by chemokines (CCL20, CCL17, CCL27, CXCL9/10/11) released
by keratinocytes. Th1 cells produce IFN-c and TNF-a, while Th17 cells release IL-22 and IL-17 family cytokines. The lat-
ter (IL-17A/F) trigger epidermal keratinocytes to a feed-forward inflammatory response (169), inducing numerous psoria-
sis-associated genes [defensins, S100 proteins, chemokines; keratinocytes also produce IL-17 cytokines, shown is a putative,
autocrine IL-17C loop (175)] and stimulating keratinocyte proliferation. The released chemokines CXCL1/2/3/5/8 recruit
neutrophils (N), which generate ROS (reactive oxygen species), a-defensin (DEFA1), CXCL8, CCL20, and IL-6. IL-23 (re-
leased by activated DCs) stimulates differentiation and expansion of Th22 cells, which secrete IL-22 that induces STAT3
and KRT16 expression. This causes further epidermal hyperplasia and eventually formation of the psoriatic plaque. To the
right (punctuated arrows) is shown the IL-36/IL-1 pathway prevalent in pustular psoriasis, which is characterized by accu-
mulation of neutrophils; here, IL-17 activated neutrophils trigger increased IL-36 activity, which stimulates DC’s to pro-
duce IL-1b reinforcing the Th17 axis (179). Indicated with ⊣ are targets of approved and emerging drugs, most of which
are monoclonal antibodies (see Table 2). Figure modified, mainly from van de Kerkhof & Nestle in (131), but also from
Noda et al. (134), and Conrad & Gilliet (179).
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upregulated in PSO skin (187, 188) and may be use-
ful as disease activity biomarkers.

Transcriptomics
Analysis of the mRNA profiles of lesional, non-
lesional, and healthy skin has identified more than
2000 differentially expressed genes (DEGs), many of
which may serve as potential biomarkers for disease
progression and response to therapy (189). For a
compilation of such studies with links to the actual
data, please see Table 1.

Microbiome
The cutaneous microbiome has been suggested as a
factor that could trigger the immune system and
initiate development of psoriasis (107), but as to
date, the few and mainly descriptive data have been

inconclusive. A recent analysis of the gut micro-
biome of 52 PSO patients suggested a specific ‘pso-
riatic core intestinal microbiome’ that differed from
what is found in healthy subjects (190), but since
the latter (healthy) data were pulled from the
Human Microbiome Project, the analysis is con-
founded (with study), and calls for confirmation by
a direct comparison of PSO patients with age and
gender-matched healthy controls. To establish – or
rebut – a possible causative link between the micro-
biome (and its modulation by antibiotics, pre- or
probiotics), psoriasis pathogenesis, and therapeutic
effect, prospective, longitudinal intervention studies
are needed. Also note that current microbiome
analyses focus on taxonomic characterization (com-
position of the microbial community) rather than
on functional, integrative studies involving

Table 1. Selected omics studies on psoriasis (PSO) and atopic dermatitis (AD)

GEO ID Year Dx Focus (# samples) Technology Reference

GSE16161 2009 AD, PSO, NN AD-LS (9), PSO-LS (15), NN (9) HG-U133_Plus_2 (277)
GSE32924 2011 AD, NN LS (13), NL (12), NN (8) HG-U133_Plus_2 (145)
GSE27887 2011 AD UVB, LS, NL, w0/w12, 10 pts. (35) HG-U133_Plus_2 (157)
GSE36842 2012 AD, NN Acute/chronic, LS, NL, NN, 10 pts (39) HG-U133_Plus_2 (196)
GSE75890 2016 AD, PSO, NN Mild ex-/intrinsic, AD (14), PSO

(9), NN (8)
HG 2.1 ST (278)

GSE60709 2014 AD, NN Epidermal shave, LS (12), NL (7), NN (14)
DNA methylation, skin and blood

Illumina HT-12V3.0
Infinium 27K

(223)

GSE107361 2018 AD Infants/adults, LS (39), NL (40), NN (29) HG-U133_Plus_2 (212)
GSE58558 2014 AD Cyclosporin A, LS, NL, w0/w2/w12 (109) HG-U133_Plus_2 (158)
GSE59294 2014 AD Dupilumab, LS, NL, w0/w4 (40) HG-U133_Plus_2 (159)
GSE120721 2015 AD, NN LCM, LS (15), NL (15), NN (22), epi/dermis HG-U133_Plus_2 (222)
GSE65832 2015 AD RNA-seq, LS (20), NL (20) Illumina GA IIx (279)
GSE81119 2017 ‘AD’ mice Mouse models of inflammation and ‘AD’ (37) MG 1.0 ST (280)
NA 2018 AD Tape strip RNA-seq, LS (11), NL

(18), NN (13)
Ion Torrent (213)

GSE120899 2018 AD Apremilast, LS, NL, w0/w12 (59) HG-U133_Plus_2 Not
published?

GSE99802 2018 AD Fezakinumab, LS, NL, w0/w4/w12 (302) HG-U133_Plus_2 (161)
GSE121212 2019 AD, PSO, NN RNA-seq, AD (27LS, 27NL), PSO

(28LS, 27NL), NN (38)
Illumina GA (334)

GSE14905 2008 PSO, NN LS (33), NL (28), NN (21) HG-U133_Plus_2 (143)
GSE13355 2009 PSO, NN LS (58), NL (58), NN (64) HG-U133_Plus_2 (281)
GSE31037 2011 PSO, NN miRNA, LS (24), NL (23), NN (20) Illumina GA IIx (282)
GSE30999 2012 PSO, NN LS (85), NL (85) HG-U133_Plus_2 (283)
GSE26866 2012 PSO LCM, LS (20), NL (17), epi/dermis, HG-U133_A 2.0 (284)
GSE11903 2009 PSO Etanercept, LS, NL, w0/1/2/4/12 (89) HG-U133_Plus_2 (149)
GSE31652 2012 PSO Ixekizumab, LS, w0/w4 (30) HG-U133_Plus_2 (150)
GSE55201 2014 PSO, NN Ixekizumab, blood, LS, NN, w0/w2 (81) HG-U133_Plus_2 (285)
GSE51440 2014 PSO Guselkumab, LS, NL, w0/w1/w12 (59) HG-U133_Plus_PM (152)
GSE53552 2014 PSO Brodalumab, LS, w0/w1/w2/wq6 (99) HG-U133_Plus_2 (151)
GSE69967 2016 PSO Tofacitinib, LS, NL, d0/1/3/w1/2/4/12 (95) HG-U133_Plus_2 (286, 287)
GSE54456 2014 PSO, NN RNA-seq, LS (92), NN (82) Illumina GA (288)
GSE57225 2014 PSO-AD/ACD PSO (23), AD (10), ECZ (13), NL (16) SurePrint G3 8x60K (289)
GSE63741 2016 PSO, AD, other AD-LS, PSO-LS, ACD, LP, NN (30 each) PIQOR 2.0 (290)
GSE80047 2016 PSO, PPP(P) PPP (3), PPPP (6), PSO (10), NN (31) HG-U133_Plus_PM (291)
GSE79704 2017 PSO, GPP, NN GPP-LS (32), PSO-LS (12), NN (20) HG 2.1 ST (292)
GSE73894 2017 PSO, NN DNA methylation, LS (135), NL (41), NN (62) Infinium 450k (293)
GSE115797 2018 PSO DNA methylation, LS (24), NL (24) Infinium 450k (185)

ACD, allergic contact eczema; Dx, diagnosis; d, day; epi, epidermis; ECZ, eczema (non-atopic); GPP, generalized pustular
psoriasis; LCM, laser-capture microdissection; LP, lichen planus; PPP, palmoplantar pustulosis; PPPP (palmoplantar pus-
tular psoriasis); PSO-AD, patients co-affected by both PSO and AD; w, week.
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metatranscriptomics and metabolomics, which even-
tually may enable in-depth understanding of the
dynamics of the microbiome (111).

Atopic dermatitis

Atopic dermatitis is the most common chronic,
relapsing inflammatory skin disorder, characterized
by intense itch (pruritus), redness (erythema), and
eventually, thickening (lichenification) of the skin
due to chronic rubbing. It affects 10–25% of all chil-
dren, most with onset before 2 years of age, and 2–
10% of adults (123), with wide regional variation
(125), and with a prevalence that has more than

doubled over the last 50 years (127). Due to its
chronic and pruritic nature, AD adversely affects the
quality of life (QoL) of most patients, in particular
due to sleep disturbance and skin infections, and is
also often followed by other atopic diseases, such as
food allergy, asthma and allergic rhinitis, known as
the ‘atopic march’ (132). Note, however, that <10%
of AD patients travel the full atopic march (i.e. clini-
cal manifestation of all four comorbidities) and that
the risk is highest in the early-onset persistent AD
phenotype (191, 192).

The pathogenesis of AD is complex (illustrated in
Fig. 2) and multifactorial as it involves genetic,
immunologic, and environmental factors (193),
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Fig. 2. Pathways in the pathogenesis of AD. Epidermal barrier defects, which are partly due to FLG mutations, are asso-
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such as dust mite debris. When the allergens encounter antigen-presenting epidermal Langerhans cells (LCs, for an excel-
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type 2 helper T-cells (Th2) that produce and release IL-4, IL-5, IL-13, and IL-31. These cells are considered part of the
skin-associated lymphoid tissue (SALT), the immunologically active cutaneous microenvironment, a concept which was
proposed already in 1983 by Streilein (261). IL-4 and IL-13 suppress expression of terminal differentiation genes (such as
FLG, LOR, INV), and also of tight junction (TJ) genes (208) leading to barrier disruption, while IL-31 also acts directly
on sensory neurons, triggering the itch–scratch cycle. This further damages the epidermis, increasing the risk of penetration
by pathogens like Staphylococcus aureus. The stressed keratinocytes release TSLP, IL-25, and IL-33 that also drive Th2
differentiation. The Th2 cytokines induce IgE production in B cells and subsequently, release of inflammatory mediators
(e.g. histamine) from activated (IgE bound) mast cells, basophils, and eosinophils. Th22 cells release IL-22, which causes
epidermal hyperplasia, and also, in synergy with IL-17 – released from Th17 cells – induces expression of a subset of S100
family proteins. Acute AD lesions are characterized by a Th2 skewed (Th2, Th17, Th22) response, while chronic AD, which
is often lichenified (thickened) by chronic scratching, progressively activates the Th1 axis with IL-12 release, IFN-c expres-
sion and induction of chemokines (like CXCL9/CXCL10/CXCL11). Indicated with ⊣ are targets of approved and emerg-
ing drugs (see Table 2 for a detailed list). Figure modified, mainly from Vakharia & Silverberg (262), based on the original
by Leung 2000 (263) and 2004 (264). For other representations, see Noda et al. (134), Paller et al. (265), Weidinger et al.
(9), Lee et al. (9, 266), and Brunner et al. (267, 268).
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including a defective skin barrier, permissive for
entry of allergens that trigger inflammation, immune
dysregulation with increased numbers of T-cells and
dendritic cells (DCs) and high levels of inflammatory
molecules, and alterations in the cutaneous micro-
biome with overgrowth of Staphylococcus aureus.
AD was first identified as a Th2 (IL-4, IL-13, IL-31)
driven disease (194), and later found to have also a
Th22 (IL-22) component (195) as well as variable
Th17 and Th1 immune activation, the latter more
pronounced in chronic AD (196).

Compared to PSO, both our molecular disease
understanding and treatment options for AD are
lagging some 10–15 years behind (197). For exam-
ple, the first FDA-approved biologic for treatment
of moderate-to-severe AD, namely the much touted
IL-4Ra inhibitor dupilumab, reports response rates
in the range of 44–52% EASI 7517 (200), compara-
ble to the rather moderate PASI75 response rates
of the first generation TNF-a targeting antibodies.
Thus, there is still room for improvement and for
development of even more efficacious targeted ther-
apies; therapies that are tailored to the remaining
subset(s) of severe AD patients, who may benefit
from a personalized, endotype-specific, treatment.

One reason that AD is a less-mature field is the
high diversity of the atopic landscape, with a wide
spectrum of clinical manifestations ranging from
localized nummular lesions to generalized exfolia-
tive erythroderma in the most severe cases (132).
Adding to the complexity of the clinical picture are
the many possible categorizations of AD, such as:
1. infantile/childhood/adolescent/adult stages

2. early onset/late onset
3. transient/persistent
4. acute/subacute/chronic
5. mild/moderate/severe
6. intrinsic (low IgE, 20%)/

extrinsic (high IgE, 80%)
7. African/Asian/European American phenotypes
8. � comorbidities: food allergy/asthma/rhinitis/

infections
9. � genetic risk factors: e.g. FLG mutations
10. � environmental risk factors: multiple

(microbiome/exposome)
11. � response to a given treatment

Though some of the categories are overlapping
(e.g. all infantile stages are early onset), most of
them can be combined (e.g. early/late onset 9 tran-
sient/persistent 9 mild/severe 9 low/high IgE 9
ethnicity 9 comorbidity 9 �FLG mutations),
resulting in thousands of possible composite classifi-
cations. This does not in itself pose a problem,
because most of the above features are phenotypic
and therefore relatively easy to record. No, what
we would like to understand are the underlying dis-
ease endotypes. In other words: which molecular
features and pathways characterize the different
subtypes of AD (201), and can we identify relevant
endotype-specific biomarkers that can predict dis-
ease trajectories and guide choice and intensity of
treatment? That is the question, and a difficult one
indeed, because of the both heterogeneous and
complex nature of AD, being the result of multiple
genetic, environmental, and immunologic factors.
This is reflected in our inadequate understanding of
the pathogenesis of AD (outlined in Fig. 2), and
the ongoing discussion of whether it is an ‘outside-
in’ (disruption of the epidermal barrier triggers the
immune system) or an ‘inside-out’ (inflammation
causes the barrier dysfunction) disease (193, 202).
But it is not really an either–or question, because
current evidence speaks in favor of both the above
hypotheses, which are therefore not mutually exclu-
sive. Genetic evidence has established that loss-of-
function mutations in FLG, the gene encoding
filaggrin, an important structural protein in the
stratum corneum of the epidermis (203, 204), are
the major predisposing factors for AD (138). This
has been confirmed by twin studies (140), and
GWAS data (141), showing that FLG mutations,
which are present in about 10% of the population,
could stratify for the early-onset persistent subphe-
notype in children (154). Between 20 and 50% of
moderate-to-severe AD patients carry FLG muta-
tions (136), so this AD subset fits well with the out-
side-in hypothesis for initiation of AD. But what
then, about the other half of AD patients who do
not harbor any FLG mutations? In these patients,

17EASI 75 is the percentage of patients who have reached a

75% or more reduction in their Eczema Area and Severity

Index (EASI) score compared to baseline, in this case after

16 weeks of treatment. Other commonly used clinical mea-

sures of AD severity include SCORAD (Severity Scoring of

Atopic Dermatitis, which includes both objective physician

estimates of disease severity as well as subjective patient esti-

mates of itch and sleep loss), and IGA (Investigator’s Global

Assessment), and because the three scores complement each

other, it has been recommended to apply at least two indepen-

dent assessment schemes for a reliable evaluation of AD

(198). What is not captured by the above scores is the actual

disease burden on QoL (quality of life) of AD patients, which

is why several questionnaire-based schemes have been pro-

posed for a standardized QoL assessment, including Patient-

Oriented Eczema Measure (POEM), Dermatology Life Qual-

ity Index (DLQI), ItchyQOL, and 5-dimensions (5-D) itch

scales, all of which show good validity and internal consis-

tency (199). Another important aspect when assessing the clin-

ical efficacy of treatment is the placebo effect, which is

notoriously high in AD, and which should therefore always be

compared to the drug effect. For example, EASI 50 for the

placebo arm was 35% compared to 85% for dupilumab in an

early-phase 12-week study (200).
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it is plausible that immune dysregulation results in
secondary epidermal barrier disruption, in line with
the inside-out hypothesis. Or, alternatively, a com-
bination of other genetic, epigenetic, immunologi-
cal, and environmental factors – the exposome and
microbiome included – may trigger and determine
the course of AD, in which case, such compound
endotypes may be difficult to tease out.

Still, it is beyond doubt that FLG mutation posi-
tive AD patients constitute a ‘true’ endotype, and
therefore should be treated accordingly, preferably
with the aim of reestablishing and maintaining an

intact skin barrier as early as possible. This is nec-
essary to prevent allergic sensitization and with this,
development of asthma and allergic rhinitis. Ideally,
one would like to perform prenatal diagnostics, i.e.
WGS on the fetus’ DNA in order to identify all
possible – not only skin disease related – genetic
risk factors even before birth. Alternatively, and
perhaps more feasibly, WGS of the newborn can
provide the same information, albeit a little later.
In case mutations in skin barrier genes (like FLG)
are detected, early intervention schemes can be
applied, such as use of emollients soon after birth
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(205). In best case, such a personalized preventive
strategy may hinder development of AD and its
comorbidities (the atopic march) altogether.

Besides FLG mutations, around 100 genes have
been identified as AD associated in various studies
(139, 141, 142). If one performs a functional enrich-
ment analysis of these genes, it appears that the
majority of them are related to inflammation and
cytokine activity (Fig. 4), highlighting the potential
importance of immune signaling and T-cell activa-
tion in development of AD.

What remains is the detailed analysis of the
many possible gene–gene and gene–environment
interactions that define the complex endotypes of
AD. Here, two genetic variants of particular inter-
est will be mentioned:

CD207: encodes langerin, a pattern recognition
receptor expressed in epidermal Langerhans cells
(LCs) and involved in antigen-processing and pre-
sentation to T-cells. Defects in langerin function
could therefore have implications for cutaneous
immunity, in particular with respect to susceptibil-
ity to skin infections by viruses and bacteria like S.
aureus (141).

CLDN1: encodes claudin-1, a tight junction (TJ)
protein, expressed by keratinocytes in the stratum
granulosum layer of the epidermis and important
for maintaining an intact epidermal barrier. In a
study from 2011, AD patients (n = 5) were found
to have markedly lower expression of CLDN1

compared to healthy controls (206). This finding
has been replicated in other studies, showing that
CLDN1 expression can be downregulated by IL-33
via the STAT3 pathway in keratinocytes (207), via
IL-13 in bronchial epithelial tissue (208), and inter-
estingly, that CLDN1 expression can be restored
both in human keratinocytes and a murine model
of AD by application of the proteasome inhibitor
bortezomib (209).

An intriguing link between tight junction function,
the recent 2–3-fold rise in AD prevalence, and the
increased use of detergents has been proposed by Dr.
Cezmi A. Akdis and colleagues. They demonstrated
that even trace concentrations (10�6 vol/vol) of com-
mercial detergents were able to directly disrupt tight
junctions between keratinocytes in culture and
thereby potentially compromise epidermal barrier
integrity, thus increasing the risk of allergen penetra-
tion and inflammation (210). Although this variant
of the hygiene hypothesis is compelling, it remains to
be reproduced in an in vivo setting on full thickness
skin to determine if the detergents can actually pene-
trate the protective, outermost stratum corneum
layer of the epidermis.

Gene expression analysis – from molecular pathology

to targeted therapy

An important information source on the molecular
pathology of AD (and any other skin disease) is

Fig. 3. (A) Targeting the IL-17 family of cytokines and their receptors. The six members of the IL-17 cytokine family (IL-
17A/B/C/D/E/F) are shown as functional, disulfide-linked homodimers, as well as the IL-17A/F heterodimer (175). Also
shown are their respective, heterodimeric receptors, each consisting of different combinations of five homologous receptor
subunits (IL-17RA/RB/RC/RD/RE). IL-17A, IL-17F (homodimers) and IL-17A/F (heterodimer) signal through the IL-
17RA/RC receptor complex, IL-17E (also known as IL-25) via IL-17RA/RB, IL-17C via IL-17RA/RE, while IL-17B and
IL-17D signal via yet to be determined receptors. Indicated are also monoclonal antibodies that target either the cytokines
or the IL-17RA receptor subunit. Because IL-17RA is common to signaling via IL-17A/F/C/E/AF, blocking it will inhibit
the downstream activities of all five IL-17 dimers. IL-17A/F and IL-17RA inhibitors have already shown substantial effect
in PSO, and currently, the IL-17C inhibitor MOR106 is being tested in a Phase II clinical trial in moderate to severe AD
(269). (B) Targeting IL-12 and IL-23. IL-12 (p40/p35) and IL-23 (p40/p19) are heterodimers that share the same p40 sub-
unit. IL-12 binds to the IL-12Rb1/b2 heterodimeric receptor and stimulates JAK2-TYK2 to phosphorylate mainly STAT4,
inducing IFN-c and a Th1 immune response. IL-23 binds to the IL-12Rb1/IL-23R heterodimeric receptor, and also
induces JAK2-TYK2 to phosphorylation, but primarily of STAT3, leading to Th17 signaling and release of IL-17A/F and
IL-22 (270). Because the p40 subunit is common to both IL-12 and IL-23, targeting it will inhibit the effects of both
cytokines (271), while the p19-specific antagonists target only the ‘master’ regulator of Th17 development, IL-23 (12). (C)
Targeting IL-4/IL-13, IL-31, and IL-22. The two homologous cytokines, IL-4 and IL-13, drive type 2 inflammation and
share many biological activities (272), the main differences being in their receptor interaction: The IL-4R Type I receptor
consists of the IL-4RA and common-gamma chain (IL-2RG) subunits, and has IL-4 as its exclusive ligand, while the IL-
4R Type II receptor is composed of the IL-4RA and IL-13RA1 chains, and binds both IL-4 and IL-13. The single-chain
IL-13RA2 receptor is thought to function as a decoy receptor as it seems to lack the ability to induce intracellular signal-
ing (273). As illustrated, targeting the common IL-4RA subunit will inhibit the effects of both IL-4 and IL-13 signaling.
IL-31 signals via a heterodimer consisting of IL-31RA and the oncostatin M receptor (OSMR), which is also common to
oncostatin M (OSM), a member of the homologous IL-6 superfamily (274). The IL-31 receptor is found on sensory neu-
rons in the dorsal root ganglia, where the itch sensation originates, which is why targeting IL-31 by e.g. nemolizumab can
potentially disrupt the itch–scratch cycle of pruritic diseases like AD (275). IL-22 signals through the heterodimeric IL-
22R1/IL-10R2 receptor and induces epidermal hyperplasia in AD, which is why the IL-22 antagonist fezakinumab shows
some promise in treatment of severe AD (161).
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A

Fig. 5. Gene expression analysis of lesional and non-lesional skin biopsies from 13 AD patients and from eight healthy con-
trols. (A) Heat-map and two-way unsupervised hierarchical clustering based on the 50 most variable genes between the three
groups (non-protein coding and orfs (open reading frames) removed). The samples cluster primarily according to disease
(AD samples to the right and NN samples in the left cluster) and histology (LS to the right and NL in the middle cluster).
What one also can see, is that three of the AD sample pairs (P12, P6, and P10, indicated by red bars below the heat map)
cluster together, that is: there are only minor differences between the LS and NL samples from the same patient; the NL P12
sample is ‘lesional’-like (clusters with the other LS samples), while the three ‘middle-group’ (having overall low expression of
most of the 50 DEG) LS samples (P13, P14, P10) appear more ‘non-lesional’ like. One NL sample (P1, indicated with a
green bar below the heat-map) clusters with the normal (NN) group, and thus, this AD patient does not appear to have the
‘molecular scar’ typical of non-lesional AD skin. The colors in the heat-map signify high (red) or low (green) expression of
the particular gene across samples (z-scaled values). (B) Scatter plots of 16 selected genes, illustrating both the differences
between lesional (AA), non-lesional (AN), and healthy control (NN) samples, and the variability within the groups, revealing
the heterogeneity of both the diseased and ‘normal’ (healthy) population. The Y-axis are log2-transformed expression values
(detection limit: 2–4, saturating concentrations: around 15). The samples are colored according to individual, and the dotted
lines connect samples (non-lesional and lesional) originating from the same individual. All the data used for this illustration
can be accessed in GEO by its accession number, GSE32924 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse32924).
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transcriptomics analysis performed on skin biop-
sies. Optimally, the biopsies are obtained from
site-matched lesional and non-lesional AD skin
and from healthy – age and gender-matched –
controls. This enables both intra-individual com-
parisons (paired analysis of samples from the
same subject) and comparisons between the dis-
eased and healthy population. Notably, individual
gene expression patterns may expose not only
overall disease signatures, but also the heterogene-
ity (endotypes and sub-endotypes) of AD, and of
the healthy population. This point is illustrated in
Fig. 5, which is a re-analysis of the transcriptomic
profile of AD reported by Su�arez-Fari~nas et al.
(145).

The heat-map in Fig. 5A is based on the top-50
DEG, most of which are inflammatory or epider-
mis associated, and shows that the three histolo-
gies (healthy, non-lesional, lesional) separate, and
also, that the separation is not perfect, as several
of the lesional (LS) and non-lesional (NL) samples
co-cluster, which probably reflects the wide dis-
ease spectrum of AD. This heterogeneity is further
emphasized when one looks at the individual
genes (Fig. 5B), which display a striking variabil-
ity in expression, both between and within groups.
For example, IL8 (CXCL8, an inflammatory

chemokine, involved in neutrophil activation),
MMP12 (expressed by macrophages, degrades
elastin), TCN1 (highly expressed in neutrophils),
and DEFB4A/B (defensin, expressed by neu-
trophils and keratinocytes, induced by inflamma-
tion) all vary widely in expression, from
undetectable to saturating concentrations in AD
skin. Also, LOR (loricrin) and CDSN (cor-
neodesmosin), which both are terminal differentia-
tion genes, and believed to be downregulated in
AD skin, are seen to have highly variable expres-
sion, ranging from undetectable (CDSN) to the
high levels also found in normal skin. Also note,
that not only AD skin but also healthy skin varies
extensively in expression of some of the genes
shown, such as MMP12, S100A9, and COL6A6,
illustrating the variation within the normal popu-
lation. The high variability, in particular in AD
skin, most likely reflects both the extent of disease
– the more inflamed skin, the higher the expres-
sion of inflammatory genes – and its pathogenesis,
where multiple pathways, some associated with
keratinocyte defects, some with immune system
dysfunction, may coexist, and where proper (and
probably problematic) identification of the under-
lying, dominant disease endotype eventually may
guide targeted therapy.

B

Fig. 5. Continued.

406 © 2019 The Authors. APMIS published by John Wiley & Sons Ltd

on behalf of Scandinavian Societies for Medical Microbiology and Pathology

LITMAN



We and others –- in particular the laboratories of
Emma Guttman-Yassky at Mount Sinai and James
Krueger at Rockefeller University, both in New
York, have generated a number of gene expression
studies on skin have deposited transcriptomics data
on AD and PSO in the public Gene Expression
Omnibus Database GEO (211) for further analysis.
Table 1 summarizes a selection of AD and PSO stud-
ies of interest and also links to the respective datasets.

A closer look at the above table reveals that sev-
eral of the aforementioned categorization aspects of
AD have already been addressed by transcriptomics
analyses, including:

Early-onset AD in children vs adult AD
The skin transcriptome of 19 young children (with
no known FLG mutations) with early-onset AD
was compared to that of age-matched healthy con-
trols, as well as to adult AD patients/controls. In
common for both child and adult AD patients were
alterations in lipid metabolism and tight junction
associated genes as well as Th2-mediated inflamma-
tion (212). In addition, the pediatric patients dis-
played significant Th17/Th22 polarization, but
neither Th1 activation nor downregulation of

epidermal differentiation complex genes, which are
characteristic features of adult AD. Still, larger
cohorts are needed to take ethnic differences (the
above study included Asian, African, Hispanic, and
Caucasian patients, the former three ethnicities with
only 1–2 matching controls) and subgroups with
FLG mutations into account. However, because
obtaining skin biopsies from children is challenging,
in such studies other, less invasive techniques, such
as tape-stripping (213) or blood-based biomarkers
(214, 215), are preferable.

Acute vs chronic AD
Here, sequential biopsies were obtained from 10
patients in their acute and chronic phase of AD.
Acute lesions were characterized by a marked
increase (compared to non-lesional skin) in expres-
sion of epidermal differentiation complex (EDC)
genes, in particular S100A7/A8/A9, which are
associated with Th2 (IL-4, IL-13, IL-31) and Th22
(IL-22) cytokine activation (196). When progress-
ing to chronic lesions this Th2/Th22 axis was fur-
ther activated followed by an increase in Th1-
associated products, such as CXCL9/10/11 (see
Fig. 2). In terms of treatment selection, this could

A Up B Down
ANGPTL4
DEFB4B
HSD3B1 
RHCG
S100A12
TMPRSS4

CXCL8 
IL36G
KLK9 
KRT16P2
LCE3A
LCE3D
LCE3E
PLA2G4D
SPRR2D
SPRR2F

AKR1B10
CD36
DSC2
GPX3
IGFL1 
KLK6 
KRT16
KRT17
KRT6A
KRT6B
PRSS53 
S100A7
SERPINB3
SPRR2B
TCN1
TYMP

ABCG4
ANPEP

APOBEC3A
CAMP
CARD6
CCR7 
CHAC1 
CXCL1 
DEDD2
DHRS9
FOSL1
HBEGF
IL17C 
IL36A 
KRT37
MMP19
PPBP
PRSS22
SCNN1G
SPP1
TGM2
TKTL1

TMPRSS11D
TXNRD1
ZSCAN12P1 

CH25H 
CTSC
ELF5
GJB2
HSD17B2 
LTBP1
LTF
LYZ
MECOM
MMP1
MMP12
MUCL1
PLAT
PPP1R3C
PRR9
SOCS3
TEX101 
TNC
TRIM10

SAPCD1
KRT77
BTC

AKR1C3
SLC40A1

ABCF2
ACADL
CMAHP
CMYA5
CYP39A1 
DOK7
FAM134B 
FHL1
FRAS1
FZD8
HPGDS
HS3ST6
ID4
IRAK1BP1
MSH5-SAPCD1
N4BP2L1 
NPY1R
NR1D1
NTM
PDE4DIP
PDK4
RARRES1
RCAN2
RORC
SERPINA12
SLC22A15 
SLC2A12 
SLC8A1 
SMIM10L2A 
SORBS1
SVIP
SYNE1
TFPI
THRA
ZBTB16
ZBTB20
ZNF540 

A
CT

A
2

A
LD

H
3A

2 
A

PO
D

A
PO

E
A

XI
N

2
BC

A
R3

BC
L2

 
BG

N
CA

CN
A

1H
 

CC
N

D
1 

CG
N

L1
CL

D
N

1 
CS

N
K1

G
2

EX
PH

5
F3 FA

BP
7

FB
LN

1
FC

G
BP

FL
G

2 
G

ST
M

3
H

SP
A

1B
IT

M
2A

IT
PR

IP
L2

KI
T

LC
E5

A
 

LS
M

12
 

N
U

A
K1

N
W

D
2

PP
P2

R2
B

RA
I1

4
RG

M
B

SC
EL

SG
SM

1
SH

3K
BP

1
ZS

CA
N

18

AQP9
CLDN23
CLDN8
HSD11B1
IL37
RHOBTB3
SNTB1
SUSD2

APCDD1
BOC
CAV2
CDH11 
COL18A1 
COL1A2 
CXCL14 
DAPL1
DCN
KAT2A
KRTAP1-1 
KRTAP1-5 
KRTAP19-3 
KRTAP19-5 
KRTAP2-2 
KRTAP2-4 
KRTAP3-1 
KRTAP4-1 
KRTAP4-11 
KRTAP4-12 
KRTAP4-3 
KRTAP4-5 
KRTAP4-6 
KRTAP4-9 
KRTAP9-3 
KRTAP9-9 
LGR4
LPHN3
LTBP4
MXRA5
PCDHB2
PDZRN3
PNMAL1
PTCH1
RASSF6
SCGB2A2
SEPP1
SNAI2
TNS4
TSPAN18
VSIG8

GAS1
IGFBP5
KRT15
POSTN

DEFB4A
KRT6C
OASL
PI3
S100A7A
S100A8
S100A9
SERPINB4
SPRR2C

A
D

A
P2

CA
LM

L3
D

EF
B1

03
A

H
ER

C6
 

IF
I2

7 
LC

N
2

LR
RC

20
M

X1
O

A
S2

PI
TX

1
PR

SS
27

SP
RR

1A
SP

RR
1B

SP
RR

2A
U

PP
1

Fig. 6. Comparison of three studies, assessing the epidermal transcriptomic profile of AD-LS vs AD-NL skin. (A) Top-50 up
DEG (LS vs NL). (B) Top-50 down DEG (LS vs NL). The three studies included are Tape: Tape-stripped skin (not in GEO)
(213); LCM: GSE120721 (222); Shave: GSE60709 (223). For the genes that are up in LS/NL epidermis, the overlap in DEG
between LCM and epidermal shave is 50% (25 out of 50 genes). Fewer genes are in common between the three studies for the
down DEG. For the tape-stripping study, interestingly, many KRTAP genes appear as lower expressed in LS skin. Since
KRTAP genes are associated with the hair shaft, this could suggest that there is less hair in the LS epidermis region.
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Box 5. Technical considerations – what to sample and what to measure?

As the eyes are said to be the mirror of our soul, so is the skin a two-way mirror,18 reflecting both our inner and

outer environment (237). Therefore, the cutaneous inflammation observed in AD reflects both inherent skin barrier

and immune system dysregulation (endotype) as well as the effect of external factors (exposome), such as allergens,

bacterial toxins, detergents, and other irritants.

Fortunately, the skin is easily accessible, and as such, straightforward to sample and study by various techniques, from

imaging (phenotype) to -omics analyses (molecular pathology) on biopsies. Standard 3–4 mm biopsies, however,

damage the skin and are considered too invasive for routine use on children,who represent themajority ofADpatients,

which is why alternative sampling technologies should be considered. One alternative, is to take smaller, 1 mm ‘mini’

biopsies (for which commercial punches are available) with only minimal scarring, allowing for multiple biopsies to be

sampled, butwhich still require the application of local anesthetics, as otherwise, the procedure is painful. Another, less

invasive option is to apply tape stripping to remove the stratum corneum, enabling quick sampling of multiple

epidermal layers. A third, and non-invasive technology is the procedure of skin surface washings that within 30 min

sampling time allows for quantification of stratum corneum associated cytokines (237).

Blood sampling is of course obvious, but first requires identification of adequate biomarkers (215). The advantage of a

blood sample is that it can integrate the disease signature, and that it contains several subsets of inflammatory cells that

can be identified, separated, and analyzed by flow cytometry.Adisadvantage of blood-based biomarkers is the dilution

effect; if local skin inflammation is the dominating disease feature, it may be difficult to translate into a blood-based

biomarker.

Other sampling sites include urine (238) and exhaled breath condensate, the latter containing markers of airway

inflammation, which has been reported in children with AD (239).

Anote on the analysis of skin biopsies: whenwe take a full thickness skin biopsy, it contains a heterogeneousmixture of

cells, which are being homogenized beforeDNA, RNA, or protein is extracted for further analysis. Thus, the sample is

blended into a ‘cellular smoothie’, where the individual cell characteristics are evened out or even lost. Thus, what we

see, whenwe analyze the gene expression pattern from such a homogenized biopsy, is a snapshot in time and space; it is

an average signal from many (millions) individual cells and several cell types, but where the individual, cell-specific

signals are averaged out. The problem is thatwe do not know the distribution of different cell types in the sample. Thus,

we cannot tell whether the actual – average – signal measured is due to activation or inhibition of specific genes (up- or

down-regulation of gene expression), or whether it is due to redistribution of compartments. For example, FLG and

LOR are highly expressed in the epidermis and are often seen to decrease following perturbation. But whether the

observed differential gene expression is due to inhibition, or whether it is because of thinning of the epidermis (thus,

decreasing the epidermis to dermis ratio) remains unknown.Oneway of solving the problem is by deconvolution of the

cellular compartments, i.e. estimating the percentage of epidermis, dermis, and other skin compartments based on

tissue- and cell type-specific expression patterns (240–242). This ‘housekeeping’ approach may work in a well-defined

system, but such a system is rarely well defined. The cell-specific signals can be identified by laser capture

microdissection (LCM), which enables separation of the dermis from the epidermis signal, and thus increases the

signal-to-noise ratio compared to that of a full thickness biopsy (222). LCM is rarely applied, however, mainly because

it is a very laborsome technique, and also because it can affect the actual state of the cells (243). Another, more high-

throughput technique, is separation by e.g. microfluidics or flow cytometry into single cells followed by single-cell

sequencing, for example, by drop-seq, made open source by SteveMcCarroll et al. (http://mccarrolllab.org/dropseq/).

Thus, insteadof a cellular smoothie,wenowhave a cellular fruit salad,where the characteristics of each individual piece

of fruit are retained (244).19

18And a very large mirror indeed; while the conservative estimate of skin surface area is 2 m2, then, if one takes the presence of

hair follicles, sweat, and sebaceous glands into account, the total skin area – and thus the interface for interaction with the skin

microbiome – is probably closer to 30 m2, as pointed out by Richard Gallo (236).
19Please see this inspiring TED talk by Steve McCarroll for the fruit analogy: https://www.ted.com/talks/steve_mccarroll_how_da

ta_is_helping_us_unravel_the_mysteries_of_the_brain
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Table 2. Future and emerging targeted treatment options for atopic dermatitis (AD) and psoriasis (PSO)

Target Drug Literature
reference

clinicaltrials.gov
reference1

Indications Clinical phase,
status

AhR (agonist) Tapinarof (t)2

(GSK2894512)
(294, 295) NCT02564055

NCT03202004
AD
PSO

Ph.II, completed
Ph.III, withdrawn

CCL20 GSK3050002 (i) (296) NCT02671188 PsA Ph.I, withdrawn
CD125 (IL5RA) Benralizumab (sc) (297) NCT03563066 AD Ph.II, recruiting
H4R ZPL-389 (o) (294) NCT03517566

NCT02618616
AD
PSO

Ph.II, recruiting
Ph.II, completed

IgE Omalizumab (sc)
QGE031 (sc)

(298) NCT02300701
NCT01552629

AD pediatric
AD

Ph.IV, active,
Ph.II, completed

IL-1a Bermekimab (sc) NCT03496974 AD AD: Ph.2, recruiting
IL-4Ra Dupilumab (sc)

(Dupixent)
(200, 299) NCT02612454

FDA approved
AD pediatric Ph.III, enrolling

IL-5 Mepolizumab (sc) (300) NCT03055195 AD Ph.I, terminated
IL-12B (p40) Ustekinumab (Stelara)

(sc)
(301)
(302, 303)

NCT01806662
NCT02698475

AD
PSO

Ph.II, completed
Ph.III, pediatric PSO

IL-13 Tralokinumab (sc) (304) NCT03587805 AD Ph.III, recruiting
IL-13 Lebrikizumab (sc) (299, 305) NCT03443024 AD Ph.II, active
IL-17A Ixekizumab (sc) (306) NCT03073200 PSO Ph.III, pediatric PSO
IL-17A Secukinumab (sc) (262)

(303)
NCT02594098
NCT02409667

AD
PSO

Ph.II, completed
Ph.III, completed

IL-17A/IL-17F Bimekizumab (sc) (307) NCT03598790 PSO Ph.III, recruiting
IL-17C MOR106 (iv) (308) NCT03568071 AD Ph.II, recruiting
IL-17RA Brodalumab (sc) (174) NCT03403036 PSO Ph.IV, completed
IL-22 Fezakinumab (sc) (161) NCT01941537 AD Ph.II, active
IL-23 (p19) Guselkumab (sc)

Tildrakizumab (sc)
(309)
(169)

NCT02905331
NCT01729754

PSO Ph.III, completed
Ph.III, active

IL-23 (p19) Risankizumab (sc)
Mirikizumab (sc)

(310)
(311)

NCT03518047
NCT03482011

PSO Ph.III, active
Ph.III, recruiting

IL-31 BMS-981164 (sc) (312) NCT01614756 AD Ph.I, completed
IL-31RA Nemolizumab (sc) (275) NCT03100344 AD Ph.II, completed
IL-33 Etokimab (sc) (ANB020) NCT03533751 AD Ph.II, recruiting
IL-36R ANB019 (sc) NCT03619902 PSO (GPP) Ph.II, recruiting
JAK1 Upadacitinib (o)

Abrocitinib (o)
(PF-04965842)

(313)
(299)

NCT03607422
NCT03575871

AD Ph.III, recruiting
Ph.III, recruiting

JAK1/2 Ruxolitinib (t) (314)
(315)
(316)

NCT03745638
NCT00820950
NCT02553330
NCT03099304

AD
PSO
AA
Vitiligo

Ph.III, recruiting
Ph.II, completed
Ph.II, terminated
Ph.II, recruiting

JAK1/2 Baricitinib (o) (317, 318) NCT03334422
NCT01490632

AD
PSO

Ph.III, active
Ph.II, completed

JAK1/3 Tofacitinib (o,t) (314)
(319)
(315)

NCT02001181
NCT01241591
NCT02812342

AD
PSO
AA

Ph.II, completed
Ph.III, completed
Ph.II, active

JAK1/TYK2 PF-06700841 (o) (320) NCT02969018 PSO Ph.II, completed
JAK1/2/3, TYK2 Delgocitinib (t)

(JTE-052)
(321) NCT03725722 AD Ph.II, recruiting

NK-1R (TACR1) Serlopitant (o) (322) NCT02975206 AD, pruritus Ph.II, completed
NK-1R (Substance P) Tradipitant (o) (322) NCT03568331 AD, pruritus Ph.III, recruiting
OX40 GBR 830 (sc) (323) NCT03568162 AD Ph.II, recruiting
OX40 KHK4083 (i) NCT03096223 AD Ph.I, completed
PDE4 Apremilast (o) (324)

(325)
NCT02087943
NCT01194219

AD
PSO

Ph.II, completed
Ph.III, completed

PDE4 Crisaborole (t) (326)
(327)

NCT02118766
NCT01300052

AD
PSO

Ph.III, completed
Ph.II, completed

PDE4 OPA-15406 (t) (328) NCT02068352 AD Ph.II, completed
RIP1 kinase GSK2982772 (o) (329) NCT02776033 PSO Ph.II, completed
ROR-c ESR-114 (t) NCT03630939 PSO Ph.II, recruiting
SYK/JAK ASN002 (o) NCT03531957 AD Ph.II, recruiting
TNF-a Infliximab (i) (169) NCT00686595 PSO, PsA Ph.IV, completed
TNF-a (330) PSO
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point toward targeting Th2/Th22 pathways in
acute AD.

The effect of ethnicity on AD has been shown in
Asian (Japanese and Korean) patients, who in gen-
eral display a more psoriasiform AD phenotype
and significantly higher Th17/Th22 activation as
assessed by cytokine expression (IL-17A, IL-19, IL-
22, S100A12), compared to European American
AD patients (212, 216). This can have implications
for the choice of treatment, as the selective block-
ade of IL-17/IL-22 pathways could be indicated in
the Asian, ‘psoriasis-like’ immune phenotype. It will

be interesting to see if the reported Japanese/Kor-
ean AD phenotype extends to the larger Chinese
and Indian populations, and also, to include migra-
tion studies (investigating Asian American, Asian
European, as well as local Asian AD) to evaluate
the genetic, epigenetic, and environmental (expo-
some/microbiome) effects on the development of
AD. The above considerations of course also apply
to other non-European ethnic groups, including the
African population, who is likely to have yet other
genetic susceptibilities, as recently reviewed by
Kaufman et al. (217) and Brunner et al. (218).

Table 2. (continued)

Target Drug Literature
reference

clinicaltrials.gov
reference1

Indications Clinical phase,
status

Adalimumab (Humira)
(sc)
Etanercept (sc)

NCT01970488
NCT00332332

Ph.III, completed
Ph.IV, completed

TNF-a/IL-17A ABT-122 (sc) (331) NCT02349451 PsA Ph.II, completed
TNF-a/IL-17A COVA322 (i) (183, 332) NCT02243787 PSO Ph.I, terminated (safety)
TrkA CT327/SNA-120 (t) (322) NCT01808157 AD, pruritus Ph.II, completed
TRPV1 PAC-14028 (t) (333) NCT02748993 AD, pruritus Ph.II, completed
TSLP Tezepelumab (sc)

(AMG 157)
(323) NCT00757042 AD Ph.I, completed

TYK2 BMS-986165 (o) (178) NCT03624127 PSO, PsA Ph.III, recruiting

Sorted according to molecular target. Monoclonal antibody drugs can be identified by their names, which all end with ‘-mab’.
1The list is not exhaustive. For up-to-date information on the clinical trials, please see https://clinicaltrials.gov
2(t) topical; (iv) intravenously; (o) oral; (sc) subcutaneously.

Time (years)

–1 0 2 80+ 

Prenatal Dx: 
DNA (WGS) profile 

identify risk factors

Predictive biomarkers:
Disease trajectories: transient/persistent?
Progression risk: mild or severe course? 
Which comorbidities? Atopic march, PsA? 
Which treatment will work best?

Monitoring:
Skin imaging (smartphone)
Identify pre-flares 
Treat! 

Early and accurate Dx: 
Identify endotypes
Targeted treatment
(early & aggressive)

Knowledge base:
Genomics 
Transcriptomics
Proteomics
Epigenomics
Metabolomics
Microbiome
Exposome
Physiome
Electronic health records

Prevention: (precision health)
Early use of emollients 

prevent sensitization (IgE) 
Identify/avoid exposure to allergens
Vaccination

Fig. 7. The vision of applied personalized medicine in inflammatory skin diseases. Risk factors (such as FLG mutations in
AD) can be identified before birth, enabling preventive measures (such as use of emollients) in early childhood. Identifica-
tion of endotypes can guide targeted treatment, and a combination of predictive biomarkers and skin monitoring (aided by
machine learning, including AI, integrating the information knowledge base) may help identify pre-flares and optimal time
and type of treatment.
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A transcriptomic treatment response signature
has been obtained in several clinical intervention
studies, such as ultraviolet B (UVB) phototherapy
(157), cyclosporin A (158), dupilumab (159), and
fezakinumab (161). In these studies, pre- and
post-treatment skin biopsies were obtained from
both lesional (AD-LS) and non-lesional (AD-NL)
skin. The number of differentially expressed genes
(DEGs) between AD-LS and AD-NL was found
to be lower post-treatment compared to pre-treat-
ment, indicating a normalization of the AD dis-
ease signature, including suppression of Th1, Th2,
and Th22 inflammatory markers (157). However,
because not all genes improve, even after success-
ful clinical remission as assessed by SCORAD,
they are defined as comprising a residual disease
genomic profile (RDGP) (219). The RDGP con-
cept was originally introduced when the treatment
of psoriasis with etanercept resulted in the resolu-
tion of disease and normalization of many, but
not all psoriasis-related genes (220). A subset of
248 genes did not return to baseline (or rather:
exhibited less than 75% improvement after treat-
ment) and could be indicative both of incomplete
suppression of inflammation – leaving room for
improvement – and for a ‘molecular scar’ intrinsic
to the disease. Whether the latter represents dif-
ferent endotypes with implications for disease pro-
gression and treatment response remains to be
determined.

A meta-analysis derived AD (MADAD) signa-
ture identified 595 AD-associated DEGs across four
publicly available transcriptomics studies (146), and
a subset of the most discriminatory of these genes
was shown to be applicable as a robust standard-
ized measure of treatment effect in the abovemen-
tioned UVB, cyclosporin A, and dupilumab studies.
Since the MADAD reference transcriptome cap-
tures both immunological (inflammatory genes,
cytokines, T-cell receptor signaling) and barrier
defect (epidermal differentiation, lipid metabolism)
genes, it may be used for future evaluation of ther-
apeutic response.

All of the above transcriptomic studies have
been performed on full thickness punch biopsies
of the skin, which is organized in three main lay-
ers: the epidermis, the dermis, and the subcuta-
neous fat (hypodermis). The epidermis contains
>90% keratinocytes at different differentiation
levels, a few melanocytes, Langerhans cells (LCs),
Merkel cells, a-dendritic cells, and inflammatory
cells. The dermis mainly consists of extracellular
matrix proteins, primarily collagen fibers produced
by fibroblasts, and also dendritic cells/macro-
phages, mast cells, various unactivated/activated
T-cell subsets, plasma cells, hair follicles, sweat

glands, sebaceous and apocrine glands, and
endothelial cells (221). Thus, when we analyze
gene expression in whole skin, the resulting aver-
age signal will reflect both the cellular distribu-
tion, such as the epidermis-to-dermis ratio, which
is known to vary both in AD and PSO, as well
as any up- or down-regulation of differentially
expressed genes. Furthermore, in a homogeneous
assay the compartmental localization of gene
expression is lost and also the expression of low-
abundance genes may become undetectable
because of dilution. One way to generate a more
refined skin transcriptome is to apply LCM (laser
capture microdissection), which enables separation
of the skin into its dermal and epidermal compo-
nents. Such a – and so far only – study based on
paired lesional and non-lesional samples from five

Box 6. Key messages

As our mechanistic understanding of inflammatory

skin conditions like PSO and AD increases, so does

the potential for personalized treatment and preven-

tion. In particular, because PSO and AD are both

complex and heterogeneous diseases with variable

course, treatment response, and hard to predict

comorbidities, they pose paradigmatic obvious cases

for a personalized medicine approach.

Inflammatory skin diseases are currently incurable,

but not intractable.

Ideally, personalized management of PSO and AD is

patient-centric, i.e. taking the individual’s needs into

concern. Targeted treatment of the skin with emol-

lients and topical corticosteroids may be sufficient to

control disease in mild to moderate cases. Targeted,

antibody-based therapies have revolutionized the

treatment of severe PSO and AD, and still more

efficient (more patients reaching PASI 100/EASI

100) and safe medicines are in development.

Targeted therapies need to be tailored to the endo-

types of AD, and thus, depend on identification of

relevant biomarkers of the underlying pathways that

drive the disease.

The move from personalized medicine to precision

health can be achieved by early intervention (‘treat

early and hard’) and prevention (see Fig. 7). Strategies

include vaccination and avoidance of triggering fac-

tors in predisposed individuals, who can be identified

even before birth by genotyping their DNA.
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AD patients showed that indeed the dermal and
epidermal transcriptomes differ, and also, that the
AD signature could be expanded with some 1000
DEGs due to the increased signal-to-noise ratio,
when working with separate compartments (222).
Some of the DEGs now detectable by LCM
included IL22, TSLP, IL34, CCL22, CCL26,
CLDN4, and CLDN8 (the latter two involved in
tight junction (TJ) formation). One reason why
LCM is not applied routinely is that it is very
labor intensive. Therefore, other methods need to
be considered for separating the dermal and epi-
dermal signals. One such method is based on epi-
dermal shaves for transcriptomic profiling (223),
another is tape stripping (213). A quick compar-
ison of the top-50 LS/NL DEGs from each of the
three studies shows that they have only little over-
lap (Fig. 6). This may be partly due to different
patient populations, different skin sampling tech-
nologies, and different RNA quantification plat-
forms (Affymetrix microarrays, Illumina arrays,
Ion Torrent sequencing). In particular, the tape-
stripping experiment displayed some unexpected
findings, such as large differences in the expression
of numerous keratin-associated protein (KRTAP)
genes (being more than 50-fold downregulated in
LS vs NL epidermis), which could suggest differ-
ences in the presence of hair.

Microbiome

Both the gut and skin microbiome have been impli-
cated in the pathogenesis of AD.

The gut microbiome is associated with the hy-
giene hypothesis proposed by Strachan in 1989, who
noticed that the number of older children in a
household had a striking inverse correlation to the
prevalence of hay fever and eczema in their younger
siblings (128). Thus, he hypothesized that smaller
family size leads to less unhygienic contact with
older siblings and thus, reduced the opportunity for
cross infection that supposedly has a protective
effect on development of eczema. In addition,
higher microbial endotoxin exposure from farm
animals was associated with protection against
development of allergy, as suggested in the ‘Eat
Dirt’ article by Weiss (224). Finally, because the
gut microbiome is important for the prenatal–early-
life maturation of our immune system (225), it has
been intensively studied in relation to allergic dis-
eases, and perturbations in the infant gut micro-
biome have been linked to the risk of developing
AD (226). However, several probiotic and prebiotic
intervention trials have been conducted, and
although some protective effect against AD was
observed, the differences were small, and no clear

gut microbiome–AD association could be demon-
strated (227).

The cutaneous microbiome, on the other hand, is
clearly associated with AD, as a vast majority
(>90%) of AD patients have their skin colonized
with Staphylococcus aureus, compared to only 5%
of healthy controls (132). In addition, S. aureus posi-
tive AD patients seem to have more severe disease,
higher levels of Type 2 biomarkers (CCL17,
POSTN), allergen sensitization (IgE), and barrier
dysfunction (higher TEWL) than non-colonized AD
controls (228). Also, in a prospective study on chil-
dren with AD, an increase in the proportion of S.
aureus and a concomitant decrease in bacterial diver-
sity preceded worsening (flare) of AD (229). To
address the question as to whether the observed colo-
nization of AD skin by S. aureus is potentially driv-
ing the disease or merely an epiphenomenon, several
intervention trials have been carried out. Such stud-
ies applying either antiseptics or antibiotics have
demonstrated that a reduction in the level of S. aur-
eus is indeed followed by a reduction in AD severity,
further supporting a causal relationship between S.
aureus colonization of skin and AD (227). Addition-
ally, use of emollients in infants at risk for develop-
ing AD caused a decrease in skin pH and an increase
in bacterial diversity, which may partly explain the
preventative effects of emollients (230).

A mechanistic link to the pathogenesis of AD is
suggested by the colonization of AD skin by toxi-
genic S. aureus strains that produce superantigens
(SA), which drive the development of a Th2 immune
response, and activate Langerhans cells (LCs) and
cutaneous dendritic cells (DCs) that bridge innate
and adaptive immunity (231). Moreover, mast cell
degranulation is directly stimulated by the S. aureus
d-toxin (d-hemolysin), which also promotes IgE pro-
duction and Th2-mediated inflammation (232). Con-
versely, Th2 cells enable S. aureus colonization due
to IL-4 and IL-13 mediated inhibition of antimicro-
bial peptides (AMPs) and of terminal differentiation
proteins important for skin barrier integrity (233).
And in turn, S. aureus amplifies the inflammatory
response by stimulating release of IL-4, IL-13, IL-22,
IL-17, IL-31, and IgE, thus closing the vicious circle
(234). It will be interesting to see whether the topical
application of protective commensal skin bacteria,
such as coagulase negative Staphylococcus strains,
can inhibit the growth of S. aureus and eventually,
lead to a cure of AD (235) (Box 5).

How precise is precision medicine?

Usually, differences between diseased and healthy
tissue are quantitative rather than qualitative. That
is: a given target or pathway is rarely exclusive to
just a single disease, tissue, or cell type. For
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example, cytokines and their receptors are
expressed at highly variable levels across cell types
and conditions, and while certain cells, such as Th2
cells, express and release high levels of IL-4 and IL-
13, this is also the case for basophils and ILC2 cells
(245). And conversely: the expression of cytokine
receptors, e.g. the IL-4Ra subunit, is not confined
to just a single-cell type, like keratinocytes (which
themselves secrete numerous cytokines that act as
both autocrine and paracrine mediators). Therefore,
targeting the IL-4 receptor pathway with a specific
antibody like dupilumab may cause adverse effects
– such as the conjunctivitis reported in 14–19% of
AD patients treated with dupilumab (246). Of
course, this concern also applies to any other tar-
geted treatment, which is why it is important to
evaluate and prioritize both the most relevant dis-
ease drivers, pathways, and targets (druggability
considerations) as well as to take potential off-tar-
get and on-target adverse effects into consideration.

Finally, to evaluate the efficacy of novel medicine
approaches and to identify the most important dis-
ease pathways, head-to-head comparisons against
other targeted treatments are useful. A notable
example of such a head-to-head comparison is the
recent ECLIPSE study including 1048 moderate–sev-
ere PSO patients. In this Phase 3 study, the long-term
efficacy and safety of the IL-17A inhibitor secuk-
inumab was compared to that of the IL-23 (p19)
inhibitor guselkumab: at week 48, PASI90 was
reached for 70% of patients on secukinumab, and
for 85% of patients on guselkumab, while the
PASI100 responses were 48% and 58%, respectively
(247). Thus, for this patient group, the newer-genera-
tion IL-23 inhibitor demonstrated superior long-term
efficacy over the IL-17A inhibitor.

In another head-to-head PSO study, the IL-23
(p19) inhibitor risankizumab was compared to the
dual IL-12/23 inhibitor ustekinumab, and already at
week 4 the p19 inhibitor showed a more pronounced
effect than ustekinumab as assessed by molecular
(RNA-seq transcriptomics) and histopathologic pro-
filing (153).

In a third PSO study, the effect of an anti-IFN-c
antibody was investigated, and although IFN-c was
blocked at the molecular level, clinical efficacy
could not be demonstrated (248). This – obviously
– implies that it is not sufficient to demonstrate the
molecular effect of target inhibition, if the target is
not central for driving the disease.

Personalized medicine – strategies and candidates

Targeting signaling pathways in inflammatory skin
diseases can be approached at different cellular
levels: extracellularly, at the receptor level, either

targeting the cytokine itself (e.g. tralokinumab for
IL-13), or its receptor (e.g. dupilumab for IL-4RA)
by monoclonal antibodies (or other biologics/
biosimilars, such as nanobodies) or, alternatively,
intracellularly, blocking the downstream signaling
of e.g. the JAK-STAT pathway (Fig. 3B-C) by
small-molecule inhibitors of one or more of the
four JAKs: JAK1, JAK2, JAK3, and TYK2 (249).

Currently, several JAK inhibitors – both sys-
temic and topical –with different selectivities are in
clinical development for treatment of inflamma-
tory diseases (see Table 2 for these and other com-
pounds), including filgotinib (JAK1), upadacitinib
(JAK1), abrocitinib (JAK1), ruxolitinib & baricit-
inb (JAK1/2), tofacitinib (JAK1/3), BMS-986165
(TYK2), ASN002 (TYK2/SYK), and delgocitinib
(JTE-052, pan-JAK). Most of these candidates
show promising efficacy and overlapping systemic
safety profiles with increased risk of opportunistic
virus infections and cytopenias (250). Therefore, to
avoid the latter adverse effects of systemic treat-
ment, topical formulations should also be (and
are) considered.

Finally, new treatment modalities include those
based on vaccination and allergen-specific
immunotherapy. The latter is effective in treating aller-
gies and involves de-sensitization via repeated expo-
sure to increasing doses of allergens, but the effect on
AD is still unresolved (251). Vaccination against S.
aureus could in principle eliminate this pathogenic fac-
tor from susceptible AD patients, and several clinical
trials are ongoing to evaluate the effect of active and
passive vaccine candidates on AD (252).

CONCLUSION

Historically, we have moved from ignorance, supersti-
tion (or act of God) and metaphysics, to a rational
(Hippocratic), physical approach to personalized med-
icine, driven by major progress in technology; this has
enabled us to zoom in, both on the cellular and the
molecular (the omics revolution) basis of disease. And
now – in the post-genomic era, we are able to integrate
the multiple levels of information: from molecular-
level genome, epigenome, metabolome, and proteome
data, to higher level physiome, exposome, micro-
biome, and interactome data (253). Thus, we are aim-
ing at a modern, systemic (systems biology), holistic
disease understanding, where the gap between diag-
nostics and treatment options is steadily closing.

Oncology is leading the way in precision medi-
cine (254), though for a critical review of precision
oncology, see Brock and Huang (255). Immunology
is catching up with asthma ahead, already linking
phenotypes and endotypes to targeted therapy
(256), and as a natural extension of this
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development, inflammatory skin diseases follow
suit, with PSO ahead of AD (197).

In principle, chronic inflammatory skin diseases,
like PSO and AD, and also alopecia and vitiligo,
are (currently) incurable, but they do respond to
treatment. They also, in particular AD, comprise
complex and heterogeneous underlying endotypes,
which are good candidates for a personalized medi-
cine strategy. Thus, in order to apply endotype-dri-
ven strategies for stratification and personalized
medicine, it is necessary first to identify and under-
stand these endotypes. Hopefully, such understand-
ing can be obtained via an integrative, multi-omics
approach resulting in discovery of molecular
biomarkers, both prognostic and predictive, for
assessing the likelihood of comorbidity, disease pro-
gression, and response to novel, targeted treatments
(Fig. 7). Additionally, and following the vision of
P4 medicine being both personalized and participa-
tory, patients will have the opportunity to monitor
the health of their skin by using mobile apps (257)
that in real-time (by use of artificial intelligence
(AI) and cloud-based deep learning) can perform
image analysis, evaluate the degree of treatment
response, and eventually, recommend to stop, con-
tinue, or change the treatment, essentially enabling
truly individualized medicine (Box 6).

The author would like to acknowledge Hanne Norsgaard,
Paola Lovato, Jakob Felding, and Witte Rush Koopman
Jr. for insightful comments and suggestions for improve-
ments, Adrian Ewald and Mette Vesterager for rhetorical
sparring, and Michala Litman for lending a scratching
hand (Fig. 2).
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