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Abstract

Background

Malaria reduction and future elimination in China is made more difficult by the importation of

cases from neighboring endemic countries, particularly Myanmar, Laos, and Vietnam, and

increased travel to Africa by Chinese nationals. The increasing prevalence of artemisinin

resistant parasites across Southeast Asia highlights the importance of monitoring the para-

site importation into China. Artemisinin resistance in the Mekong region is associated with

variants of genes encoding the K13 kelch domain protein (pf13k), found in specific genetic

backgrounds, including certain alleles of genes encoding the chloroquine resistance trans-

porter (pfcrt) and multidrug resistance transporter PgH1 (pfmdr1).

Methods

In this study we investigated the prevalence of drug resistance markers in 72 P. falciparum

samples from uncomplicated malaria infections in Tengchong and Yingjiang, counties on

the Yunnan-Myanmar border. Variants of pf13k, pfcrt and pfmdr1 are described.

Results

Almost all parasites harboured chloroquine-resistant alleles of pfcrt, whereas pfmdr1 was

more diverse. Major mutations in the K13 propeller domain associated with artemisinin
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resistance in the Mekong region (C580Y, R539T and Y493H) were absent, but F446I and

two previously undescribed mutations (V603E and V454I) were identified. Protein structural

modelling was carried out in silico on each of these K13 variants, based on recently pub-

lished crystal structures for the K13 propeller domain. Whereas F446I was predicted to elicit

a moderate destabilisation of the propeller structure, the V603E substitution is likely to lead

to relatively high protein instability. We plotted these stability estimates, and those for all pre-

viously described variants, against published values for in vivo parasitaemia half-life, and

found that quadratic regression generates a useful predictive algorithm.

Conclusion

This study provides a baseline of P. falciparum resistance-associated mutations prevalent

at the China-Myanmar border. We also show that protein modelling can be used to generate

testable predictions as to the impact of pfk13 mutations on in vivo (and potentially in vitro)

artemisinin susceptibility.

Introduction

In China, the use of qinghao (Artemisia annua L.) for alleviating febrile illnesses has been

traced back to 168 BC, but it was not until the 1970’s that purified artemisinin was shown to

inhibit malaria parasites, especially in drug-resistant strains [1]. Artemisinin combination

therapy (ACT) is now used worldwide as the first line treatment for falciparum malaria. This

highly successful approach is now under threat as a significant delay in parasite clearance after

artemisinin monotherapy has become prevalent in the greater Mekong sub region (GMS), in

Southeast Asia [2, 3]. In a major breakthrough for surveillance and malaria control efforts,

mutations in the Pfk13 gene (PF3D7_1343700) have been identified to be strongly associated

with reduced susceptibility to artemisinin in the GMS, both in vitro and in the field [4]. Unlike

alleles associated with chloroquine (CQ)-resistance, which spread from Southeast Asia to

Africa in the 1970s, the markers associated with reduced susceptibility to artemisinin have not

been observed in sub-Saharan Africa. Several mutations were identified that can be useful for

surveillance, including three high-frequency allele changes (C580Y, R539T and Y493H) that

are strongly associated with extended parasite clearance times in vivo, and enhanced survival

after a pulse of 700nM dihydroartemisinin (DHA) in vitro [5]. In Myanmar and southern

China these variants of major concern are not found, and instead the F446I mutation domi-

nates; this is associated with a moderately prolonged parasite clearance half-life [6, 7] but not

with therapeutic failure after treatment with ACT [8]. Other genes may play a role in modulat-

ing artemisinin or partner drug susceptibility. Particular alleles of pfcrt and pfmdr1 are associ-

ated with artemisinin and ACT failure in the Mekong, but these variants have not been

evaluated on the Yunnan–Myanmar border [9, 10]. Specific alleles of pfcrt and pfmdr1 are also

known to be selected for by ACT treatment in Kenya and Uganda [11, 12].

The artemisinin drug family has a history of over three decades of use in China, first as

monotherapy, then combined with partner compounds. Integrated into the national malaria

surveillance-response system established in 2004, artemisinin has assisted the country to sig-

nificantly reduce malaria disease burden and is supporting the aim to reach elimination [13].

A major problem for malaria reduction in China is the importation of cases from other coun-

tries. This is particularly challenging for Yunnan, where locally-acquired malaria is nearing
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elimination, as the province shares borders with relatively high-burden malaria endemic coun-

tries including Myanmar, Laos, and Vietnam. The spread of artemisinin-resistant parasites

across Southeast Asia, and the presence of an endemic malaria transmission zone in Yunnan

renders very important the monitoring of Pfk13 alleles and other markers of drug resistance in

P. falciparum from malaria cases presenting in that region.

In this study we investigated the prevalence of polymorphisms in pfk13, pfcrt and pfmdr1 in

seventy-two P. falciparum isolates from individuals with uncomplicated malaria presenting

between 2012 to 2015 in Tengchong and Yingjiang, two counties at the Yunnan-Myanmar

border. We also explored the potential functional impact of the observed pfk13 variants by esti-

mating impacts on propeller domain stability predicted by structural modelling. These disrup-

tive effect estimates were in turn modelled against published data on parasitaemia half-life in
vivo for known variants, to develop predictive algorithms of the effects on parasite clearance

half-life for the six Pfk13 mutations identified in our sample set.

Materials and methods

Sample collection, PCR and DNA sequencing

Dried blood filter paper samples were collected from eighty outpatients, confirmed positive for

P. falciparum infection by microscopy at clinics in Tengchong and Yingjiang districts, Yun-

nan, China from 2012 to 2015. P. falciparum isolate DNA was extracted from the filter papers

using the Chelex100 method described elsewhere [14], with 72 (90%) samples providing suffi-

cient DNA for marker sequencing. These samples were characterized for Pfk13 and pfmdr1
mutations using nested PCR amplification and capillary sequencing [11], as well as for pfcrt
codons (72–76) using probe-based qPCR as previously described [15, 16]. The K13-propeller

gene fragment (coordinates 1726169–1726997 on chromosome 13; gene ID PF3D7_1343700)

was amplified by nested PCR using standard primers [5] as previously described [17]. The

sequence of amplified DNA products was determined using ABI PRISM 3730 Genetic Analy-

ser (Applied Biosystems, UK). Chromas software (Technelysium, Australia) was used to ana-

lyse the sequence results. The sequence data were complemented by SNPs characterized from

other populations (18 countries, n = 2,000), which have been described previously [18, 19],

using an established bioinformatics pipeline [20, 21]. For ease of interpretation, the samples

were grouped into geographical regions. In addition, two recent studies with pfk13 mutation

data for Chinese samples were used for comparisons ([22], n = 329; [5], n = 2).

Protein structural modelling

The effects of mutations identified in pfk13, were estimated by assessing the effects of the resi-

due substitution on a 3-dimensional protein structure. The Delta-delta Gibbs energy value

(ΔΔG, kcal.mol-1) of folding was calculated assuming the wild type has a ΔΔG of zero and that

variant K13 sequences have destabilising negative (-ΔΔG) or stabilizing positive (+ΔΔG) val-

ues. The analysis was carried out on the computation suites DUET [23] and SDM2 [24], and

used the unlinked (4YY8b) and S-S linked (4ZGCa) unaltered crystal structures of K13 directly

downloaded by DUET and SDM2 from the RCSB database [25, 26]. Using post-dosing parasi-

taemia median half-life data from at least 24 patients for each gene variant [5, 22, 27], we fitted

a regression model with the “resistance” outcome against the ΔΔG values for the present muta-

tions. This model allowed predictions of in vivo clearance half-life from the disruptive –ΔΔG

values calculated. Predictions of in vivo parasite clearance half-life for K13 variants mapped

onto either the 4YY8b or 4ZGCa structures were obtained by inclusion of ΔΔG values as a lin-

ear or quadratic effect in the regression model. The goodness of fit was determined by
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estimating the Robust Standard Deviation of the Residuals (RSDR). The GraphPad Prism and

the R statistical packages were used to analyse the results.

Ethical considerations

The study was reviewed and approved by the ethical review committees of the National Insti-

tute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (China CDC),

and of the WHO Western Pacific Regional Office. Informed written consent was obtained

from adult patients and guardians of minor patients.

Results

Pfcrt and pfmdr1 genes

A total of 72 uncomplicated P. falciparum infected samples were collected from Yingjiang and

Tengchong Counties, Yunnan Province, and the provincial Parasitic Disease Institute from

2012 to 2015 (S1 Table). The patients were residents in Yunnan and acquired P. falciparum
infection locally (n = 8), regionally (Myanmar; n = 53) or overseas (Africa; n = 11). Sixty-six

isolates were sequenced successfully for pfcrt and 32 isolates for pfmdr1. Pfcrt CQ-resistant

haplotypes (CVIET or SVMNT at codons 72–76) were observed in 100%, 98% and 36.6% of

the parasites from China, Myanmar and Africa, respectively, consistent with recent reported

patterns [18]. Thus the majority of P. falciparum infections were predicted to be chloroquine

and/or amodiaquine resistant (62/69, 89.9%). Five of the cases harbouring the CQ-sensitive

pfcrt haplotype CVMNK included 4 “self-reported” from Africa (Cameroon, Chad, Mali, and

Nigeria), and one from Myanmar. In four patients we detected multiple pfcrt genotypes with

both CVMNK and CVIET haplotypes occurring together (Mali, Nigeria and Cameroon). The

CVIET haplotype was the most frequent allele in our study, consistent with multiple popula-

tions in Southeast Asia and Africa (Table 1). The SVMNT haplotype was only present in

Myanmar in years 2014 and 2015 (Table 1).

Six point mutations in pfmdr1 were identified across 16 of 32 samples sequenced. These

chloroquine-resistance associated mutations included the known N86Y (n = 3), Y184F (n =

10) and S1034I (n = 1) and the novel D90H (n = 2), V104A (n = 1) and F1226Y (n = 3)

observed in both local and imported cases. The Y184F mutation was the most frequent

(31.4%) and was found in indigenous, Myanmar and African sourced infections. This observa-

tion is consistent with its observed high frequency in Southeast Asian and African populations

(Table 1). Double mutants were also detected in 4 isolates, including N86Y\D90H (n = 2,

Myanmar and indigenous), N86Y\Y184F (n = 1, Myanmar) and V104A\Y184F (n = 1, Mali).

Whilst, N86Y has been observed more often in African populations, it has been seen in low fre-

quency in Southeast Asia (Table 1). The V104A (Mali) and S1034I (Myanmar) mutations

were only detected in single cases, and unobserved in the larger dataset (Table 1). There are

two samples with both pfcrt K76T and pfmdr1 N86Y mutations.

Pfk13 gene

Pfk13 mutations were detected in half the samples (38/72), with 6 different nonsynonymous

mutations characterized (Table 2). These mutations included the previously reported F446I

(n = 28, 38.9%), P574L (n = 3), A676D (n = 3) and Y541H (n = 1), and two novel mutations

V603E (n = 1) and V454I (n = 1) (Table 1, Fig 1). The F446I mutation occurred at the highest

frequency (39.6% Myanmar, 18.2% Africa (possible Asian acquisition), 62.5% China) and was

the only K13 propeller domain mutation observed in individuals who recently came back from

Africa. This mutation has been observed across Thailand-Myanmar-China frontier (~20.2%)
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[5], and in a Southern Chinese population (44.0%) [22], but not in Cambodia-Vietnam-Lao

PDR [5] and other Southeast Asian or African populations (Fig 1). Interestingly, none of the

individuals harbouring the pfk13 F446I mutation in Myanmar or China also harboured the

Table 1. Mutations in Pfcrt and Pfmdr1.

Gene Resistance

Mutation /

haplotype

Freq.��� Source�� Observed elsewhere�

crt CVMNK 0.15 Myanmar, Africa Bangladesh (7%), Burkina Faso (41%), Cambodia Northeast (3.7%), DRC (25%), Gambia (27%), Ghana

(70%), Guinea (25%), Kenya (60%), Laos (10%), Mali (26%), Malawi (100%), Tanzania (22%), Vietnam

(6%)

CVIET 0.95 Myanmar, Africa,

China

Bangladesh (93%), Burkina Faso (56%), Cambodia North (70%), Cambodia Northeast (55%), Cambodia

West (95%), Colombia (6%), DRC (77%), Gambia (73%), Ghana (29%), Guinea (74%), Kenya (35%), Laos

(60%), Mali (63%), Myanmar Central (100%), Myanmar South (100%), Nigeria (100%), Peru (42%),

Tanzania (72%), Thailand East (94%), Thailand South (100%), Thailand West (99%), Vietnam (60%)

SVMNT 0.08 Myanmar Peru (57%), PNG (100%)

mdr1 N86Y 0.15 Myanmar, Africa Bangladesh (25%), Burkina Faso (36%), Cambodia West (0.5%), DRC (53%), Gambia (27%), Ghana (25%),

Guinea (46%), Kenya (53%), Mali (45%), Malawi (3%), Nigeria (25%), Peru (14%), PNG (90%), Tanzania

(66%), Thailand South (5%), Vietnam (0.5%)

D90H 0.05 China -

V104A 0.05 Africa -

Y184F 0.50 Myanmar, Africa,

China

Bangladesh(18%), Burkina Faso (77%), Cambodia North(40%), Cambodia Northeast (4.7%), Cambodia

West (81%), Colombia (100%), DRC (51%), Gambia (69%), Ghana (76%), Guinea (68%), Kenya (13%),

Laos (3%), Mali (74%), Malawi (60%), Myanmar Central (39%), Myanmar South (40%), Nigeria (75%),

Peru (86%), PNG (9%), Tanzania (38%), Thailand East (88%), Thailand South (50%), Thailand West (15%),

Vietnam (27%)

S1034I 0.05 Myanmar West Thailand (0.6%)

F1226Y 0.15 Myanmar, China West Thailand (60%), Myanmar South (28.9%), Myanmar Central (24.5%), Vietnam (7.4%), Cambodia

North (3%), Cambodia Northeast (3.7%), Cambodia West (0.3%), Laos (0.3%)

� From [18]

�� participant self-reported; DRC Democratic Republic of Congo

��� there are mixed infections, leading to the total crt haplotype frequencies being >1

https://doi.org/10.1371/journal.pone.0213686.t001

Table 2. Mutations identified in PF3D7_1343700.

Codon K13

Propeller

Blade

DUET

ΔΔG

4YY8b/

4ZGCa

SDM2

ΔΔG

4YY8b/

4ZGCa

Mut.

Freq.

Our study

Source���
Observed elsewhere��

F446I I -1.51/-1.30 0.23/0.23 0.375 Myanmar, China,

Africa

Myanmar Central (6.1%), Thailand West (1.2%); Thailand-Myanmar-China

(20.2%) �

V454I I 0.001/-0.08 -0.03/-0.03 0.014 Myanmar -

Y541H III -2.18/-2.25 -1.42/-1.46 0.014 China -

P574L III-IV -0.52/-0.45 -0.58/-0.58 0.042 Myanmar Myanmar South (11.1%), Thailand South (16.6%), Vietnam (1.0%); Thailand-

Myanmar-China (3.1%) �

V603E IV -2.81/-2.66 -1.62/-1.62 0.014 Myanmar -

A676D VI -0.85/-0.95 -0.22/-0.82 0.042 Myanmar, China Guinea (2.1%)

ΔΔG = Delta-delta Gibbs energy, where highly negative values result in protein instability

�� data from [18]

unless

� = [5]

��� participant self-reported; note, the common C580Y, R539T, Y493H, and I543T mutations were not present in our samples.

https://doi.org/10.1371/journal.pone.0213686.t002
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SVMNT pfcrt haplotype, but rather carried the CVIET genotype. The observed presence of the

P574L K13 variant at low frequency is supported by observations from other studies involving

Chinese populations ([5, 22]; Fig 1). We identified the A676D mutation in Myanmar and

China, the first reports in Southeast Asia, although this variant was previously described in a

Guinean population (Table 2). The two novel mutations (V603E, V454I) detected here each

occurred in only one sample (China or Myanmar), and no previous reports of either were

Fig 1. Frequency of PfK13 mutations�. � (number resistance / number of samples in brackets), all data from [18], except our study and South China [22];

DRC Democratic Republic of Congo.

https://doi.org/10.1371/journal.pone.0213686.g001
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found in the literature. The artemisinin susceptibility-associated C580Y, R539T, Y493H and

I543T variants found in Cambodia-Vietnam-Lao PDR [5, 27] and other populations in the

Mekong region, were absent in our data; an observation consistent with other studies in South-

ern China and bordering Myanmar (Fig 1). The absence of P553L, a mutation previously

found in Chinese populations, was not unexpected as its frequency has been reported as low

(<1%) [22]. Similarly, N458Y and R561H mutations found in Thailand-Myanmar-China

(both ~2% frequency; [5]) were not detected among our samples.

Protein structural modelling

To explore the effects of the observed mutations, including V603E and V454I, we estimated

the protein stability ΔΔG based on alignments for both the 4YY8b and di-sulphide linked

4ZGCa crystal structures (Fig 2; [25, 26]; S1 Fig) using the DUET and SDM2 servers (S2

Table). A quadratic model of the relationship between ΔΔG value and observed drug half-life

(in hours) is presented (S2 Fig). Most of the important residue changes which impact on the

Fig 2. Sequence alignment for the Pfk13 propeller using 4YY8b and S-S 4ZGCa models. Alignment of the 6 Kelch propeller blades of K13 as predicted by in
silico modelling (structures RCSB 4YY8b and 4ZGCa with a Cys532-Cys580 link; [25, 26]); inter-blade residue similarities are emphasised in bold. Each of the

β-strands in each blade is underlined and presented in order of the sequence. After the 6th blade, the terminal β-strand 1a binds at the start to complete the

propeller structure before β-strand 1b. The characteristic kelch markers L-W, Y-W, Y-W, Y-W, Y-W and F-W occur in each blade and each span 6 intervening

residues. Individual residue replacements are seen in bold above each blade. Ten variant residues depicted in red were seen to promote the Cys 532-Cys 580

link in 4YY8b and prevent it in 4ZGCa, when tested using the SDM (2011) suite. In Cys-Cys–linked 4ZGCa the illustrated β-strand includes the brown-

underlined residues, and excludes the blue-underlined residues. In all predicted structures, the basic Arg or Lys residues in position 2 of each row contribute

their protonated side chain N atom(s) to form a ring of charge around the lower entrance of the propeller channel. Each of the 2 mutations V454I and V603E is

underlined by a triangular blue marker.

https://doi.org/10.1371/journal.pone.0213686.g002

Artemisinin resistance-associated markers in Plasmodium falciparum parasites from the China-Myanmar border

PLOS ONE | https://doi.org/10.1371/journal.pone.0213686 March 18, 2019 7 / 13

https://doi.org/10.1371/journal.pone.0213686.g002
https://doi.org/10.1371/journal.pone.0213686


parasitaemia half-life in patients are seen in the β-strands of the Pfk13 propeller structure (S2

Table), and this is not unexpected in view of the rather important role of β-strand to β-strand

H-bonding in the rigidity of the propeller. There are, however residue changes from wild type

which are located in loops between the β-strands, such as the A578S variant.

We considered parasitaemia half-life predictions based on mutations identified in our

study. The V454I loop mutation between β-strands 1b and 1c had only a small protein disrup-

tion effect on (DUET ΔΔG: 4YY8 0.001; 4ZGC -0.08), and the predicted half-life (4YY8 3.36;

4ZGC 3.99 hours) was close to the observed wild-type (median 3.32; China only 3.17 hours).

However, the inter- β-strand loop P574L polymorphism shows greater disruption (ΔΔG:

4YY8–0.52; 4ZGC -0.45), with predicted half-lives of 4.89 and 5.19 (median of 5.17 hours was

observed for the 7 patients). The importance of this loop disruption is emphasised by the fact

that the residue following P574 is positively-charged Arg575, which together with 5 other basic

residues, Arg622, Lys670, Arg716, Lys480 and Arg528 forms a structural ring around the inner

channel of the propeller, important in stabilizing the whole structure. The apparently novel

V603E and known Y541H mutations are expected to cause more disruptive effects on protein

structure (DUET: ΔΔG< -2.25), leading to a prolongation of the predicted in vivo parasite

half-life (>7.5 hours), greater than the estimates for the highly frequent F446I mutation

(median half-life 5.89; DUET predicted < 7.15). A676D has an intermediate disruptive effect

(DUET ΔΔG = -0.85, -0.95) and half-life (5.67, 6.48) (S2 Fig), similar to known C580Y and

R539T effects in other populations. In field studies, an observed post-artemisinin parasite

clearance half-life greater than 5 hours is considered to be an indicator of resistance [27]. The

SDM2 modelling results were broadly similar to those from DUET (Table 2; S2 Table; S2

Fig). However, there were two notable discrepancies (R539T, F446I), which SDM2 predicted

were stabilising mutations (ΔΔG values>0) and led to additional quadratic estimation (S2

Fig). Although the resulting clearance half-lives were similar to those from DUET, this situa-

tion highlights that there is further scope for improvement in stability estimation from protein

structural models, and more broadly, that any results should be validated using phenotypic

assays and larger sample collections.

Discussion

The objective to eliminate malaria in the China-Myanmar border region is threatened by the

emergence of artemisinin resistance [28]. Knowledge of mutations in the k13-propeller (Pfk13)
gene associated with slow clearance of artemisinin derivatives, provides the ability to track and

prevent spread, and assess the effectiveness of control measures. Here we examined 72 P. falcip-
arum malaria infected patients, all Chinese residents, living in Yunnan, with known recent

travel history. Chloroquine was withdrawn as a treatment in the China-Myanmar border area

almost four decades ago [29, 30]. However, nearly all parasite strains from this region still retain

resistant forms of pfcrt, with no evidence of recovery of sensitivity to chloroquine, as previously

reported in other countries [31, 32]. For pfcrt 72–76 codons, the “CVIET” resistance haplotype

is dominant, occupying 85.5%. We also investigated the presence of mutation in the Pfmdr1
gene that has been implicated in modulating the response to artemisinin and ACT [11, 12, 33,

34]. The amino-acid mutations N86Y and Y184F are the most common reported mutations

identified worldwide and were also detected in this study in Asian and African parasites. Three

novel pfmdr1 mutations were also detected at low frequency (D90H, V104A and F1226Y).

Six mutations in the Pfk13 gene were identified, including F446I and P574L, which are

known border-regional surveillance markers [13]. The F446I mutation has the highest fre-

quency, which is consistent with previous reports [35, 36]. Surprisingly, two cases apparently

imported from Cameroon and Nigeria were detected with the F446I mutation. This mutation
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was not thought to be present in sub-Saharan Africa [37], and local acquisition cannot be

ruled out in these patients. The phenotype of F446I and P574L variants remains to be estab-

lished, but our modelling predicts that the former has disruptive effects on the protein and

would potentially lead to slower clearance of parasites. Interestingly, F446I has never previ-

ously been found in parasites harbouring the SVMNT haplotype in pfcrt, and in the available

global collection the F446I is always found in parasites of the CVIET genotype. This is an

important observation, as the SVMNT haplotype was previously very common throughout the

Mekong region, but all K13-mediated artemisinin resistance cases described to date have

occurred in the presence of the CVIET haplotype of pfcrt, accompanied by specific variants of

pfcrt that are newly emerging under ACT pressure, particularly that of the partner drug pipera-

quine [10]. Any interaction among these loci should be explored in larger prospectively col-

lected datasets.

Other known border region K13 variants, such as N458Y and R561H, as well as others prev-

alent in regions further east (C580Y, R539T, Y493H, I543T) were not detected in this study.

Two of the polymorphisms identified here at low frequency, V603E and V454I, are apparently

novel. V454I has minimal predicted effects on the protein structure, being close to wild-type

estimates. However, V603E is expected to be highly disruptive of propeller domain stability,

leading to a predicted parasite clearance half-life greater than that of C580Y, R539T, and

Y493H, and close to I543T. It is very likely however, that the greater degrees of protein disrup-

tion (-) or stabilization (+) will start to affect parasite fitness as ΔΔG values decline below –2.0

or rise to above 2.0. Phenotypic studies of parasites carrying these variants would be most

instructive. In all predicted structures, we note a “ring” of positively charged side-chains at the

lower entrance of the propeller channel (Fig 2). An orthologous set of six residues in the

human kelch propeller domain protein Keap1 bind with high-affinity negatively-charged resi-

dues in the N-terminal portion NEH2 of the oxidative-stress regulatory peptide Nrf2 before its

ubiquitination and final destruction by the proteome [38]. In spite of the likely distinct func-

tion of the plasmodial propeller protein these important features are still retained. Interestingly

there is, among P. falciparum genomic products a WD40 repeat protein, Pf 3D7 W7K5T2,

which retains practically the full sequence for the human NRF2 high-affinity site for Kelch 1

propeller (see Clustal alignment in S1 Fig).

The case of the A578S K13 variant is particularly interesting as, according to the –ΔΔG

value, it is predicted to have a large disruptive effect, and has been associated with slow parasite

clearance in a small group of Ugandan malaria patients [39] but not in a single Kenyan patient

[17]. Further, this variant did not reduce susceptibility of the CQ-resistant line Dd2 in vitro,

following gene-edited residue change [5]. As A578S is most prevalent in Africa, where para-

sites are more likely to carry wild-type pfcrt, genetic background may be an important consid-

eration when trying to harmonise findings from these different studies, and more extensive

work is needed to determine the true impact of this K13 variant.

There are some potential limitations to our work. First, we did not consider all relevant

resistance markers, but future surveillance work will assess plasmepsin 2 and pfmdr1 gene copy

number, and sequence variants of pfap2mu and pfubp1 in our study area. Second, the sample

size is small, but the frequencies of the observed mutations are in keeping with elsewhere, and

our study provides a baseline for ongoing surveillance. Third, there is some uncertainty in the

protein structural modelling, but across the models and software tools implemented, the

results are similar. It is helpful that we have been able to use the original crystal structures sub-

mitted to the RCSB database [25, 26]. Fourth, it is possible that the relationship between the

disruptive effects of mutations and parasitemia half-life (surrogate for parasite clearance) may

be confounded by host genetics, including the patient G6PD and haemoglobin variants (e.g.

HbE) in South East Asia, which varies in different regions [40], as well as underlying pfcrt and
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pfmdr1 genotypes. The quadratic relationship fits the observed clearance data and provides a

starting point for inferring the effects of novel Pfk13 mutations. As more data become available

this model will improve.

Overall, our approach provides additional detail of P. falciparum resistance gene mutations

in the China-Myanmar region, thereby assisting elimination efforts. We also utilise a novel

modelling framework to make predictions as to the effects of uncharacterised “resistance”

mutations on the ability of artemisinin-derived drugs to rapidly clear parasites, increasing the

utility of DNA sequence data for inference of phenotype in settings where patient follow-up or

ex vivo parasite culture is not possible.

Conclusions

Malaria control and prevention in the China-Myanmar region has focused on case-based

interventions. This region has unique characteristics in part due to drug use history, geography

and movement of migrants. Our work has shown the utility of genetics in identifying resis-

tance gene variants in a surveillance setting, and provided further evidence of parasite poly-

morphisms associated with slow clearance of P. falciparum after artemisinin derivative

treatment, which can inform current malaria elimination efforts.
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