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Abstract: The recorded electroencephalography (EEG) signal is often contaminated with different
kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the
brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed
component (RC) and the change rate in the trace of the Toeplitz matrix, it is demonstrated that
the embedding dimension is related to the frequency bandwidth of each reconstructed component,
in consistence with the component mixing in the singular value decomposition step. A method for
selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based
on the Markov Process Amplitude (MPA) EEG Model. Real EEG signal is also collected from the
experimental subjects under both eyes-open and eyes-closed conditions. The experimental results
show that based on the embedding dimension selection method, the alpha rhythm can be extracted
from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between
the eyes-open and eyes-closed states.

Keywords: EEG signal; rhythm extraction; adaptive singular spectrum analysis; embedding
dimension selection

1. Introduction

Electroencephalography (EEG) recordings from the scalp reflect the electrophysiological activity
of the brain neurons. The features of the spontaneous EEG signal contain different physiological and
pathological information [1]. For example, alpha rhythm (α-rhythm) reflects attentional demands
and beta rhythm (β-rhythm) reflects emotional and cognitive processes [2]. Theta rhythm (θ-rhythm)
is related to moral actions [3], while delta rhythm (δ-rhythm) is an indicator of attention to internal
processing during performance of mental tasks [4]. Due to the advantage of abundant information
in the brain, EEG has been widely studied in the area of physiological status monitoring, intelligent
rehabilitation therapy and brain computer interface (BCI) system [5–7].

Rhythm extraction is very important for the research and application of EEG signal. However,
the recorded EEG signal usually contains large amounts of artifacts, such as electrooculogram (EOG),
electromyography (EMG), electrocardiography (ECG), baseline drift and so on, in consistence with
common interference and random noise originating from measurement system. Especially, the artifacts
show considerably larger amplitude than the spontaneous EEG signal, which lead to an unsatisfied
low signal-to-noise ratio (SNR) [8]. In addition, the frequency spectrum of artifacts overlaps with that
of the spontaneous EEG signal. Therefore, traditional methods based on frequency spectrum analysis,
like Fourier Transform, are difficult to accomplish the artifacts removal and rhythms extraction.
What’s more, the brain rhythm depends on the experimental subject to a large extent and the artifacts
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vary significantly with the measurement environment. Consequently, the rhythms extraction from the
EEG signal has attracted much attention in recent studies.

To extract the desired rhythms accurately from the contaminated EEG signal, various processing
methods have been proposed for artifacts removal [9–11]. In multi-channel EEG recordings,
a conventional approach of visual inspection is useful for artifacts removal. However, this method is
time consuming, laborious and unrealizable for single-channel EEG recording. Therefore, many efforts
have been paid on automated detection and correction for artifacts removal. He et al. combined
regression analysis (RA) and adaptive filtering (AF) for removal of ocular artifacts [12]. This method
required a separately recorded ocular artifacts signal as a reference, which increased the complexity
of the measurement system. Jadhav et al. proposed an automated detection and correction method
of eye blink and muscular artifacts based on fast independent component analysis (FastICA) and
discrete waveform transform (DWT) [13]. Then this method is further improved and realized in
a low-complexity and reliable system without the need of any reference electrode [14]. Machine
learning techniques were recently introduced to the processing of EEG signals. For instance, Chai et al.
used an autoregressive (AR) model and sparse-deep belief networks (sparse-DBN) combined with
independent component analysis (ICA) to remove artifacts and discriminateEEG-based driver
fatigue, which obtained satisfied classification performance between fatigue and alert states [15].
However, this method required abundant labeled EEG samples for training the parametric model
and suffered from the cost of high computational complexity, which is not applicable for portable or
wearable devices.

Singular spectrum analysis (SSA) is a model-free method developed from Karhunen-Loeve
decomposition theory [16]. SSA works well for single channel signals as well as multichannel
signals. So, it allows the exploitation of SSA for a variety of applications including biomedical
signal processing such as signal restoration, change detection, segmentation, anomaly detection
and prediction [17]. In terms of biomedical signal, the recorded biomedical information is often
a combination of a number of source signals, artifact and noise, which possesses nonlinear and
non-stationary characteristics [18]. SSA is utilized to find the structure of nonlinear and non-stationary
signal and enables the separation of different sources even overlapping in the time-frequency space.
In recent years, SSA has been successfully applied in the research of artifacts removal and rhythm
extraction from the EEG signal. For instance, the research group of Maddirala [19] analyzed single
channel EEG signal by SSA processing and successfully realized the motion artifact removal. Then the
EOG artifact was furtherly removed by means of combined singular spectrum analysis and adaptive
noise canceler [20]. SSA was applied by the Mohammadi group [21,22] to automatically extract the
sleep EEG rhythm and successfully discriminated between different sleep states. Akar et al. proposed
an approach based on wavelet and SSA to eliminate noise and extract desired components from the
EEG signal, which was then effectively applied to the analysis of brain dynamics [23].

During the SSA processing of EEG signal, embedding dimension selection and grouping rule
are two critical issues. For the issue of grouping rule, various methods have been proposed and
achieved good performance in different applications. The conventional grouping rule was performed
according to the magnitudes of eigenvalues, which was related with the power of each RC [24].
Then a new grouping rule based on the local mobility of the eigenvectors was proposed to remove
the motion artifact, which performed better than the traditional method [19]. Based on the similarity
of the eigenvalues and the peak frequency of RC, Hai et al. proposed another efficient grouping rule
enabling SSA to be adaptive to EEG signals containing different levels of artifacts and rhythms [25].
However, for the issue of embedding dimension selection, to the best of our knowledge, there is
no explicit rule for embedding dimension selection. On one hand, a general strategy is that the
embedding dimension L should capture at least one period of the lowest frequency component of
interest, i.e., L > fs/fr, where fs is the sampling rate and fr is the minimum frequency [26,27]. One the
other hand, to get a satisfied result, the embedding dimension L should be chosen sufficiently large
enough so that L-lagged vector incorporates an essential part of the EEG features [28]. The larger
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the embedding dimension is, the more detailed is the decomposition of the EEG signal. The most
detailed decomposition is achieved when the embedding dimension is approximately equal to half of
the EEG signal length. However, a larger L corresponds to an increased amount of computation and
time complexity. In addition, for the EEG signal with complex structures, too large L may produce
component mixing with each other [29], which lead to undesirable decomposition of brain rhythm
of interest.

An embedding dimension selection method of the adaptive SSA for EEG signal processing
is proposed in this paper. Based on the embedding dimension selection method, the frequency
bandwidth of each reconstructed component is limited to a particular band of the brain rhythm of
interest. At the same time, this method avoids component mixing in the SVD step. The experimental
results show that, with the aid of the proposed embedding dimension selection method, the adaptive
SSA performs successfully in the alpha rhythm extraction and distinguishing between eyes-open and
eyes-closed states.

2. Adaptive Singular Spectrum Analysis Method for EEG Processing

Regarding the recorded one-dimensional time series of EEG signal s = (s1,s2, . . . ,sN)T,
with the superscript T denoting the transpose operator, SSA consists of two complementary stages:
decomposition and reconstruction. Each stage includes two separate steps.

The decomposition stage includes time-delay embedding operation followed by singular value
decomposition (SVD). In the time-delay embedding step, one-dimensional time series s is mapped
into the multi-dimensional space to construct the trajectory matrix

X = (s1, s2, . . . , sL) =


s1 s2 · · · sL

s2 s3 · · · sL+1
...

...
. . .

...
sK sK+1 · · · sN

 (1)

where L denotes the embedding dimension and K (K = N − L + 1) denotes the indices of the
L-dimensional time-delay vectors. In the SVD step, the trajectory matrix is processed by SVD and
decomposed into a series of rank-one elementary matrices

X = X1 + X2 + . . . + Xr =
r

∑
i=1

√
λiuivi

T (2)

where λi are the eigenvalues of the covariance matrix XTX in decreasing order of magnitude (λ1 ≥ λ2 ≥
. . . ≥ λr > 0). The left singular vectors ui are the eigenvectors of the covariance matrix XXT and the right
singular vectors vi are the eigenvectors of the covariance matrix XTX. Therefore, the trajectory matrix
X is projected into the orthogonal space spanned by the left and right singular vectors. Each principal
component subspace contains different characteristics of the EEG signal.

The reconstruction stage includes grouping and diagonal averaging. In the grouping step,
the reconstructed components containing the same characteristics are grouped to indicate different
brain rhythms, artifacts or noise. Let A = (c1,c2, . . . ,cm) (m < r) be the corresponding grouped sequences.
Then, the reconstructed matrix is

Xc =
cm

∑
i=c1

Xi =


sc

1 sc
2 · · · sc

L
sc

2 sc
3 · · · sc

L+1
...

...
. . .

...
sc

K sc
K+1 · · · sc

N

 (3)
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Finally, Xc is transformed into a new one-dimensional time series sc = (sc
1, sc

2, . . . , sc
N)

T in the
diagonal averaging step, which represents the particular characteristic of the EEG signal.

Thus, as can be seen that the embedding dimension and grouping sequence selection are the
two critical parameters of the SSA process. According to the magnitude of the singular value and the
dominant frequency of each reconstructed component, an adaptive grouping rule has been proposed
to solve the problem of grouping sequence selection [25]. In the following section, an embedding
dimension selection method of adaptive SSA is presented for the purpose of rhythm extraction from
the EEG signal.

In the above SVD step, the singular values of trajectory X are tied up with the eigenvalues of the
covariance matrix XTX via the relation σ =

√
λ. The covariance matrix is represented by

XTX =


sT

1 s1 sT
1 s2 · · · sT

1 sL

sT
2 s1 sT

2 s2 · · · sT
2 sL

...
...

. . .
...

sT
Ls1 sT

Ls2 · · · sT
LsL

 (4)

It is a symmetric positive semidefinite matrix. Generally, it satisfies the conditions N� L and
K� L during the application of EEG signal processing. Thus, the principal diagonal elements and the
elements parallel to the principal diagonal are approximately equal, namely

zl = ∑K
n=1 snsn−l ' sL−msL−l−m(L = 0, 1, . . . , L− 1, m = 0, 1, . . . , L− 1− 1) (5)

where zl is the auto covariance with delayed points l. Then covariance matrix XTX can be rewritten as

TK,L = XTX =


z0 z1 · · · zL−1

z1 z0 · · · zL−2
...

...
. . .

...
zL−1 zL−2 · · · z0

 (6)

Based on the theorem of the symmetric Toeplitz matrix [30,31], the eigenvalues of TK,L are
calculated as

λp =
L−1

∑
j=−L+1

z|j|e
i2πjp/L (7)

To analyze the relationship between the eigenvalues of the covariance matrix and the frequency
spectrum of the EEG signal, the circular operator is introduced here to represent

zl ' sT
KPl

KsK = sT
KP−l

K sK (8)

where sK denotes the first K elements of s and PK denotes the basic circulant matrix. Hence, PK is
utilized to construct the relationship between the eigenvalues of TK,L and the discrete Fourier transform
(DFT) of sK. The K×K Fourier matrix is represented as

FK =
1√
K


1 1 · · · 1
1 ω1

K · · · ωK−1
K

...
...

. . .
...

1 ωK−1
K · · · ω

(K−1)(K−1)
K

 (9)
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whereωK = ei2π/K and FK is unitary matrix. With the aid of the matrix FK, the basic circulant matrix
can be rewritten as [32]

PK = FKΛKFH
K = FK


1 0 · · · 0
0 ωK · · · 0
...

...
. . .

...

0 0 · · · ω
(K−1)
K

FH
K (10)

where FH
K is the conjugate transpose of the matrix FK. In addition, the form of the inverse DFT is

sK = FH
K ŝK = FH

K (ŝ0, ŝ1, . . . , ŝK−1)
T (11)

where ŝK denotes the frequency spectrum of the time series sK. Upon substituting Equations (10) and
(11) into Equation (8), we get

zl ' ŝT
KΛl

KŝK = ŝT
KΛ−l

K ŝK (12)

Based on Equations (7) and (12), the eigenvalues are written in the form

λp = ŝT
K

(
L−1

∑
j=−L+1

Λj
Kei2πjp/L

)
ŝK =

K−1

∑
q=0

∣∣ŝq
∣∣2ζp,q (13)

where the coefficients are given by

ζp,q =
L−1

∑
j=−L+1

ei2πj(p/L+q/K) = 1 + 2
L−1

∑
m=1

cos 2πm(p/L + q/K) (14)

It can be seen that the eigenvalues of TK,L are determined by the magnitude
∣∣ŝq
∣∣2 and coefficients

ζp,q. The coefficients ζp,q for different parameters are shown in Figure 1. The coefficient at −p×K/L
is the dominant component, while the coefficients between −p×K/L− 0.5×K/L and −p×K/L +

0.5×K/L are the major parts of all the components. Based on Equation (13), each eigenvalue of the
normalized covariance matrix TK,L can be approximated by the mean value of a portion of the power
spectrum of sK, whose width is roughly K/L [33]. For the recorded EEG signal at a sampling rate fs,
the frequency resolution of the DFT is fs/K. Therefore, the frequency bandwidth of each reconstructed
component can be expressed by

fb = K/L× fs/K = fs/L (15)

As a consequence, the frequency bandwidth fb of each reconstructed component is limited to
fs/L. In order to remove the frequency components outside the fb, with fb denoting the bandwidth
of the brain rhythm of interest, the embedding dimension L should satisfy the condition L ≥ fs/fb.
Otherwise, the reconstructed components in the grouping step will contain frequency components
outside the bandwidth of the brain rhythm of interest.

The analysis presented above shows that the frequency bandwidth of each reconstructed
component is determined by the embedding dimension. Besides, the rate of change in the trace
of Toeplitz matrix TK,L is associated with the embedding dimension [34] via the relation

TrL,N − TrL−1,N =
K

∑
j=L

s2
j (16)

where the trace of TK,L is defined as

TrL,N = tr(TK,L) =
L

∑
j=1
λL,N

j (17)
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It can be seen that the change rate of the trace is large for small embedding dimensions and
decreases to the attain a minimum value at L = K. It means that the increase of information for
all the frequency components slows down gradually when the embedding dimension L increases.
Therefore, a smaller value of L should be chosen when the change rate of the trace is small. Otherwise,
for nonlinear and nonstationary EEG signal with complicated structures, too large L can lead to
component mixing with each other, which result in unsatisfied brain rhythm extraction.

The recorded EEG signal contains different brain rhythms, artifacts and noise. In particular,
the frequency spectrum of the brain rhythms overlaps with that of the artifacts and noise. Therefore,
in order to avoid component mixing in the rhythm extraction from the EEG signal by the adaptive
SSA, the embedding dimension is selected according to the rule L = fs/fb, where fb is determined by
the frequency bandwidth of the brain rhythm to be extracted.
Sensors 2018, 18, 697 6 of 20 
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3. Simulation Results and Discussion

3.1. Markov Process Amplitude EEG Model

The simulated EEG signal consists of three parts: the spontaneous EEG signal, the artifacts and the
measurement noise. The spontaneous EEG signal possesses the characteristic rhythmic oscillations and
stochastic processes. The artifacts are represented by the EOG and baseline drift. The measurement
noise is simulated by the Gaussian white noise.

The spontaneous EEG signal is generated based on the Markov Process Amplitude (MAP) EEG
model [35,36]. The rhythmic oscillation is represented by the sinusoidal wave, while the stochastic
process is represented by the first-order Markov process. Therefore, the spontaneous EEG is produced
by the sinusoidal wave modulated by the first-order Markov process. Considering that the spontaneous
EEG consists of several oscillations, the MPA EEG model is given by s(n∆t) =

K
∑

i=1
ai(n∆t) sin(2πfin∆t + θi) + vα(n∆t) + vn(n∆t)

ai((n + 1)∆t) = γiai(n∆t) + ξi(n∆t), 0 < γi < 1
(18)

where K is the number of rhythms, n is the number of sampling points, ∆t is the sampling interval, f is
the oscillation frequency, θ is the initial phase, while vα and vn represent the artifacts and Gaussian
white noise, respectively.

Equation (18) shows that the amplitude of the first-order Markov process at the succeeding time
(n + 1)∆t depends only on the amplitude at the current time ∆t and is independent of the amplitudes
of any other time. ξ represents the stochastic feature of amplitudes between the two steps of the
process, for which the variance of ξ is σξ and the mean of ξ is zero. There are two critical parameters in
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the first-order Markov process: γ and ξ. γ denotes the correlation of the amplitudes between adjacent
steps and σξ denotes the strength of the stochastic process.

The procedure for the simulation of the spontaneous EEG signal based on MPA EEG model is
given in Figure 2. Firstly, by means of the maximum likelihood method, the parameters of γ and ξ are
estimated from the power spectrum density (PSD) of the real EEG signal. Then, four brain rhythms are
generated using the above estimated parameters, as shown in Figure 2a. The four brain rhythms are
delta rhythm (1−4 Hz), theta rhythm (4−8 Hz), alpha rhythm (8−13 Hz) and beta rhythm (13−30 Hz),
whose oscillation frequencies are set at the middle points of the corresponding frequency ranges.
Finally, the spontaneous EEG is constructed as a superposition of the four brain rhythms, as shown in
Figure 2b. In the simulation, the sampling frequency is 200 Hz and the sampling time is 8s. All of the
simulation parameters are shown in Table 1.Sensors 2018, 18, 697 7 of 20 
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Figure 2. The simulation process of the spontaneous electroencephalography (EEG) signal:
(a) simulated delta, theta, alpha and beta rhythm; (b) the spontaneous EEG signal constructed by the
superposition of the four rhythms.

3.2. Adaptive Singular Spectrum Analysis for Simulated EEG signal

The spontaneous EEG signal is processed by the adaptive SSA and the embedding dimension
is set at L = 40 (fs/fb(α)) and L = 80 (2fs/fb(α)), with fb(α) = 5 Hz denoting the bandwidth of alpha
rhythm. The PSD of the first six reconstructed components are shown in Figure 3a,b, respectively.
In agreement with the results from Figure 1, the bandwidth of each reconstructed component is limited
to fs/L (between two dashed lines in Figure 3), i.e., 5 Hz for L = 40 and 2.5 Hz for L = 80. It is observed
from Figure 3 that RC1 and RC2 reflect the frequency feature of the alpha rhythm in both situations.
Then the alpha rhythm is reconstructed according to the adaptive grouping rule [25].

For the purpose of evaluating the reconstruction performance of the alpha rhythm, an error
parameter is defined as

εave =
1
N

N

∑
i=1
|pα(i)− pr(i)| (19)

where εave is the average error of the PSD between the simulated alpha rhythm and the reconstructed
alpha rhythm, pα is the PSD of the simulated alpha rhythm, pr is the PSD of the reconstructed alpha
rhythm and N is the length of the PSD.

The alpha rhythm is extracted from the spontaneous EEG signal by different values of L.
The calculated errors εave are shown in Figure 4. As shown in the figure, εave decreases gradually for
small values of L (L < 40), while εave reaches a relatively steady state for large values of L (L > 40).
In accordance with the theoretical analysis, the alpha rhythm can be effectively extracted from the
spontaneous EEG signal by the adaptive SSA when the embedding dimension is set at L = fs/fb(α).
Therefore, εave attains a minimum value at L = 40.
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Table 1. Parameters of the simulated electroencephalography (EEG) signal. 

 Symbol Value Comment 

Spontaneous EEG 

f1/Hz 2.50 

Delta rhythm γ1 0.99 

σ1
𝜉
 2.26 

f2/Hz 6.00 

Theta rhythm γ2 0.97 

σ2
𝜉
 2.78 

f3/Hz 10.50 

Alpha rhythm γ3 0.99 

σ3
𝜉
 2.35 

Figure 4. εave corresponding to different embedding dimensions L during the alpha rhythm extraction
from the spontaneous EEG signal.

In order to further analyze the effect of the embedding dimension on the performance of the
alpha rhythm extraction, the artifacts and noise are superimposed on the spontaneous EEG signal to
construct the simulated EEG signal. The artifacts consist of two parts: EOG and baseline drift. EOG is
represented by the triangular waveform with low frequency and high amplitude, which is the main
source of artifacts and is caused by eye blinks and ocular movement. The baseline drift is characterized
by low-frequency sinusoidal wave, which originates from head or body movement. In addition,
Gaussian white noise is used to simulate the measurement noise. The simulation parameters of the
artifacts and noise are shown in Table 1.
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Table 1. Parameters of the simulated electroencephalography (EEG) signal.

Symbol Value Comment

Spontaneous EEG

f1/Hz 2.50
Delta rhythmγ1 0.99

σξ1 2.26
f2/Hz 6.00

Theta rhythmγ2 0.97
σξ2 2.78

f3/Hz 10.50
Alpha rhythmγ3 0.99

σ
ξ
3 2.35

f4/Hz 21.50
Beta rhythmγ4 0.99

σξ4 0.36

Artifacts

VEOG/µV 50 Amplitude of EOG
TEOG/s 3 Period of EOG
WEOG/s 0.3 Pulse width of EOG
VBD/µV 10 Amplitude of baseline drift
fBD/Hz 0.5 Frequency of baseline drift

Noise Pn/dBW 1 Power of white noise

Figure 5a shows the simulated EEG signal with artifacts and noise. The average error εave

corresponding to the embedding dimension L is shown in Figure 5b. It can be seen from Figure 5b that
εave decreases gradually for small values of L (L < 40) and attains a minimum value at L = 40. However,
for large values of L (L > 40), εave shows a general increasing trend with significant fluctuations.
In particular, εave becomes much worse when L > 80. Figure 6a,b illustrate the PSD of the first six
reconstructed components by L = 40 and 80. As can be observed in Figure 6, RC2 and RC3 reflect
the frequency feature of the alpha rhythm. However, RC1 and RC2 suffer from component mixing
for the alpha rhythm extraction when using L = 80. These two reconstructed components contain
an admixture of frequency features from both alpha rhythm and artifacts.
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Figure 6. PSD of the first six reconstructed components for the simulated EEG signal: (a) L = 40;
(b) L = 80.

The extracted alpha rhythms by embedding dimensions L = 20, 40 and 80 are illustrated in
Figure 7a–c, respectively. Figure 7d shows the PSD of the extracted alpha rhythm for the three different
embedding dimensions, compared with that of the simulated alpha rhythm. It can be seen that the
alpha rhythm can be extracted effectively by L = 20 and 40. Due to the effects of artifacts and noise,
the PSD of the extracted alpha rhythm by L = 20 and 40 are lower than that of the simulated alpha
rhythm. When the embedding dimension is set at L = 20, the extracted waveform contains frequency
components outside the alpha band because of the wide frequency bandwidth of the reconstructed
components. When the embedding dimension is set at L = 80, the decomposition step leads to
component mixing. Some of the frequency components of the alpha rhythm are mixed in the other
reconstructed components. Therefore, the PSD of the extracted alpha rhythm is much lower than that
of the simulated alpha rhythm. In addition, the PSD contains frequency feature from the artifacts due
to the same reason of component mixing. So it is concluded that the adaptive SSA results in the best
alpha rhythm extraction when the embedding dimension is set at L = 40.
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4. Experimental Results and Discussion

4.1. Measurement Setup and Experimental Procedure

The real EEG signal was obtained by means of the MP36 data acquisition and analysis system
(BIOPAC Systems Inc., Goleta, CA, USA). In order to improve the common mode rejection ratio
(CMRR) of the measurement setup, three electrodes system was used to conduct the experiment.
The Ag/AgCl electrode was adopted as the recording electrode, which was flushed with conductive
gel and then attached to the frontal region of the subject’s scalp. The other two electrodes serving as
a ground and a reference were attached to the earlobe and mastoid, respectively.

Three male and three female subjects aged 20 to 25 years participated in the experiment. All of the
subjects were asked to refrain from psychoactive substances for at least 4 h prior to the experiments.
The experimental procedures were as follows. Firstly, the subject relaxed with eyes closed for 10 min.
Next, the subject opened eyes and focused on the cross symbol displayed on the computer screen.
Finally, the subject kept eyes open for 60 s followed by a period with eyes closed for 60 s, and repeated
this procedure 5 times. In the experiment, the real EEG signal is recorded at the sampling rate of
200 Hz. To obtain the desired segments of eyes-open and eyes-closed states, the segments lasting for
8 s were cut off from the middle of each period. Consequently, 30 segments of eyes-open state and
30 segments of eyes-closed state were obtained in total.

4.2. Adaptive Singular Spectrum Analysis for Real EEG Signal

Figure 8a,b show the obtained EEG signal and the corresponding PSD under eyes-closed condition.
The PSD of the first nine reconstructed components by L = 20, 40 and 80 are illustrated in Figure 9a−c,
respectively. In agreement with the simulation results, the PSD of each reconstructed component is
constrained within the frequency bandwidth of fs/L, i.e., 10 Hz for L = 20, 5 Hz for L = 40 and 2.5 Hz
for L = 80.
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Figure 9. PSD of the first nine reconstructed components of the real EEG signal: (a) L = 20; (b) L = 40;
(c) L = 80.

When the embedding dimension is set at L = 20, the PSD of each reconstructed component is
limited to the frequency bandwidth of 10 Hz. For example, the bandwidth of RC2 is from 2 Hz to
12 Hz. Because RC2 contains the frequency features from delta, theta and alpha rhythms, it is hard
to extract the alpha rhythm effectively. When the embedding dimension is set at L = 40, the PSD of
each reconstructed component is limited to the frequency bandwidth of 5 Hz, which represents the
frequency characteristic of alpha band well. Therefore, RC3 and RC4 effectively reflect the frequency
feature of alpha rhythm. In particular, the frequency range of RC6 is from 5 Hz to 15 Hz. However,
the peak value of PSD is only 0.17 µV2/Hz. So, PC6 mainly reflects the feature of the noise. When the
embedding dimension is set at L = 80, RC4 and RC6 suffer from the problem of component mixing.
The PSD of RC4 at the frequencies of 4.1 Hz and 10.5 Hz are 3.73 and 2.13 µV2/Hz, while The PSD
of PC6 at the same frequencies of 4.1 Hz and 10.5 Hz are 0.42 and 3.77 µV2/Hz. Therefore, RC4 and
RC6 contain the frequency feature out of the alpha band. So, the alpha rhythm cannot be effectively
extracted due to the component mixing as a result of large embedding dimension.

The reconstructed components containing the same frequency feature of the alpha rhythm are then
grouped to calculate the alpha rhythm by the diagonal averaging step. The extracted alpha rhythms
by three different embedding dimensions are shown in Figure 10a–c, while the PSD corresponding to
the three embedding dimensions is shown in Figure 10d.

Figure 10d shows that strong alpha rhythms are extracted by L = 20 and 40, whose peak value of
PSD are 45.40 and 40.87 µV2/Hz, respectively. However, the PSD by L = 20 contains large amounts
of frequency components outside the alpha band. When the embedding dimension is set at L = 80,
the PSD of the extracted alpha rhythm is within the alpha band well. However, the peak PSD value
of the extracted alpha rhythm is 32.02 µV2/Hz, which is weaker than those by L = 20 and 40. This is
caused by the problem of component mixing at a large embedding dimension. Some frequency
components of the alpha rhythm are mixed together with the other reconstructed components.
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Figure 10. Extracted alpha rhythm under eyes-closed condition: (a) L = 20; (b) L = 40; (c) L = 80;
(d) PSD of the extracted alpha rhythm by different L.

The extracted alpha rhythms and corresponding PSD by different embedding dimensions under
eyes-open condition are shown in Figure 11. Prior research has demonstrated that the alpha rhythm
in resting state with eyes closed is much stronger than that under eyes-open condition with visual
stimulation [37]. It can be seen that the extracted alpha rhythm by L = 20 and 40 under eyes-open
condition is much weaker than that under eyes-closed condition. But the extracted alpha rhythm by
L = 80 under eyes-open condition has significant amplitude, which does not agree with reality. It is
likely because some frequency components of the artifacts or noise are mixed into the alpha rhythm by
a large embedding dimension. Based on the results analysis under both eyes-open and eyes-closed
conditions, the extracted alpha rhythm by L = 40 shows better performance than those by L = 20 and
80. Figure 12 shows the spectrogram of the extracted alpha rhythm, which indicates the change process
of power as a function of time and frequency. It presents significant difference between the eyes-open
and eyes-closed states.
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Figure 13. Extracted alpha rhythm by wavelet decomposition (WDec) under: (a) eyes-closed 

condition; (b) eyes-open condition. 

Figure 12. Spectrogram of the extracted alpha rhythm under eyes-open and eye-closed conditions by
L = 40.

The performance of the adaptive SSA is compared with the other methods: wavelet decomposition
(WDec), infinite impulse response (IIR) and another recently reported SSA method (SSA#) [22].
Figures 13–15 show the extracted alpha rhythms under eyes-closed and eyes-open conditions using
WDec, IIR and SSA#, respectively. For comparison, the PSD of the extracted alpha rhythms by four
methods under eyes-closed and eyes-open conditions are shown in Figure 16.
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As can be observed in Figure 16a, under eyes-closed condition, the adaptive SSA, IIR and SSA#
can extract strong alpha rhythm. However, the extracted alpha rhythm by SSA# contains the frequency
components out of the alpha band, which is due to the component mixing resulting from unsatisfied
decomposition. In comparison, the extracted alpha rhythm by WDec is much weaker (29.18 µV2/Hz)
with large amounts of frequency components falling outside the alpha band. Figure 16b shows that,
under eyes-open condition, WDec can extract significant frequency components of alpha rhythm
(23.17 µV2/Hz), which is close to that under eyes-closed condition. Clearly, it is inconsistent with
reality. Because IIR is unable to remove artifacts and noise from the alpha rhythm with overlapping
frequency spectrum, IIR yields a similar result of strong alpha rhythm. In the contrast, the extracted
alpha rhythm by the adaptive SSA has low PSD amplitude, which can reflect the eyes-open state
efficiently. As can be observed in Figure 16b, the extracted alpha rhythm by SSA# is similar to that by
the adaptive SSA. In comprehensive consideration of the alpha rhythm extraction under eyes-open
and eyes-closed conditions, the adaptive SSA performs better than WDec, IIR and SSA#.

In order to further verify the performance of the adaptive SSA, the extracted alpha rhythm is used
to distinguish between eyes-open and eyes-closed states. At the same time, the classification result by
the adaptive SSA is used to compare with those by WDec, IIR and SSA#, together with autoregressive
model combined with linear discriminant analysis (AR) [38].
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Figure 16. PSD of the extracted alpha rhythm by four methods: (a) under eyes-closed condition;
(b) under eyes-open condition.

In this study, the power (P = ∑ V2
α/N) is selected as the characteristic parameter of the alpha

rhythm [21], where Vα represents the amplitude of the extracted alpha rhythm. Figure 17a shows the
power values of the extracted alpha rhythm by the adaptive SSA. Obviously, the power values under
eyes-open condition are generally lower than those under eyes-closed condition. Then the threshold
value is set at 12 µV2/Hz. When the power is higher than the threshold value, it is classified into the
eyes-closed category. Otherwise, it is classified into the eyes-open category. Consequently, the accuracy
of classification is 95.0%.

Figure 17b–d show the power values of the extracted alpha rhythms by WDec, IIR and SSA#,
respectively. Similar to the results obtained by the adaptive SSA, the power values under eyes-open
condition are generally lower than those under eyes-closed condition. With threshold values of
19 µV2/Hz, 18 µV2/Hz and 15 µV2/Hz, WDec, IIR and SSA# achieve the best accuracy of classification:
88.3%, 86.7% and 91.7%, respectively. It can be seen that the threshold value by SSA# is a little greater
than that by the adaptive SSA. It is likely because SSA# suffers from component mixing and therefore
the extracted alpha rhythm contains the frequency components out of alpha band. The threshold values
by WDec and IIR are much greater than that by the adaptive SSA. It may be because WDec and IIR
cannot reduce artifacts and noise contamination that has the same frequency components as the alpha
band. Figure 17e shows the classification result by AR and the threshold value is set at the probability
of 0.5. When the probability is higher than the threshold value, it is classified into the eyes-closed
category. Otherwise, it is classified into the eyes-open category. The accuracy of classification by AR is
90.0%. Therefore, the classification performance by the adaptive SSA is better than those by WDec, IIR,
SSA# and AR. It is concluded that the adaptive SSA assisted by the embedding dimension selection
method could be potentially used to distinguish between eyes-open and eyes-closed states.
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5. Conclusions 

In this study, a method for selecting the embedding dimension is proposed for extracting brain 
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the frequency bandwidth of each reconstructed component is constrained to a particular band of 
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5. Conclusions

In this study, a method for selecting the embedding dimension is proposed for extracting brain
rhythm from EEG signal by adaptive SSA. Based on the embedding dimension selection method,
the frequency bandwidth of each reconstructed component is constrained to a particular band of the
brain rhythm of interest. At the same time, it avoids component mixing in the SVD step. Simulated EEG
signal based on MPA EEG model and real EEG signal under eyes-open and eyes-closed conditions are
used to verify the proposed method. Experimental results show that alpha rhythms can be effectively
extracted by the adaptive SSA assisted by the embedding dimension selection method. The accuracy of
classification between eyes-open and eyes-closed states is 95.0%, better than the corresponding values
by WDec (88.3%), IIR (86.7%), SSA# (91.7%) and AR (90.0%).
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