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Human breast cancer is the leading cause of cancer death in women from Western societies, and a large study of the epidemiology
demonstrated strong associations between human prolactin and risk of breast cancer. Using established models of apoptosis of
human breast cancer cell lines, we assessed the role of prolactin in breast cancer cell growth and survival. We showed that prolactin
had no effect on the metabolic activity or total cell number of any cell lines. We confirmed endogenous prolactin production by these
cells and that the levels varied. In the presence of a prolactin-neutralising antibody, each of the cell lines responded with the induction
of apoptosis as opposed to growth inhibition. The sensitivity of the cell lines to the physiological inducer of apoptosis, C2-ceramide,
appeared relative to the levels of endogenous prolactin that they contained. We then showed that exogenously added prolactin
acted as a potent survival factor against apoptosis in all the cell lines examined. In addition, we demonstrated that a prolactin-
neutralising antibody in combination with C2-ceramide caused an anticipated, additive increase in cell death. This study demonstrated
that prolactin protects human breast cancer cell lines against apoptosis and this may have important implications for cancer treatment.
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Prolactin is a 23 kDa peptide hormone released from the lactotroph
cell populations of the anterior pituitary gland. Prolactin has a well
established role in stimulating breast growth and differentiation in
puberty as well as lactation during pregnancy (Binart et al, 2000).
Prolactin binds with its cell-surface receptor, which dimerises on
prolactin binding triggering intracellular signalling (Goffin and
Kelly, 1997). A hormone such as prolactin, whose normal action is
to promote cell proliferation and differentiation, was soon
identified as a potential candidate for the progression of breast
cancer, where cells are proliferating and surviving inappropriately
(Clevenger et al, 2003).

Indeed, the role of prolactin in rodent mammary cancer soon
became clear. Transgenic female mice overexpressing the rat
prolactin gene spontaneously developed mammary carcinomas
(Rose-Hellekant et al, 2003). Conversely, drug-induced hypopro-
lactinaemia retarded tumour growth (Welsch et al, 1979).

Studies of the epidemiology have found that high serum
prolactin levels were associated with known breast cancer risk
factors such as parity status and mammographic breast density
(Wang, 1988; Ingram et al, 1990). In addition, a prospective
epidemiological study by Hankinson et al found strong evidence
indicating that high serum prolactin levels were a risk factor for
breast cancer in postmenopausal women (Hankinson et al, 1999).

In the human, clinical trials were undertaken with the aim of
reducing serum prolactin levels using dopamine agonists such as
bromocriptine (in vivo, dopamine inhibits prolactin release from
the anterior pituitary gland). Although circulating prolactin levels
were dramatically reduced, no therapeutic benefit in the breast

cancer patients was seen (Bonneterre et al, 1988; Anderson et al,
1993). The failure of these clinical trials resulted in a diminished
interest in prolactin as a therapeutic target in human breast
cancer.

However, studies began to accumulate indicating that patients
with surgical ablation of the anterior pituitary gland still had
detectable levels of prolactin (Lachelin et al, 1977), which
suggested the existence of extrapituitary sites of prolactin
production. Indeed, several laboratories have since demonstrated
the synthesis of prolactin in breast cancer cells and normal breast
tissue, raising the possibility that prolactin may act in an
autocrine/paracrine manner within the mammary gland (Fields
et al, 1993). mRNA for prolactin and its receptor has been found in
normal breast tissues and in primary human breast cancers; while
both receptor mRNA and protein are expressed in nearly all
human breast cancers, they are not generally overexpressed
(Mertani et al, 1998) (Reynolds et al, 1997). Overexpression of
the receptor mRNA has been demonstrated in some breast cancer
cell lines (Peirce and Chen, 2001). Recent studies showing
inhibition of cell growth and survival of breast cancer cells in
the presence of prolactin blocking antibodies and receptor
antagonists also support an autocrine/paracrine loop of
locally produced prolactin (Ginsburg and Vonderhaar, 1995;
Ramamoorthy et al, 2001). These data provide an explanation
for the failure of the dopamine agonist trials, since lowering
prolactin release from the pituitary gland would have had no effect
on the proliferation of breast cancer cells initiated by a local source
of prolactin.

Administration of most chemotherapeutic agents, including
those used for treatment of breast cancer, eventually leads to the
onset of programmed cell death or apoptosis. The actions of these
anticancer drugs on apoptosis are primarily mediated by the
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induction of endogenous ceramide (Ogretmen and Hannun, 2001).
It is clear that ceramide plays an important role in the response of
cancer cells to chemotherapeutic drugs. We have previously
established inducible models of apoptosis in breast cancer
epithelial cell lines using an analogue of ceramide, C2-ceramide,
as a trigger of cell death (Gill et al, 1997; Perks et al, 1999). The
aims of this study were to use these models to assess the role of
prolactin in breast cancer cell growth and survival with a view to
increasing our understanding of its obvious potential as a
therapeutic target.

MATERIALS AND METHODS

Materials

Prolactin peptide was purchased from the National Hormone and
Peptide Programme (Dr AF Parlow) and prolactin peptide purified
from human pituitary glands was bought from Sigma, Poole,
Dorset, UK. These two sources of prolactin peptide were compared
and found to be equally potent. IGF-I peptide was purchased from
GroPep Ltd, Adelaide, Australia. C2-ceramide and EGF peptide
were purchased from Calbiochem, Nottingham, UK. The prolactin
monoclonal antibody was bought from QED Bioscience Inc., San
Diego, CA, USA and the control mouse IgG antibody was obtained
from DAKO, Denmark. All other materials were obtained from
Sigma Poole, Dorset, UK.

Cell culture

Human breast cancer cell lines MDA-MB-231 (EGF responsive,
IGF-I nonresponsive), T47D (EGF responsive, IGF-I nonrespon-
sive), MCF-7 (IGF-I responsive, EGF nonresponsive) and Hs578T
(IGF-I nonresponsive, EGF responsive) cells were purchased from
the American Type Culture Collection (ATCC) and grown in a
humidified 5% CO2 atmosphere at 371C. MDA-MB-231, T47D,
MCF-7 and Hs578T cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% foetal calf
serum, penicillin (50 IU ml�1), streptomycin (50 mg ml�1) and L-
glutamine (2 mM) growth media (GM). Experiments for all cell
lines were performed in phenol red- and serum-free HEPES
DMEM and Ham’s nutrient mix F-12 (SFM) with sodium
bicarbonate (0.12%), bovine serum albumin (0.2 mg ml�1), trans-
ferrin (0.01 mg ml�1) and supplemented with antibiotics as before
(SFM).

Dosing protocol

Cells were grown in GM for 24 h before switching to SFM for a
further 24 h, prior to dosing for a further (a) 48 h with either
prolactin (0– 100 ng ml�1), IGF-I (20 ng ml�1) or EGF (0–
100 ng ml�1) and (b) 24 h with either a prolactin blocking antibody
(100 ng ml�1), a control mouse IgG (100 ng ml�1), prolactin (0–
100 ng ml�1) or C2-ceramide (0–50 mM) alone. Cells were also
treated with an apoptotic dose of C2-ceramide in combination with
either a prolactin blocking antibody (100 ng ml�1), a control
mouse IgG (100 ng ml�1) or with prolactin (100 ng ml�1). The dose
of C2-ceramide was chosen to achieve approximately 50% cell
death, which varied from 20– 50mM depending upon cell type and
passage. We have shown previously that C2-ceramide induces
apoptosis in all of the above cell lines and that levels of cell death
measured by Trypan blue cell counting correlate with levels of
apoptotic cells measured by flow cytometry in these models (Gill
et al, 1997; Perks et al, 1999).

Trypan blue dye exclusion

Aliquots of cell suspension were loaded onto a haemocytometer
(1 : 1) with Trypan blue dye. Viable cells exclude the dye.

Both living and dead cells were counted (total cell number) from
which the percentage of dead cells relative to control was
calculated.

3-(4,5-Dimethylthiazol-2-yl-2,5-diphenylterazolium
bromide) (MTT) Assay

Cells were seeded at 2.5� 104 ml�1 (150ml GM) in 96-well plates
and were allowed to grow for 24 h. Growth medium was replaced
with SFM 24 h before dosing. 3-(4,5-Dimethylthiazol-2-yl-2,5-
diphenylterazolium bromide reagent (7.5 mg ml�1) in phosphate-
buffered saline was added to the cells (10 ml well�1) and the
cultures were incubated for 30 min at 371C. The reaction was
stopped by the addition of acidified triton buffer (0.1 M HCl, 10%
(v v�1) Triton X-100; 50 ml well�1); tetrazolium crystals were
dissolved by mixing on a Titertek plate shaker for 20 min at room
temperature. The samples were measured on a Bio-Rad 450 plate
reader at test wavelength of 595 nm and a reference wavelength of
650 nm.

Western immunoblotting

Cells (1� 106) were grown to 70% confluency in GM, which
was replaced with SFM for 24 h. Cells were then lysed on ice for
10 min (1 ml; 10 mM Tris-HCl, 5 mM EDTA, 50 mM NaCl, 30 mM

Na pyrophosphate, 50 mM sodium fluoride, 100mM sodium
orthovanadate, 1% Triton, 1 mM phenylmethylsulphonyl
fluoride; pH 7.6). Normalised amounts of proteins were loaded
and separated by 12.5% sodium dodecyl sulphate –polyacrylamide
gel electrophoresis and then transferred onto a nylon
membrane. Nonspecific binding sites were blocked (5%
milk in TBST) and the membrane was then probed with
antiprolactin (1 mg ml�1) overnight. Following the removal of
excess unbound antibody, an anti-mouse antibody conjugated to
peroxidase (1 : 2000) was added for 1 h. Binding of the peroxidase
was visualised by enhanced chemiluminescence according
to the manufacturer’s instructions. Optical density measurements
were determined using a scanning densitometer (Biorad, Hemel
Hempstead, UK) and analysed using Molecular Analyst soft-
ware (Biorad, Hemel Hempstead, UK). The protein content of
each sample was determined using a BCA Protein Assay Reagent
Kit.

Statistical analysis

The data were analysed using the Microsoft Excel 97 version 4.0
software package. Significant effects were determined using
ANOVA followed by Student’s t-test. A statistically significant
difference was considered to be present at Po0.05.

RESULTS

Effects of prolactin on the proliferation of breast cancer
cells

Prolactin (1–200 ng ml�1) had no effect on the metabolic activity
of T47D cells (Figure 1A) over a 48 h period. Similar dose
responses were performed in the MCF-7 and Hs578T cell lines and
no effects on metabolic activity were observed (data not shown).
Using prolactin at 100 ng ml�1, we then confirmed in each of the
above cell lines that there was no significant increase in total cell
number (Figure 1B). Despite observing no effect of prolactin on
cell proliferation, we did observe increases in cell growth in these
cell lines (ranging from 1.4- to two-fold) over 48 h with either EGF
or IGF-I (Figure 1C).
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Endogenous prolactin production correlates to sensitivity
to apoptosis

It has been conclusively demonstrated that human normal breast
and breast cancer cell lines produce their own prolactin (Clevenger
et al, 1995; Ginsburg and Vonderhaar, 1995). We confirmed that
prolactin was present in the T47D, MCF-7, MDA-MB-231 and
Hs578T breast cancer cell lines. The prolactin found in the cell
lysates ran at a slightly higher molecular weight than the prolactin
peptide used as a positive control. This could be due to prolactin
post-translational modifications such as glycosylation or phos-
phorylation (Sinha, 1995; Bollengier et al, 2001; Gobello et al,
2001). The prolactin levels varied accordingly: highest in T47-D4

MDA-MB-2314 MCF-744 lowest in Hs578T (Figure 2A). Using
the cell line with either the highest (T47-D) or lowest (Hs578T)
level of prolactin, we examined the sensitivity (in terms of changes
in metabolic activity) to the apoptotic trigger C2-ceramide. In
response to C2-ceramide, we found that the T47-D cells were the
least sensitive and the Hs578T cells were the most sensitive, and
this appeared to correlate with their relative levels of endogenous
prolactin (Figures 2B and C). For example, at 25 mM C2-ceramide,
there was only a 23.7% decrease in metabolic activity in the T47D
cells in comparison to a 52.5% decrease in the Hs578T cells. We
also performed Western immunoblotting with the U5 prolactin
receptor from Alexis Biochemicals, Nottingham, UK, and found
that all the cell lines possessed the 40 kDa short form of the
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Figure 1 Effects of prolactin on the proliferation of breast cancer cells. Effects of prolactin (0–200 ng ml�1) for 48 h on (A) metabolic activity of T47D
human breast cancer cells and (B) total cell counts in T47D, MCF-7 and Hs578T human breast cancer cells. (C) Total cell counts after treatment for 48 h
with EGF (1 and 100 ng ml�1) in Hs578T and T47D cells, respectively, and of IGF-I (20 ng ml�1) in MCF-7 cells. Graphs show experiments performed in
triplicate, which are repeated at least three times.
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receptor but to different degrees (Arbitrary OD units: MDA-MB-
231¼ 6.3; T47D¼ 3.5; MCF-7¼ 2.8; Hs578T¼ 2.1). The relative
levels of prolactin produced followed a similar order.

Effects of a prolactin blocking antibody on apoptosis

In the presence of a prolactin blocking antibody, there was a
significant increase in cell death from 2.8 to 14.3% in the MCF-7
cells (Po0.001) (Figure 3A) and from 5.7 to 14.5% in the T47D
cells (Po0.05) (Figure 3B). Since there were negligible levels of
endogenous prolactin in the Hs578T, as we anticipated there was
no significant difference in the levels of cell death in the presence
of the prolactin blocking antibody (Figure 3C). The control mouse
IgG had no effect on cell death in any cell line.

Effects of prolactin on C2-ceramide-induced apoptosis

Figure 4A shows untreated control Hs578T cells. Figure 4C, E and
G shows the addition of increasing doses of prolactin (50–
200 ng ml�1), indicating no effect on the cells relative to controls.
Figure 4B represents cells 24 h after treatment with an apoptotic
dose of C2-ceramide. This illustrates distinct rounding of the cells

and a reduction in the number of cells attached to the plate. Figure
4D, F and H show coincubation of C2 with increasing doses of
prolactin (50, 100 and 200 ng ml�1, respectively). The number of
rounded, dead cells is clearly dose dependently reduced by
prolactin relative to C2 alone. We determined by cell counting
that prolactin at 100 ng ml�1 reduced C2-induced cell death by
approximately 30%, and so chose this dose of prolactin for all
further experiments.

In Figures 5A– C, prolactin alone (100 ng ml�1) had no effect on
basal levels of cell death in either the MCF-7, T47D or Hs578T cells.
C2-ceramide induced significant levels of apoptosis from 5.8 to
22.4% in the MCF-7 cells (Po0.001), from 4.0 to 26.1% in the T47D
cells (Po0.001) and from 3.5 to 32.2% in the Hs578T cells
(Po0.001).

Prolactin in combination with C2-ceramide conferred signifi-
cant cell survival in each case from 22.4 to 10.6% in the MCF-7
cells (Po0.001), from 26.1 to 17.7% in the T47D cells (Po0.05)
and from 32.2 to 15.4% in the Hs578T cells (Po0.05).
As anticipated due to the small amounts of endogenous
prolactin, the degree of survival was greater in the Hs578T cells
than in the T47D cells (57.9% reduction in death compared
to 38.1%).
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Figure 2 Endogenous prolactin production correlates to sensitivity of breast cancer cells to apoptosis. (A) Shows a Western immunoblot for prolactin in
equal amounts of whole-cell lysates from Hs578T, MDA-MB-231, T47D and MCF-7 cells, where prolactin peptide is used as a positive control. (B)
Demonstrates the arbitrary optical density measurements from Western immunoblots assessing prolactin levels. (C) Shows the percentage change in
metabolic activity in response to C2-ceramide (0–50 mM) treatment for 24 h in T47D and Hs578T cells. All experiments were repeated at least three times.
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Effects of C2-ceramide in combination with a prolactin
blocking antibody

As shown previously in Figures 3A, B and 6A, B, C2-ceramide and
a prolactin blocking antibody each alone increased basal levels of
cell death. In Figure 6A, B, as anticipated, we demonstrated a
significant additive increase in apoptosis in the presence of C2-
ceramide in combination with a prolactin blocking antibody in
both the MCF-7 (Po0.01) (Figure 6A) and the T47D (Po0.05)
(Figure 6B) cell lines relative to C2 in the presence of the control
IgG. There were no differences in cell death between C2-ceramide
and the combination of C2-ceramide and a control mouse IgG in
either cell line.

DISCUSSION

Human breast cancer is the leading cause of cancer death in
women from Western societies, and a large study of the
epidemiology has demonstrated strong associations between
human prolactin and risk of breast cancer (Wang et al, 1988;
Hankinson et al, 1999). Despite a number of studies showing that
prolactin promotes cell proliferation in some breast cancer cell
lines (Fuh and Wells, 1995), our investigations showed that
prolactin had no effect on cell proliferation in any cell line over the
48 h tested. This suggested that the breast cancer cell lines must be
producing their own prolactin as has been demonstrated
previously (Fields et al, 1993). We confirmed that the breast
cancer cells lines we were studying did contain prolactin and that

the levels varied between lines. The T47D cells contained the
highest levels, followed by MDA-MB-231 cells and MCF-7 cells and
the lowest levels were found in the Hs578T cells. These findings are
consistent with a previous study which measured levels of
prolactin and found that T47D cells produced appreciably higher
levels of prolactin in comparison to the MCF-7 and MDA-MB-231
cells (Ginsburg and Vonderhaar, 1995).

Whereas some studies have reported that neutralising prolactin
antibodies caused a decrease in proliferation in MCF-7 and T47D
cells (Ginsburg and Vonderhaar, 1995), we did not observe any
such effects on cell growth (data not shown). However, we did find
that the cells responded in the presence of a prolactin-neutralising
antibody with the induction of apoptosis, which has also been
observed by others (Chen et al, 1999). This suggested that the
endogenous prolactin was not sufficient to drive proliferation, but
was crucial for cell survival. In support of prolactin being a potent
survival factor, we observed that the sensitivity of the breast cancer
cell lines to the physiological inducer of apoptosis, C2-ceramide,
appeared relative to the levels of endogenous prolactin that they
contained. We determined that T47D cells (highest levels of
prolactin) were more resistant to the induction of cell death by C2-
ceramide than the Hs578T cells (lowest levels of prolactin). To
confirm these observations, we then induced apoptosis and
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Figure 3 Effects of a prolactin-neutralising antibody on apoptosis. Cell
death was measured in (A) MCF-7, (B) T47D and (C) Hs578T cells
following treatment with either a prolactin blocking antibody (100 ng ml�1)
or a control mouse IgG (100 ng ml�1) for 24 h. Graphs represent the mean
of three experiments each performed in triplicate, where *Po0.05 and
***Po0.01.
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showed for the first time that exogenously added prolactin does act
as a potent survival factor against C2-ceramide-induced apoptosis
in breast cancer cell lines. In addition, we demonstrated that a
prolactin-neutralising antibody in combination with C2-ceramide
caused an anticipated, additive increase in cell death.

These data may have important implications for cancer
treatment. A number of current cancer therapies are mediated
via endogenous ceramide production (reviewed in Radin, 2003).
Our data would suggest that endogenous levels of prolactin in
breast tumours may be indicative of the efficacy of current
treatment regimens designed to eliminate cancer cells via
modulation of endogenous ceramide production. It may be that
tumours with high levels of endogenous prolactin would respond
poorly to such treatments, whereas those with lower levels may
give a much better response. This is supported by a clinical study,
which described how inhibiting prolactin secretion using agents
such as bromocriptine enhanced the efficacy of chemotherapeutic
drugs for the treatment of breast cancer (Lissoni et al, 2002).
Therefore, tumours with high levels of prolactin would perhaps be

more efficiently treated with additional antiprolactin/prolactin
receptor therapies.

In summary, we have shown that prolactin acts as a potent
survival factor for human breast cancer cell lines, which has also
been demonstrated for Nb2 lymphoma cells (Fernandez et al,
2003), thymocytes (Krishnan et al, 2003) and the PC3 prostate
cancer cell line (Ruffion et al, 2003). In addition, we found that the
levels of endogenous prolactin made by the breast cancer cell lines
appeared to correlate with their sensitivity to a physiological
inducer of apoptosis, C2-ceramide. Our data showing that
prolactin has the ability to prevent breast cancer cells from
undergoing apoptosis, in addition to other reports indicating a role
for prolactin in promoting cell motility (Maus et al, 1999)
and angiogenesis (Struman et al, 1999) suggest that prolactin
has the capacity to contribute significantly to the metastatic
phenotype of breast cancer. Assessing prolactin concentrations
within breast tumours may allow us to predict the response
to current chemotherapeutic drugs; in addition, it supports the
use of effective prolactin antagonists, since they may provide a
better, more effective therapeutic intervention for some breast
cancers.
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