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Abstract

Introduction: Electronic health record (EHR)-driven phenotyping is a critical first step

in generating biomedical knowledge from EHR data. Despite recent progress, current

phenotyping approaches are manual, time-consuming, error-prone, and platform-

specific. This results in duplication of effort and highly variable results across systems

and institutions, and is not scalable or portable. In this work, we investigate how the

nascent Clinical Quality Language (CQL) can address these issues and enable high-

throughput, cross-platform phenotyping.

Methods: We selected a clinically validated heart failure (HF) phenotype definition

and translated it into CQL, then developed a CQL execution engine to integrate with

the Observational Health Data Sciences and Informatics (OHDSI) platform. We exe-

cuted the phenotype definition at two large academic medical centers, Northwestern

Medicine and Weill Cornell Medicine, and conducted results verification (n = 100) to

determine precision and recall. We additionally executed the same phenotype defini-

tion against two different data platforms, OHDSI and Fast Healthcare Interoperability

Resources (FHIR), using the same underlying dataset and compared the results.

Results: CQL is expressive enough to represent the HF phenotype definition, includ-

ing Boolean and aggregate operators, and temporal relationships between data ele-

ments. The language design also enabled the implementation of a custom execution

engine with relative ease, and results verification at both sites revealed that precision

and recall were both 100%. Cross-platform execution resulted in identical patient

cohorts generated by both data platforms.

Conclusions: CQL supports the representation of arbitrarily complex phenotype defi-

nitions, and our execution engine implementation demonstrated cross-platform exe-

cution against two widely used clinical data platforms. The language thus has the

potential to help address current limitations with portability in EHR-driven

phenotyping and scale in learning health systems.
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1 | INTRODUCTION

Learning health systems (LHS) are organizations in which the delivery

of care generates data and insights that can be analyzed and trans-

formed into biomedical knowledge. This knowledge can then be used

to improve the quality and efficacy of healthcare.1 A core aspect of

generating this knowledge is the identification of patient cohorts in

the electronic health record (EHR) matching certain clinical criteria, a

process commonly referred to as EHR-driven phenotyping. EHR-

driven phenotyping has applications across the continuum of LHS to

conduct case-control and cohort studies, clinical trial recruitment, clin-

ical decision support (CDS), and quality measurement.2

We have established the Phenotype Execution and Modeling

Architecture (PhEMA), an open-source infrastructure to support clini-

cians, researchers, informaticists, and data analysts in standards-based

authoring, sharing, and execution of computable phenotype defini-

tions.3 In this work, we continue to improve the PhEMA tools by pro-

posing to adopt Clinical Quality Language (CQL),4 a Health Level

Seven International (HL7) standard for formally representing logical

expressions, as the computable phenotype representation. Our

hypothesis is that if a standards-based phenotype representation is

used, it will enable execution across data platforms with a one-time

cost. That one-time cost is the development of a CQL engine for each

target platform, and this cost is preferable to manual phenotype trans-

lation, as it ultimately enables cross-platform phenotyping at scale.

We investigate whether this approach does enable cross-platform

phenotyping and demonstrate a newly built CQL evaluation engine

that is able to execute CQL phenotype definitions against the Obser-

vational Health Data Sciences and Informatics (OHDSI) platform.5

We used a clinically validated phenotype definition for patients

with heart failure (HF), a common, costly, and morbid condition affect-

ing over 6 million United States adults and a high public health prior-

ity.6 The system was validated at multiple institutions and across data

platforms, and is made available on GitHub to complement the current

set of tools used by the observational research community, with the

hope that our methods will contribute toward the future convergence

of phenotyping systems.

2 | BACKGROUND

In general, EHR-driven phenotyping is a two-step process: (a) defining

the phenotype and (b) executing the phenotype. First, a phenotype

definition must be developed, which is a resource-intensive process

involving multidisciplinary teams, and often requiring several itera-

tions to produce a high-quality, clinically valid result. Phenotype defi-

nitions typically consists of (a) clinical data elements of interest, such

as demographics, medications, diagnoses, encounters, laboratory

results, and other clinical observations, (b) lists of codes from

published terminologies, called value sets, and (c) Boolean, aggregate,

and temporal logical expressions that relate the data elements and

value sets (phenotype logic). Additionally, the phenotype definition

must be validated against a gold standard, most often derived from a

resource-intensive manual chart review.7,8

Second, in order to assemble the cohort of interest, the pheno-

type definition must be executed against a clinical database. Without a

directly executable standard representation, this involves human

interpretation of a narrative description or flowchart illustrating the

phenotype definition and translation into machine-executable code,

such as SQL or R. This is a time-consuming and error-prone process,

which sometimes involves translating value sets into local terminolo-

gies.9,10 Such phenotype definitions are not portable or scalable, as

these steps must be repeated at every implementation site, resulting

in duplication of effort and highly variable results.

In contrast, computable phenotype definitions are represented in

an unambiguous formal language and can be executed against a data-

base with minimal human intervention, reducing implementation

effort and variability, increasing transparency, and enabling high-

throughput phenotyping.11 Two approaches enable computable

phenotype definitions: common data models (CDMs) and dedicated

phenotype logic execution environments. CDMs allow writing execut-

able code that can be used against different clinical databases without

code modifications. Research networks such as the OHDSI network,

the Health Care Systems Research Network (HCSRN),12 Sentinel,13

the electronic Medical Records and Genomics (eMERGE) Network,14-16

the National Patient-Centered Clinical Research Network (PCORnet),17

and the Accrual to Clinical Trials (ACT) Network,18 have used this

approach with much success.19,20 However, no single CDM is ubiqui-

tous, and the code written for any given CDM is not executable against

a different CDM. For example, the PCORnet CDM and the Observa-

tional Medical Outcomes Partnership (OMOP) CDM used by OHDSI

both represent similar categories of medical data, however a query writ-

ten against one cannot be directly executed against the other without

modification because the schemas are different.

Logic representation standards like the healthcare-focused Health

Quality Measure Format (HQMF) and CDS Knowledge Artifact Speci-

fication (KAS), and general logic execution environments such as

JBoss Drools and KNIME have also been shown to work in select use

cases.21,22 Software code is not based on any formal healthcare-

related standard, and while HQMF and CDS KAS show promise, they

do not have human-readable representations. General logic execution

environments may present a significant implementation burden, with

some institutions spending significant valuable resources and time,

and still failing to get the systems running.23

Instead, clinicians, informaticists, and data analysts need an

approach that allows them to collaborate with institutions using a

variety of CDMs, and minimizes the number of times a phenotype has

to be written. CQL is a formal logical expression language that
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supersedes HQMF and CDS KAS, and is intended to be used for elec-

tronic clinical quality measures (eCQMs) and CDS, as well as more

general clinical knowledge representation use cases. The Centers for

Medicare & Medicaid Services (CMS) and HEDIS (The Healthcare

Effectiveness Data and Information Set) have published eCQMs using

CQL. The emerging FHIR standard has also adopted CQL as one of its

standard logical expression languages.24 Additionally, there are several

tools for authoring knowledge content in CQL, such as the CMS Mea-

sure Authoring Tool (MAT)25 and the Agency for Healthcare Research

and Quality's (AHRQ) CDS Connect authoring tool.26

CQL is organized into libraries—comparable to programming pack-

ages—which have the added benefit of being reusable across multiple

CQMs and CDS. CQL has both a high level, human-readable represen-

tation, and an equivalent machine-readable representation, called the

Expression Logical Model (ELM). The ELM is an abstract system tree

(AST) representation of the language and has both a JSON and XML

format. The intention of the language authors is that engine devel-

opers should focus on the evaluation of core logic expressed in the

ELM, and use existing tools for parsing, expression simplification, and

semantic analysis.4 Furthermore, CQL is data model agnostic, meaning

that different data models, such as FHIR, OMOP or the Quality Data

Model (QDM), may be utilized with the same logical constructs.

3 | METHODS

3.1 | Phenotype selection and translation

We adopted a pre-existing HF phenotype definition that has been

executed and clinically validated against multiple EHRs and sites.27-29

The HF phenotype definition uses several different data modalities,

including demographic data, clinical diagnoses, clinical encounter

types, as well as procedure orders. It also uses Boolean logic, temporal

logic in the form of patient age and co-occurrence of diagnosis with

encounters, and an aggregate function. Additionally, it references a

number of common clinical terminologies, including the International

Classification of Diseases versions 9 (ICD-9) and 10 (ICD-10), the Cur-

rent Procedural Terminology (CPT), as well as the Systematized

Nomenclature of Medicine (SNOMED).

We began by representing the HF phenotype definition as a CQL

library. We selected the FHIR data model for data element references

because mappings already exist from the FHIR data model to many pop-

ular CDMs,30 and many CQL engine implementations support FHIR.31

The HF phenotype logic is shown in Figure 1. Criteria C1 and C2

are mandatory, and the patient must also match either C3 or C4 to be

considered a case. CQL is sufficiently expressive to represent these

criteria, and the source, available in the project's GitHub repository32

has six total statements. One for each criterion, one to represent the

disjunction of C3 and C4 (C*), and one to represent the final conjunc-

tion: C1 AND C2 AND C*.

Two value sets were needed, one for the HF diagnosis codes (Dx

VS), which came from three different terminologies (ICD-9, ICD-10, and

SNOMED), and one for the echocardiography procedure codes (Echo VS),

from the CPT terminology. We used an existing Dx VS from the Value

Set Authority Center (VSAC),33 which is also used by CMS for their HF

eCQMs. We created and published a new Echo VS in VSAC. For inpa-

tient and outpatient encounter types, we used individual codes from the

ActCode34 terminology, as recommended by the FHIR standard.35

3.2 | CQL engine development

We chose to develop a CQL engine, called CQL on OMOP (Figure 2,

box 1), for the OHDSI data platform. In addition to its use of the

OMOP CDM, OHDSI has existing phenotype definition analysis and

visualization tools built upon a Web application programming inter-

face (API), making it possible to validate our results using independent

F IGURE 1 The HF phenotype definition. All criteria are labeled
C1 through C4. HF, heart failure
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methods. The OHDSI platform represents phenotype definitions in a

transportable JSON format, and executes them using a library called

Circe36 that provides entities for representing phenotype logic, for

example, CriteriaGroup and DemographicCriteria. CQL on

OMOP translates a CQL-based phenotype definition into the Circe

representation and then uses the OHDSI Web API to generate the

cohort (Figure 2, box 2[b]).

The engine was developed as an open-source Java application37

and uses libraries provided by the CQL authors to parse CQL and gen-

erate an ELM tree.38 Entities from the Circe library are used to repre-

sent cohort criteria in the format expected by the OHDSI Web API.

CQL on OMOP runs as a standalone application and can be config-

ured to connect to an instance of the OHDSI Web API. Both CQL and

ELM are supported as inputs, as well as value sets in several different

formats, including the format produced by VSAC. Finally, the tool is

developed in a modular way that makes it easy to add new CQL lan-

guage features and support new data element correlations.

The process of value set resolution leverages CSV files down-

loaded from VSAC that were packaged with the HF CQL. The process

of resolution (Figure 2, box 1[b]) matched value set object identifiers

(OIDs) within these files and the CQL code. CQL on OMOP used the

OHDSI Web API to identify the relevant concepts from each value set

and build the OHDSI concept set (Figure 2, box 1[d]). The OHDSI

platform primarily makes use of standard terminologies, with one

exception being internal codes defined by OHDSI for visit types. This

required us to implement a simple terminology translator between

FHIR encounter types and OHDSI visit types (Figure 2, box 1[a]).

The core contribution of the CQL on OMOP engine is the ELM logic

translator (Figure 2, box 1[c]). The engine implements a rule-based, recur-

sive descent language translation algorithm.39 In this algorithm, each

node of the AST (ELM) is visited during a post-order tree traversal and is

translated based on a set of rules. To support the logic necessary to exe-

cute the HF phenotype definition, we implemented rules for Boolean

conjunctions (AND) and disjunctions (OR), temporal logic to calculate

patient age, numeric comparison, the Count aggregate function, filtering

data by value sets, and correlated queries, which express relationships

between data elements. Data model translation is performed during the

creation of Circe criteria from ELM Query constructs.

3.3 | Validation

The CQL on OMOP tool was validated in two ways—cross-institutional

and cross-platform. First, the cross-institutional validation checked the

F IGURE 2 Experimental architecture. Box (1) shows the developed CQL on OMOP engine, box (2) the OHDSI data platform, box (3) the OMOP
on FHIR data transformation tool, and box (4) the FHIR-native stack used for cross-platform validation. Box (1) shows our newly developed software,
while boxes (2) to (4) are existing systems we leveraged. Pipelines (5) and (6) show the two validation methods. Both NM andWCM used the pipeline
(5) architecture with their own data for phenotype execution. CQL, Clinical Quality Language; FHIR, Fast Healthcare Interoperability Resources; NM,
Northwestern Medicine; OHDSI, Observational Health Data Sciences and Informatics; OMOP, Observational Medical Outcomes Partnership; WCM,
Weill Cornell Medicine. [Correction added on 2 September 2020, after first online publication: Figure 2 has been revised.]
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accuracy of the translated phenotype logic when executed on two

instances of the same CDM (OMOP). This was done at Northwestern

Medicine (NM) and Weill Cornell Medicine (WCM), and we verified

the results manually to evaluate if the phenotype logic was correctly

applied (Figure 2, pipeline 5). Second, we conducted a cross-platform

validation to evaluate that consistent results were returned when the

same phenotype logic was applied to the same synthetic dataset in

two different execution pipelines—an OMOP environment, and an

independent, FHIR-native CQL execution pipeline (Figure 2, pipe-

line 6).

3.3.1 | Cross-institutional

The NM OMOP instance used for cross-institutional validation is a

subset of the patient population at NM, specifically, those consented

for the eMERGE network, and is generated from the NM EpicCare

EHR. The WCM OMOP instance includes the patient population at

WCM and its affiliate NewYork-Presbyterian (NYP) hospital with at

least one recorded visit, condition, and procedure. In the outpatient

setting, WCM physicians use the EpicCare EHR, and NYP uses the

Allscripts Sunrise Clinical Manager for inpatient care.

Each institution selected a random set of 25 patients that were

identified by CQL on OMOP as meeting the criteria of the HF phe-

notype (cases). Additionally, each institution selected 25 random

patients who (a) were not included as a HF case, (b) had at least

one echocardiogram procedure, and (c) had at least one relevant

diagnosis code (noncases). In review of the HF phenotype definition,

we believed the highest chance of error in the translation of the

logic was in the portion aligning diagnoses with encounters (C3 and

C4 in Figure 1). As this is a technical verification and not a clinical

validation, we believed this would be more likely to identify imple-

mentation errors than a random selection of patients not meeting

the case definition, as the majority of patients would simply be lac-

king diagnoses (given the overall expected low prevalence of HF).

Cases and noncases were selected from the respective OMOP data-

bases using SQL scripts that were prepared collaboratively by the

reviewers ahead of time.

At NM, one reviewer (LVR) evaluated the set of 50 cases and

noncases in OMOP. A random subset of 10 patient records (five cases

and five noncases) was conducted by a second reviewer (JAP). At NM,

each reviewer used the ReviewR tool, which provides a graphical

interface and filtering capabilities against an OMOP database.40 At

WCM, a similar process was followed with a primary reviewer (ETS)

reviewing all 50 patient records and a second reviewer (PA) reviewing

a random subset of 10 patient records. WCM reviewers accessed the

OMOP database via SQL queries to retrieve the data elements

needed for the results verification. Both institutions used the same

SQL code to generate the random list of patients for review and

followed the same written protocol. This code and documentation are

available in the project's GitHub repository. We calculated Cohen's

kappa to measure inter-rater reliability, and overall system perfor-

mance using precision and recall.

3.3.2 | Cross-platform

To assess cross-platform performance, we compared CQL on OMOP

to the reference implementation of the CQL engine provided by the

language authors,41 running against a HAPI FHIR server.42 We used

data for 1000 patients from the Centers for Medicare & Medicaid Ser-

vices' (CMS) Data Entrepreneurs' Synthetic Public Use File (SynPUF

1 k).43 Although synthetic, the dataset is intended to be representa-

tive of a typical claims dataset collected by CMS. The dataset was

transformed into the OMOP CDM schema using the extract transform

load (ETL) tool provided by the OHDSI community,44 and transformed

into the FHIR format using the OMOP on FHIR tool.45

We ran the HF phenotype definition using CQL on OMOP

against an OHDSI instance containing the SynPUF 1 k dataset and

generated the resulting cohort of patients. We then ran the same HF

CQL using the CQL reference implementation against a FHIR server

containing the same SynPUF 1 k data and compared the resulting

patient cohorts. Performance (agreement between the two systems)

was measured using Cohen's kappa.

4 | RESULTS

4.1 | Cross-institutional

The NM OMOP instance contained 8657 patients, of which 668

patients (7.7%) were identified by the HF phenotype definition, from

which 25 were randomly selected for review. Of the 7989 patients

not qualifying for the HF cohort, 139 patients had at least one HF

diagnosis and at least one echocardiogram, from which 25 were ran-

domly selected as the non-case review cohort. Inter-rater agreement

was κ = 1.0 between the two reviewers, and the CQL to OMOP trans-

lation execution pipeline achieved both precision and recall of 100%

(Figure 3).

Of the approximately 1 797 242 patients in the WCM OMOP

instance, 20 486 (1.4%) were in the HF cohort. There were 14 320

patients that matched our non-case criteria. The 25 cases and 25

noncases randomly selected for review demonstrated precision and

recall of 100%. Inter-rater agreement was again κ = 1.0.

4.2 | Cross-platform

After performing ETL on the SynPUF 1 k dataset, the resulting OHDSI

instance contained 147 186 conditions, 55 261 visits, and 137 522

procedures for the 1000 synthetic patients. We confirmed the same

counts of each data element after application of the OMOP on FHIR

data transformation tool to verify no data were lost.

Running CQL on OMOP against an OMOP instance containing

the SynPUF 1 k dataset resulted in a cohort with 94 members (9.4%).

Executing the same CQL using the CQL reference implementation

pointing to a HAPI FHIR server containing the same SynPUF 1 k

dataset represented as FHIR resources also generated a cohort
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containing 94 patients. Since patient IDs were kept consistent by the

ETL and OMOP on FHIR processes, we were able to confirm that

these cohorts were in complete agreement with κ = 1.0.

5 | DISCUSSION

We were able to express a HF phenotype algorithm as a CQL library,

and demonstrate consistent execution across multiple institutions

with different populations (NM and WCM), as well as different data

platforms (OMOP and FHIR) representing the same synthetic patient

population. Manual translation of the query logic was not required in

this process, thereby, limiting the potential for error. Thus, CQL

reduces duplication of effort, increases transparency and phenotype

portability, and reduces variability. Furthermore, our selection of a

clinically purposed language (CQL) will facilitate extension of this

approach beyond research phenotypes to clinical and analytical needs

of a LHS.

CQL libraries modularize logic using named statements and/or

functions, facilitating reuse, which is highly beneficial for phenotyping

as it enables defining cases and controls which often have shared

logic. Well-constructed libraries can then also extend past binary

case-control classification to include suspected cases, subphenotypes,

related phenotypes, and even groups of phenotypes. Libraries can also

be parameterized, which can be used to support local customization,

within well-defined bounds, to match site-specific clinical and opera-

tional procedures.

Although our translation of the HF phenotype logic performed

with high precision and recall, we note differences between the con-

ceptual models used by CQL and the OHDSI Circe library. In Circe,

phenotypes have specific entry and exit events, and the concept of

observation period is used to determine cohort membership, which are

not explicit concepts in CQL. Circe and CQL also have different inter-

nal AST representations. CQL uses a traditional AST with very simple

nodes, and a topology correlated with the complexity of the represen-

ted logic, while Circe uses nodes that encode additional information,

and generally has a simpler topology, only using the tree to encode

conjunction and disjunction, occurrence count restrictions, and tem-

poral correlations. CQL's more traditional AST structure lends itself

well to language applications like translation and interpretation, while

the structure of Circe may simplify SQL query construction and make

it easier to build user interfaces to author cohort definitions. Lastly,

criteria in Circe can be manually grouped into inclusion rules, which

supports the generation of attrition statistics and visualizations. Since

this grouping requires human intervention, it is not possible to gener-

ate meaningful inclusion rules in CQL on OMOP without introducing

further conventions (eg, annotations), which we decided against to

ensure cross-platform support for CQL-based phenotypes.

Using the FHIR data model for data element references resulted

in several advantages. Due to the popularity of FHIR, a data model

translation already existed for the OMOP CDM, which reduced the

amount of implementation work necessary for CQL on OMOP. The

HF phenotype logic references unambiguous data elements such as

conditions and procedures, which are highly mature entities in the

F IGURE 3 Results and validation flowchart for translation execution pipeline
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FHIR specification, and have very clear mappings to the OMOP CDM.

However, some phenotype definitions may reference more nuanced

data elements that may be more difficult to translate. While it may

take more upfront work to deal with these issues in the CQL engine,

this work will only have to be done once per target platform, reducing

overall work required for phenotyping, along with phenotype

variability.

The reduced expressiveness of Circe, compared to CQL, limited

our current CQL on OMOP implementation. As many institutions

within the OHDSI community develop cohort definitions using SQL,

R, or other languages as opposed to Circe, this may have been a pur-

poseful limitation by the OHDSI developers. CQL approaches the

expressiveness of a general-purpose programming language, and as

such can express arbitrary arithmetic, and has many aggregate func-

tions not supported by Circe (eg, Sum and PopulationStdDev). To

address these limitations Circe can either be extended to be more

expressive, or CQL on OMOP could bypass Circe and the OHDSI API

entirely and access the database directly. While the latter approach

would enable the full expressivity of CQL, the former approach is

more desirable, since it maintains compatibility with all of the

phenotyping and other tools in the OHDSI community.

An important limitation of the CQL language itself is that it is

optimized for rule-based logic using structured data elements, and

does not explicitly define any mechanism for natural language

processing (NLP) or integration with machine learning (ML) methods.

Both of these techniques are important to the task of phenotyping,46,47

and being limited to structured data and deterministic algorithms is a

significant restriction. However, CQL does provide a mechanism to

integrate with external systems using an approach called foreign func-

tion invocation (FFI). FFI enables a given engine implementation to make

functions available to the CQL library author that execute code in an

arbitrary environment, such as an NLP or ML pipeline, and make the

execution results available in CQL. Furthermore, CQL can leverage exis-

ting NLP systems that already utilize the FHIR standard to provide stan-

dardized models and normalization rules for integrating unstructured

data.48 These features could be used to develop extremely high fidelity

phenotypes that make use of the latest NLP and ML algorithms.

We acknowledge additional limitations within our work. First, our

evaluation was performed using a single phenotype (heart failure), and

does not include support for all operators within CQL at this time. We

selected the HF phenotype definition given its use of multiple data

elements (diagnoses, encounters, procedures, demographics), tempo-

ral logic, and aggregate functions (Count), which represents com-

monly used building blocks across other phenotype definitions.

Second, we recognize that the validation of 50 cases and 50 noncases

may be seen as minimal, and that our selection of noncases is not rep-

resentative of all patients not identified by the HF algorithm as cases.

Given that our focus was on a technical verification and not a clinical

validation, we believe that our review allowed us to focus on the most

probable sources of error. Third, the upfront cost of developing a CQL

engine for a new target platform may be prohibitive, and potential

implementers of the proposed approach would need to balance this

cost against potential benefits. If the implementer has no desire to

share or reuse existing phenotype definitions, or if cross-platform

phenotyping is not a requirement, then using existing query tools may

be more appropriate.

Despite the above limitations, we have shown that CQL can be

used to represent and execute a clinically validated phenotype, using

our CQL on OMOP engine. Due to its highly expressive nature, CQL

could be used to represent longitudinal phenotypes with highly com-

plex data relationships. Furthermore, in our experience, the CQL lan-

guage specification (with its canonical AST) makes implementing

language engines against arbitrary data platforms relatively easy.

Therefore, CQL is a promising candidate as a formal phenotype repre-

sentation standard that supports cross-platform execution.

6 | CONCLUSIONS

The task of EHR-driven phenotyping is critical to biomedical knowl-

edge generation, which supports the learning health system. Current

techniques suffer from portability and scalability issues, requiring

human intervention. This leads to errors, variability, lack of transpar-

ency, and greatly reduces potential throughput. To address these

issues, we investigated CQL as a candidate language for representing

clinical phenotype definitions, and demonstrated execution against

multiple data platforms without local customization. We believe this

approach could speed up phenotyping, regardless of the underlying

data platform. Using a computable standard representation would also

reduce duplication of work and potential for human error, and enable

the large scale phenotyping needed for learning health systems.

In future iterations of the PhEMA project we plan to extend CQL

language support in CQL on OMOP, translate additional clinical phe-

notypes into CQL, use CQL-based phenotype definitions in clinical

research studies, and extend existing phenotype authoring tools to

generate CQL. Furthermore, we plan to develop CQL execution

engines against other data platforms, such as the Informatics for Inte-

grating Biology and the Bedside (i2b2) platform,49 and extend CQL to

support NLP and ML. We will continue this work with existing

phenotyping communities to publish methods and tools with the ulti-

mate goal of convergence on a unified system to support high-quality

and high-throughput phenotyping efforts.
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