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Abstract. p0 HeLa cells entirely lacking mitochondrial 
DNA (mtDNA) and mitochondrial transfection tech- 
niques were used to examine intermitochondrial inter- 
actions between mitochondria with and without 
mtDNA, and also between those with wild-type (wt) 
and mutant-type mtDNA in living human cells. First, 
unambiguous evidence was obtained that the DNA- 
binding dyes ethidium bromide (EtBr) and 4',6- 
diamidino-2-phenylindole (DAPI) exclusively stained 
mitochondria containing mtDNA in living human 
cells. Then, using EtBr or DAPI fluorescence as a 
probe, mtDNA was shown to spread rapidly to all p0 
HeLa mitochondria when EtBr- or DAPI-stained HeLa 
mitochondria were introduced into p0 HeLa cells. 
Moreover, coexisting wt-mtDNA and mutant mtDNA 

with a large deletion (A-mtDNA) were shown to mix 
homogeneously throughout mitochondria, not to re- 
main segregated by use of electron microscopic analy- 
sis of cytochrome c oxidase activities of individual mi- 
tochondria as a probe to identify mitochondria with 
predominantly wt- or A-mtDNA in single cells. This 
rapid diffusion of mtDNA and the resultant homoge- 
neous distribution of the heteroplasmic wt- and 
A-mtDNA molecules throughout mitochondria in a 
cell suggest that the mitochondria in living human 
cells have lost their individuality. Thus, the actual 
number of mitochondria per cell is not of crucial im- 
portance, and mitochondria in a cell should be consid- 
ered as a virtually single dynamic unit. 

M 
AMMALIAN mitochondria are usually depicted as 
elongated cylindrical particles resembling bac- 
teria, and it has been generally thought that a 

mammalian cell possesses hundreds of independent mito- 
chondria, each containing several rnitochondrial DNA 
(mtDNA) l molecules (Borst and Kroon, 1969; Nass, 1969; 
Clayton, 1984; Attardi and Schatz, 1988; Wallace, 1992). 
A yeast strain was proposed to contain a single highly 
branched rnitochondrion per cell (Hoffmann and Avers, 
1973), but subsequent studies demonstrated that the number 
of rnitochondria per yeast cell varied depending on the yeast 
strain, stage in the life cycle, and physiological conditions 
(Stevens, 1981; Miyakawa ct al., 1984). Variation in the 
number and morphology of mitochondria in mammalian 
cells of different cell types (Johnson ct al., 1980), and even 
of the same cell type (Posakony et al., 1975) has also been 
suggested. 

The idea that yeast mitochondria interact with each other 
has received support from morphological (Stevens, 1981; 

Address all correspondence to Dr. Jun-lchi Hayashi, Institute of Biological 
Sciences, Tsukuba University, Ibaraki 305, Japan. 

1. Abbreviations used in this paper: COX, cytochrome c oxidase; DAPI, 
4',6-diamidino-2-phenylindole; mtDNA, mitochondrial DNA. wt, wild 
type. 

Miyakawa et al., 1984) and genetic (Dujon et al., 1974; 
Clark-Walker and Miklos, 1975) findings. Although exten- 
sive mtDNA recombination was not observed in mammalian 
cells (Hayashi et al., 1985; King and Attardi, 1988), inter- 
mitochondrial interaction of the mitochondrial genetic sys- 
tem was suggested by the translational complementation of 
mitochondrial rRNA observed in heteroplasmic cells with 
chloramphenicol-sensitive and -resistant mtDNA (Oliver 
and Wallace, 1982; Gillespie et al., 1986). Our previous 
study also provided biochemical evidence for intermitochon- 
drial interactions through translational complementation 
and competition of mitochondrial tRNAs (Hayashi et al., 
1991b). 

In this study, we examined how such intermitochondrial 
interactions occur using three kinds of human cells; (a) 
HeLa cells with HeLa mtDNA, (b) p0 HeLa cells entirely 
lacking mtDNA (Hayashi et al., 1992) isolated by the proce- 
dure of King and Attardi (1989), and (c) HeLa cybrids with 
both wild-type mtDNA (wt-mtDNA) and deletion mutant 
mtDNA (A-mtDNA) from a patient with mitochondrial en- 
cephalomyopathy (Hayashi et al., 1991b). 

Using mitochondrial transfection techniques, we created 
an environment sutiable for interaction between mitochon- 
dria with and without mtDNA and also between mitochon- 
dria with wt- and A-mtDNA. Then we investigated the distri- 
bution of mtDNA and its products in mitochondria of single 
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cells by vital mtDNA staining with fluorescence probes and 
by measurement of the cytochrome c oxidase (COX) activi- 
ties of individual mitochondria. The results provided direct 
evidence for frequent fusion of host and transferred mito- 
chondria, and subsequent rapid diffusion of mtDNA and its 
transcripts, ensuring their homogeneous distribution through- 
out the mitochondria in a cell. Thus, in living ceils mito- 
chondria have a fluid nature and function as a single dynamic 
cellular unit, indicating that mitochondria in a living human 
cell are virtually single. Our findings indicate the necessity 
for a reassessment of the conventional theory of mitochon- 
drial organization, and introduce the new concept of dy- 
namics of the mitochondrial genetic system and of organelle 
biogenesis in living mammalian cells. 

Materials and Methods 

Cell Culture 
HeLa cells, p0 HeLa cells entirely lacking mONA, respiration deficient 
p- HeLa cybrids with A-mtDNA predominantly, and HeLa cybrids with 
both wt- and A-mtDNA were grown in either a glucose-rich medium, 
RPMI+pyruvate (RPMI164 0 containing glucose [2 mg/ml], pyruvnte [0.1 
rag/nil], and 10% fetal bovine serum), or a medium without glucose 
(DM170 containing galactose [0.9 mg/ml], pyruvate [0.5 mg/ml], and 10% 
fetal bovine serum). 

Fluorescence Microgmphs 
After weak ttypsiniT~tion, HeLa cells grown in a living-cell observation 
chamber (OZ chamber, Elecon Science, Tokyo) were treated with DAPI (10 
~g/ml) for 120 rain or with EtBr (2 t~gmi) for 5 rain, washed several times 
with cultivation medium (RPMl1640+pyruvate+10% fetal calf serum), 
and observed with a fluorescence microscope (TMD-EF with an objective 
lens NCF Fluor DL 10(IX, Nikon) with excitation at 365 nm (UV) and 546 
nm (green), respectively. Photographs were taken using ultrasensitive film 
(TMZp3200, ASA3200, Kodak) to minimize phototoxicity. The same cells 
were then stained with R123 (10 tzg/ml) for 2 min, washed several times, 
and photographed with excitation at 495 nm (blue). 

Cytoplasmic Transfer of EtBr- or DAPl-stained 
Mitochondria to po HeLa Cells 
EtBr- and DAPI-stalned HeLa mitochondrla were introduced into DAPI- 
and EtBr-stained p0 HeLa cells, respectively, as described before (Hayashi 
et al., 1994) with slight modifications. Briefly, HeLa cells were enucleated 
by centrifugntion in the presence of cytochalasin B (10 ttg/ml), and fused 
to p0 HeLa cells. Fusion mixtures were plated in OZ chambers. Since it 
usually takes 4-6 h for most cells in the fusion mixture to spread sufficiently 
to allow observation of their mitochondria under a mi~mcope, cybrid cells 
were screened under a fluorescence microsco~ 6 h after plating. The same 
cybrid cells were then stained with R123 for 2 rain to identify all mitochon- 
dria in the cells (Fig. 2 C). 

mtDNA Analysis 
The total DNA (2 ~tg/lane) extracted from 2 x 105 cells was digested with 
the single-cut restriction enzyme PvuH. The fragments separated by 0.8% 
ngarose gel electrophoresis were then tmmferred to nitrocellulose mem- 
branes and hybridized with [a-32p]dCTP-labeled HeLa mtDNA. The 
membranes were washed and exposed to x-ray film for 1 h at -80°C. To 
quantltate the A-mtDNA contents in the cybrid subclones, the membranes 
were exposed to imaging plates (Fuji Film, Tokyo, Japan) for 5 rain, and 
the radioactivity of each fragment was measured using a bioima~ing ana- 
lyzer, Fujix BAS 2000 (Fuji Film). 

Analysis of Mitochondriai Translation Products 
[3SS]methionine labeling of mitochondrial translation products was carried 
out as described (Mariottini et al., 1986). Briefly, cells (4 x 106) in a dish 
were incubated for 2 h with [3SS]methionine in the presence of emetine 

(0.2 mg/ml), and the mitochondrlal fraction was obtained by homogeniza- 
tion in 0.25 M sucrose/l mM EGTA/10 mM HepesNaOH, pH 7.4, followed 
by differential centrifngation. Proteins of the mitochondrial fraction (50 
/+g/lane) were separated by SDS/ure~polyacrylamide gel electrophoreals. 
The dried gel was exposed to an imaging plate for 6 h and mitochondrial 
translation products were analyzed using a bioimaglng analyzer. 

COX Electron Micrographs 
Cells grown on cover slips were fixed in 2% glutaraldehyde/0.05 M phos- 
phate buffer, pH 7.4, for 15 rain and stained for COX by the procedure of 
Seligman et al. (1968) with slight modifications (NormkA et al., 1989) to 
detect the COX activities of individual mitochondrla at the ultrastructural 
level. The cells were then postfixed in OsO+ for 15 min and embedded in 
epoxy resin. Thick sections (2/tm) of HeLa cells were used to confirm the 
continuous structure of mitochondria visualized by fluorescence micros- 
copy (Fig. 2 A) at the ultrastructural level. These thick sectiom were exam- 
ined with a high-voltage electron microscope (H-1250M, 1000kV; Hitachi, 
Tokyo, Japan). 

Isolation of Subclones with Various Proportions 
of A-mtDNA 
Various subclones containing 48-72% A-mtDNA were isolated by reclon- 
ing a HeLa cybrid clone with 62% A-mtDNA, which had been established 
previously (Hayashi et al., 1991b) by fusion of p0 HeLa cells with enucle- 
ated skin fibroblasts derived from a patient with mitochondrial enceph- 
olomyopathy (Kearus-Sayre syndrome). Quantitative analysis of A-mtDNA 
was carried out as described (Hayashi et al., 1991/7). COX activities of in- 
dividual mitochondria in a cell were analyzed immediately after recloning 
to minimize intercellular variations in the proportions of A-mtDNA among 
cells of the same subclone. 

Results 

Identification of Mitochondria with and without 
mtDNA in Living Human Cells 
First we studied the identification of mtDNA and its tran- 
scripts in mitochondria of living human cells by their vital 
staining with EtBr. When HeLa cells were treated with a low 
concentration of EtBr for 5 min, their mitochondria were ob- 
served by fluorescence microscopy to be stained intensely 
against a dark cytoplasmic background (Fig. 1 A). The brightly 
stained regions in the cytoplasm were confirmed to be mito- 
chondria by the fact that they exactly corresponded to 
regions of the same cells stained subsequently with rhoda- 
mine 123 (R123), a membrane potential-dependent mito- 
chondria-specific dye (Johnson et al., 1980; Chen, 1988) 
(Fig. 1A and B). Moreover, the EtBr- and R123-stained mi- 
tochondria in HeLa cells were identical to the network struc- 
ture detected by phase-contrast microscopy (Fig. 1 A-C). 
These findings indicate that all the mitochondria in living 
HeLa cells are stained with EtBr. 

In contrast, when living p0 HeLa cells lacking mtDNA 
were treated with EtBr, their cytoplasm stained very weakly 
and uniformly, and no mitochondria were detected by vital 
staining with EtBr (Fig. 1 D), presumably due to the absence 
of mtDNA (Fig. 2 A). Similar results were obtained when 
the cells were treated with a 10 times higher concentration 
of EtBr. However, R123 staining (Fig. 1 E) and ultrastruc- 
rural analysis (Hayashi et al., 1991a) showed that the cells 
do have mitochondria that maintain a membrane potential. 
Thus, the EtBr staining of HeLa mitochondria could not be 
due to the interaction of EtBr with mitochondrial compo- 
nents other than mtDNA and its transcripts. 

Since EtBr is a delocalized lipophilic cation like R123, it 
might be taken up by mitochondria simply in accordance 
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Figure L Identification of 
mtDNA and/or its transcripts 
in living cells by their vital 
staining with EtBr. A-C, 
HeLa cells; D, E, po HeLa 
cells; F, G, p- HeLa cybrids 
with 93 % A-mtDNA, estab- 
lished previously (Hayashi et 
al., 1991b) by the fusion ofp ° 
HeLa cells with enucleated 
skin fibroblasts derived from a 
patient with mitochondrial 
encephalomyopathy (Kearns- 
Sayre syndrome); H, human 
skin fibroblasts. Fluorescence 
micrographs of EtBr staining 
(A, D, F) and R123 staining 
(B, E, G, H). Phase-contrast 

micrographs (C). (A-C), (D and E), and (F and G), respectively, are the same cells. The shape of mitochondria in the three images (A, 
B, and C) were slightly different because of the rapid and three-dimensional movement of the mitochondria in the living cells during the 
time required for R123 staining (2 rain) and the interval between the times of fluorescence and phase-contrast photographs (0.5 rain), and 
because of the small focal depth of the 100X lens. Note that EtBr did not stain nuclei when cells were treated with a low concentration 
of EtBr (2 t~g/ml) for a short time (5 rain), although nucleolar regions of the nucleus were preferentially stained (A, D, F). Bar, 40/~m. 

with the membrane potential, and the membrane potential in 
p0 HeLa mitochondria might not be high enough to ac- 
cumulate sufficient EtBr for its detection due to the absence 
of mitochondrial protein synthesis (Fig. 2 B), explaining 
why p0 HeLa mitochondria were not stained with EtBr. 
This possibility could be examined by the use of respiration 
deficient p- HeLa cybrids containing A-mtDNA predomi- 
nantly, because these p- cells totally lack mitocbondrial 
protein synthesis like p0 cells (Fig. 2 B), but do have 
mtDNA (Fig. 2 A). On R123 staining, mitochondria in the 
p- HeLa cybrids appeared swollen (Fig. 1 G) like those in 

p0 HeLa cells (Fig. 1 E). However, in contrast to p0 HeLa 
mitochondria, p- HeLa mitochondria were stained with 
EtBr (Fig. 1 F)  like HeLa mitochondria (Fig. 2 A). If the 
above possibility were the case, p- HeLa mitochondria 
should not be stained with EtBr, contrary to our observa- 
tion (Fig. 1 F). Similar results were obtained with syn- 
HeLa cybrids which totally lack mitochondrial protein syn- 
thesis and COX activity due to a mtDNA mutation in 
tRNA ~U~)3u3 derived from a patient with mitochondrial 
encephalomyopathy (MELAS syndromes; data not shown). 
Accordingly, these results show that EtBr can be used as a 
fluorescent probe for identification of mitochondria with 
mtDNA in living human cells. On the other hand, R123 
staining can be used to identify all mitochondria, irrespec- 
tive of whether they contain mtDNA or not. 

Figure 2. Analyses of mtDNA and its translation products in HeLa 
cells, po HeLa cells, and p- HeLa cybrids. (A) Southern blot anal- 
ysis of PvulI-cut mtDNA. 16.5 kbp, wt-mtDNA; 11.5 kbp, 
A-mtDNA with a 5196-bp deletion. Total DNA (5 /~g/lane) ex- 
tracted from cells was analyzed using [cd2p]dCTP-labeled HeLa 
mtDNA as a probe. (B) Protein synthesis in mitochondria. After 
[3sS]methionine-labeling of mitochondrial translation products in 
the presence of emetine (0.2 mg/ml), proteins of the mitochondrial 
fraction (50 t,g/lane) were separated by SDS/urea/polyacrylamide 
gel electrophoresis. ND5, COI NIM, Cytb, ND2, ND1, CO1/, 
COrn, ATP6, ND6, ND3, ATPS, and ND4L are polypeptides as- 
signed to mtDNA genes. 

Diffusion o f  m t D N A  from Imported HeLa 
Mitochondria to Host  po HeLa Mitochondria 

We next transferred EtBr-stained HeLa mitochondria to un- 
stained p0 HeLa cells by fusion of enucleated HeLa cells 
with p0 HeLa cells, and 6 h later examined whether the 
mtDNA and/or its transcripts from HeLa cells had pene- 
trated into the mitochondria of the host p0 HeLa cells by 
monitoring EtBr fluorescence. Then we stained the same 
cells, i.e., cybrids (Fig. 3 legend), with R123 to identify host 
p0 HeLa mitoehondria as well as the imported HeLa mito- 
chondria. Fig. 3 shows that the cybrid mitochondria stained 
with EtBr are completely identical to those subsequently 
stained with R123, i.e., that p0 HeLa mitochondria that 
were not stained with EtBr but stained with R123 appear to 
be lost in the cybrid. To obtain the reproducibility of our ob- 
servations, we tried the mtDNA transfer experiment three 
times, and the same results as those in Fig. 3 were observed 
in all three independent cybrid cells. 

These observations suggest that all mitochondria of the 
host p0 HeLa cells also possessed mtDNA after the import 
of HeLa mitochondria. If the imported HeLa mitochondria 
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Figure 3. Distribution of cytoplasmically transferred HeLa mtDNA 
and/or its transcripts in mitochondria of cybrids. (A-C) fluores- 
cence micrographs; (D) phase-contrast micrograph of the same 
cybrid cell. The cybfid cell with both DAPI-stained nuclei (A) and 
EtBr-stained mitochondria (B) was subsequently stained with R123 
(C). HeLa cells were treated with EtBr (2 #g/ml) for 5 rain, 
enucleated by centrifugation and fused to 0o HeLa cells. Fusion 
mixtures were plated in OZ chambers. Before fusion, the host o0 
HeLa cells were prestained with DAPI (2/~g/ml) for 15 rain to iden- 
tify o 0 HeLa nuclei. It usually takes 4-6 h for most cells in the fu- 
sion mixture to spread sufficiently to allow observation of their mi- 
tochondria under a microscope. So 6 h after plating, cells with 
DAPI-stained (A) but not EtBr-stained nuclei and with EtBr-stained 
mitochondria (B), i.e., cybrid cells, were screened under a fluores- 
cence microscope using UV (365 ran) (.4) and blue (495 nm) excita- 
tion (B), respectively. The same cybrid cell was then stained with 
R123 for 2 rain to identify all mitochondria in the cell (C). Bar, 
40 ~m. 

did not fuse with swollen 0 ° HeLa mitochondria but simply 
took on a normal network appearance within 6 h, or if they 
did fuse but the EtBr-stained HeLa mtDNA and its tran- 
scripts did not spread rapidly to all the mitochondria of the 
host o ° HeLa cells, swollen 0 ° HeLa mitochondria that 
were stained with R123 but not with EtBr (Fig. 1 D and E) 
should be found in the cybrid, contrary to our observations 
(Fig. 3 B and C). The possibility that free EtBr in the 

enucleated HeLa cytoplasm stained mitochondria of the host 
cells was excluded by the use of 0 ° HeLa cells that have no 
mtDNA as host cells. The possibility that the apparent loss 
of R123 staining of po HeLa mitochondria in the cybrid was 
due simply to artificial, cell fusion-induced loss of the mem- 
brane potential was unlikely, because swollen 0 ° mitoehon- 
dria were detected by R123 staining of multinucleated 
homokaryons obtained by fusion of 0 ° HeLa cells. The pos- 
sibility that swollen 0 ° HeLa mitochondria degraded prefer- 
entially by introduction of HeLa mitochondria was also un- 
likely, because the swollen o- mitochondria containing 
A-mtDNA predominantly also disappeared by introduction 
of HeLa mitochondria without degradation of A-mtDNA 
(data not shown). Accordingly, the observations in Fig. 3 
show that the transferred HeLa mitochondria fused with the 
host 0 ° HeLa mitochondria and that EtBr-stained HeLa 
mtDNA and/or its transcripts spread rapidly to all the 0 ° 
HeLa mitochondria within 6 h. 

Since EtBr stains both mtDNA and its transcripts 
(mtRNA) in mitochondria, we repeated the same experi- 
ments using a DNA-specific binding dye to exclude the pos- 
sibility that mtRNA, but not mtDNA, spread rapidly to all 
the 0 ° HeLa mitochondria. The DNA-specific binding dye, 
4',6-diamidino-2-phenylindole (DAPI), which is not a de- 
localized lipophilic cation like R123 and thus can bypass 
membrane potential-dependent staining of mitochondria, is 
usually used as a fluorescent probe for vital mtDNA staining 
in yeast (Williamson and FenneU, 1974) and trypanosomes 
(Hajduk, 1976; Robinson and Gull, 1991), but it does not 
stain mtDNA in living human cells under conventional con- 
ditions (Russell et al,, 1975; Satoh and Kuroiwa, 1991). In 
this study, we examined various conditions for the vital 
staining of HeLa cell mtDNA with DAPI, and found that 
mitochondria-like structures in HeLa cell cytoplasm were 
weakly stained only when the cells were subjected to mild 
pretreatment with trypsin and then treated with a high con- 
centration of DAPI. Fig. 4 shows that the DAPI-stained 
regions in the HeLa cytoplasm were confirmed to be mito- 
chondria by the fact that they exactly corresponded to 
regions of the same cells stained subsequently with R123. 
Moreover, 0 ° HeLa mitochondria were not stained with 
DAPI, suggesting that DAPI stained only mtDNA in living 
HeLa cells. As shown in Fig. 5, similar results to those in 
Fig. 3 were obtained when DAPI-stained HeLa mitochon- 
dria were introduced into po HeLa cells. These observa- 
tions suggest that mtDNA spread rapidly from HeLa mito- 
chondria to 0 ° HeLa mitochondria within 6 h after import 
of the HeLa mitochondria. 

Idenfffication of Heteroplasmic wt- and A-mtDNA in 
Mitochondria of Single Cybrids 
The above interpretation predicts that coexisting wt-mtDNA 
and mutant-type mtDNA within a cell should mix homoge- 
neously throughout the mitochondria, and not remain seg- 
regated. We examined this prediction using HeLa cybrids con- 
taining wt-mtDNA and deletion-mutant mtDNA, A-mtDNA, 
as individual mitochondria with predominantly wt- or 
A-mtDNA can be distinguished unambiguously by electron 
microscopic analysis of their COX activity (Fig. 6, A and B): 
o- HeLa mitochondria in cells containing predominantly 
A-mtDNA showed no COX activity (Fig. 6 B), presumably 
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Figure 4. Identification of 
mtDNA in living HeLa cells 
by their vital staining with 
DAPI. (A and B) HeLa cells; 
(C and D) p0 Helm cells. 
Fluorescence micrographs of 
DAPI staining (A and C) and 
subsequent R123 staining (B 
and D). (A and B) and (C and 
D), respectively, are the same 
cells. It should be noticed that 
DAPI stained nuclei much 
more intensely than mito- 
chondria (A). Bar, 20/zm. 

as the result of  the absence of  mitochondrial  protein synthe- 
sis due to deletion of  five tRNA genes in A-mtDNA (Ha- 
yashi et al . ,  1991b). Accordingly, COX activity of  individual 
mitochondria can be used as a probe to identify mitochon- 
dria with wt- or A-mtDNA in a cell. Thus, if, contrary 
to our prediction, there is little or  no exchange of wt- and 
A-mtDNA molecules between mitochondria,  their inter- 
mitochondrial  segregation should occur very fast because 
each mitochondrion is thought to have only a few mtDNA 
molecules. In this case, mitochondria  possessing either wt- 
or  A-mtDNA predominantly, and the ratio of  COX + to 
COX- mitochondria in a cell should be proportional to the 
ratio of wt- to A-mtDNA. 

Figure 5. Distribution of 
cytoplasmically transferred 
HeLa mtDNA in mitochon- 
dria of cybrids. A cybrid cell 
with both DAPI-stained mito- 
chondria (A) and EtBr-stained 
nuclei (B) was subsequently 
stained with R123 (C). Mi- 
tochondria of HeLa cells 
stained with DAPI were intro- 
duced into EtBr-stained p0 
Helm cells. 6 h after fusion, 
cybrid cells which had DAPI- 
stained mitochondria but not 
DAPI-stained nuclei (A) and 
had EtBr-stained nuclei (B) 
were screened under a fluo- 
rescence microscope using 
UV (365 nm) (A) and blue 
(495) excitation (B), respec- 
tively. The same cybrid cell 
was then stained with R123 
for 2 min to identify all mito- 
chondria in the cybrid cell 
(C). Note that on EtBr stain- 
ing only nucleolar regions of 
the nucleus were preferentially 
stained with EtBr (B). Bar, 
10 #m. 

Figure 6. Identification of COX activities in individual mitochon- 
dria by electron microscopy. (A) COX + mitochondria in HeLa 
cells; (B), COX- mitochondria in p- HeLa cybrids containing 
93 % A-mtDNA, observed in thin sections (0.07/~m) with a stan- 
dard electron microscope (at 100 kV); (C) COX + mitochondria in 
Helm cells observed in a thick section (2/zm) with a high-voltage 
electron microscope (at 1000 kV). COX + mitochondria (A) were 
darkly stained compared to COX- mitochondria (B). Thick sec- 
tions (2/~m) of Helm cells were used to confirm the continuous 
structure of mitochondria visualized by fluorescence microscopy 
(Fig. 2 A) at the ultrastructural level. These thick sections were 
examined using a high-voltage electron microscope. The long 
branched filamentous structures (C) are mitochondria as they 
showed COX activity. Bar, 1 t~m. 
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Figure 7. Proportions of 
COX + mitochondria in single 
ceils of subelones with differ- 
ent contents of A-mtDNA. 
He, HeLa cells; Cy, p- HeLa 
cybrid clone with 93% 
A-mtDNA; 1, 2, 3, 5, 9-12, 
subelones isolated from a 
HeLa eybrid clone with 62 % 
A-mtDNA. Bars are SDs of 
means for 10 samples. Vari- 
ous subdones containing 
48-72 % A-mtDNA were iso- 

lated by reeloning a HeLa cybrid clone with 62 % A-mtDNA, which 
had been established previously (Hayashi et al., 1991b) by fusion 
of po HeLa ceils (EB 8 cells) with enucleated skin fibroblasts de- 
rived from a patient with Kearns-Sayre syndrome. 

Eight subclones containing various proportions of A-mtDNA 
were isolated by reeloning a HeLa eybrid clone with 62 % 
A-mtDNA (Fig. 7 legend). The COX activities of individual 
mitochondria in a cell were analyzed immediately after 
recloning to minimize intercellular variations in the propor- 
tions of A-mtDNA among cells of the same subclone, and 
this activity was used as a probe to identify the distributions 
of wt- and A-mtDNA molecules in mitoehondria in single 
cells. The results summarized in Fig. 7 show that no COX + 
mitochondria were found in any subclones containing more 
than 60% A-mtDNA, whereas almost all mitochondria were 
COX + in all subelones with less than 60% A-mtDNA, sug- 
gesting that no intermitochondrial segregation of wt- and 
A-mtDNA molecules occurred. 

The uniform distribution of either COX + or COX- mito- 
chondria within single cells can be explained by sufficiently 
rapid diffusion of wt- and A-mtDNA molecules throughout 
the mitoehondria to overcome their intermitochondrial 
segregation. This is consistent with the observations of rapid 
mtDNA diffusion shown in Figs. 3 and 5. The rapid diffusion 
and the resultant homogeneous distribution of heteroplasmic 
wt- and A-mtDNA and/or transcripts may also be responsi- 
ble for the drastic overall shift from COX + to COX- mito- 
chondria in cells with about 60% A-mtDNA (Fig. 7). Proba- 
bly, the uniform distribution of five tRNAs, which are 
missing in A-mtDNA transcripts, enabled either their trans- 
lational complementation or competition between wt- and 
A-mtDNA in cells with less or more than 60 % A-mtDNA, 
respectively. 

Discussion 

The translational complementation of mitochondrial rRNA 
(Oliver and Wallace, 1982; Gillespie et al., 1986) and mito- 
chondrial tRNA (I-Iayashi et al., 1991b) observed in mam- 
malian cells suggested the mixing of heteroplasmic mtDNA 
within the same mitochondria, probably by mitochondrial 
fusion. The present study showed how such intermitochon- 
drial interactions occur in human cells by creating an envi- 
ronment suitable for interaction between mitochondria with 
and without mtDNA, and also between those with wt- and 
A-mtDNA. 

In this study we obtained unambiguous evidence that when 
living human cells are treated with a low concentration of 

EtBr for a short time the EtBr exclusively stains mtDNA and 
its transcripts. EtBr is known to be able to interact with pro- 
teins and other compounds besides DNA. Moreover, it can 
be taken up by mitochondria in accordance with the mem- 
brane potential, since it is a delocalized lopophilic cation like 
R123. However, the following evidence supports the idea that 
EtBr exclusively stains mitochondria with mtDNA in living 
human cells. We used p0 HeLa cells and p- HeLa eybrids: 
both totally lack mitochondrial protein synthesis (Fig. 2 B), 
but the latter cells do have mtDNA (Fig. 2 A). Both p0 
HeLa and p- HeLa mitochondria were stained with R123 
(Fig. 1 E and G), whereas the p- HeLa mitochondria were 
stained with EtBr (Fig. 1 F),  but the p0 HeLa mitochondria 
were not (Fig. 1 D). Since mitochondria without mtDNA 
were not stained with EtBr, the EtBr staining of mitochon- 
dria was not due to the interaction of EtBr with mitochon- 
drial compounds other than mtDNA and its transcripts. If 
EtBr was taken up by mitochondria simply in accordance 
with the membrane potential, and if the membrane potential 
in p0 HeLa mitochondria was not high enough to allow ac- 
cumulation of enough EtBr for its detection due to the ab- 
sence of mitochondrial protein synthesis, p- HeLa mito- 
chondria should also not be stained with EtBr, contrary to 
the results in Fig. 1 E Therefore, the possibility that EtBr 
was simply taken up by mitochondria in accordance with the 
membrane potential can also be ruled out by the fact that p- 
HeLa mitochondria were stained with EtBr although they 
completely lack mitoehondrial protein synthesis. 

There was a possibility that mtRNA but not mtDNA 
spreads rapidly to all the p0 HeLa mitoehondria in the ex- 
periments shown in Fig. 3, although EtBr preferentially 
binds to DNA rather than to RNA, and the contents of 
mtRNA in mitochondria are comparable to those of mtDNA 
(Attardi and Schatz, 1988; Cantatore and Saccone, 1987). 
However, this possibility was excluded by the results of 
mtDNA transfer experiments using the DNA-specific dye 
DAPI (Fig. 5). Moreover, since DAPI is not a delocalized 
lipophilic cation like R123 and EtBr, it can bypass membrane 
potential-dependent binding to mitochondria. Therefore, we 
conclude that mtDNA spread rapidly from HeLa mitochon- 
dria to all p0 HeLa mitochondria when HeLa mitochondria 
are introduced into p0 HeLa cells. 

Using EtBr and DAPI fluorescence, we found that the 
cytoplasmically transferred HeLa mitochondria fused with 
the host pO HeLa mitochondria, and HeLa mtDNA and its 
transcripts spread rapidly to all the pO HeLa mitochondria 
within 6 h (Figs. 3 and 5). This finding suggested that coex- 
isting wt- and A-mtDNA within a cell mix homogeneously 
throughout the mitochondrial population in a cell and do not 
remain segregated. However, it is well known that coexisting 
wt- and mutant mtDNA (Birky, 1983; Wallace, 1986) and 
coexisting mtDNA of different species (Hayashi et al., 1983) 
in a cell segregate in a stochastic way, and that during one 
year of cultivation each cell of the progeny cell population 
of single clones possesses either species of mtDNA predomi- 
nantly (Hayashi et al., 1983). Since cells do not exchange 
mtDNA, heteroplasmy would not appear again once cells be- 
come homoplasmic by stochastic segregation. If there were 
no exchange ofwt- and A-mtDNA between mitochondria, as 
in the case between cells, their "intermitochondrial ~ stochas- 
tic segregation should occur much faster than their "intercel- 
lular" stochastic segregation, because mitochondria are as- 
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sumed to have only a few mtDNA molecules, while ceils 
have thousands (Clayton, 1984; Attardi and Schatz, 1988). 
Therefore, in this case mitochondria possess either wt- or 
A-mtDNA predominantly, and the ratio of COX + and COX- 
mitochondria in a cell should be proportional to the ratio of 
wt- and A-mtDNA molecules. As predicted, however, the 
results in Fig. 7 show the uniform distribution of either 
COX + or COX- mitochondria within single cells, which 
can be explained by sufficiently rapid diffusion of wt- and 
A-mtDNA molecules throughout the mitochondria to over- 
come their intermitochondrial stochastic segregation. 

Accordingly, the results in Figs. 3 and 5 provide evidence 
for frequent mitochondrial fusion and subsequent rapid 
diffusion of mtDNA and its transcripts among all the mito- 
chondria in living cells. This rapid diffusion explains the 
complementation of mitochondrial rRNA observed in hetero- 
plasmic cells with chloramphenlcol-resistant and -sensitive 
mtDNA (Oliver and Wallace, 1982; Gillespie et al., 1986), 
and the observations that deletion mutants are dominant over 
wt-mtDNA in muscle fiber segments in which the mutations 
are predominant (Shoubridge et al., 1990). The results are 
not inconsistent with biochemical studies on mtDNA in 
mouse L cells (Berk and Clayton, 1976). Moreover, the ob- 
servations in Figs. 6 and 7 suggest that wt- and A-mtDNA 
molecules, or at least their transcripts diffuse rapidly enough 
to ensure their homogeneous distribution throughout the mi- 
tochondria in a cell. This means that mitochondria in a living 
human cell have lost their individuality, and thus function as 
a single dynamic unit. 

This functional concept is consistent with structural fea- 
tures of human mitochondria: on R123 staining, the mito- 
chondria of both HeLa cells and skin fibroblasts appear as 
long-filamentous and highly branched network structures 
(Fig. 1 B and H) although sometimes they may not be strictly 
single (Johnson et al., 1980; Posakony et al., 1975). 
Moreover, the structural continuity of mitochondria was also 
confirmed at the ultrastructural level in thick sections by 
high-voltage electron microscopy (Fig. 6 C), a method that 
shows their three-dimensional distribution much better than 
conventional electron microscopy (Fig. 6 A). The presence 
of a single mitochondrion per cell was first observed in a 
yeast strain (Hoffmann and Avers, 1973), but subsequent 
studies demonstrated that the number and morphology of 
mitochondria in yeast and mammalian ceils vary depending 
on the cell type and stage in the life cycle (Johnson et al., 
1980; Stevens, 1981; Miyakawa, 1984). Moreover, Posakony 
et al. (1975) showed that the number and morphology of mi- 
tochondria vary in HeLa cells. However, even if mitochon- 
dria in HeLa cells are not structurally single, rapid diffusion 
of mtDNA and/or its transcripts throughout the mitochon- 
dria in a cell should be structurally attainable assuming 
that the mitochondrial network frequently and repeatedly 
breaks off into fragments and reassembles into a continuous 
network, as suggested in the case of yeast mitochondria 
(Stevens, 1981; Miyakawa, 1984). 

Mammalian cells have been thought to contain hundreds 
of independent mitochondria. However, our observations 
provide the total different view that in living cells mitochon- 
dria and the mitochondrial genetic system have a fluid nature 
and function as a single dynamic cellular unit, indicating that 
they are virtually single in dividing ceils. These observations 
indicate the need for reassessment of the conventional, clas- 

sical concept of the vital organization of mitochondria, and 
introduce the new concepts of dynamics of the mitochondrial 
genetic system and of organelle biogenesis in living human 
cells. These concepts help in understanding the relationship 
between mtDNA mutations and expression of human mito- 
chondrial diseases (Holt et al., 1988; Zeviani et al., 1989; 
Gotoh et al., 1990; Lander and I.xxiish, 1990; Shoff-ner et 
al., 1990; Hess et al., 1991; Chomyn et al., 1992; Wallace, 
1992). 

Moreover, the swollen structure of mitochondria observed 
in p0 HeLa cells was not observed in all other human cells 
with normal mtDNA we tested including myoblast cells, but 
was always observed in various syn- human cells with 
pathogenic mtDNA mutations (J.-I. Hayashi, manuscript in 
preparation). Therefore, this structural abnormality of mito- 
chondria can be used as an indicator to determine whether 
mitochondria possess mtDNA with pathogenic mutations or 
with simple polymorphic mutations. 
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