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Abstract

The Mycobacterium tuberculosis enzyme Rv2275 catalyzes the formation of cyclo(L-Tyr-L-Tyr) 

using two molecules of Tyr-tRNATyr as substrates. The three-dimensional structure of Rv2275 

was determined to 2.0 Å resolution, revealing that Rv2275 is structurally related to the class Ic 

aminoacyl-tRNA-synthetase family of enzymes. Mutagenesis and radioactive labeling suggests a 

covalent intermediate in which L-tyrosine is transferred from Tyr-tRNATyr to an active site serine 

(S88) by transesterification and with E233 serving as a critical base catalyzing dipeptide bond 

formation.

Cyclodipeptides (CDPs) and their diketopiperazine (DKP) derivatives are a large group of 

secondary metabolites that are produced predominately by microorganisms. Many complex 

DKP derivatives have received attention in recent years due to their diverse biological 

activities, including antibacterial (bicyclomycin, albonoursin), antifungal (cyclo(L-Phe-L-

Pro), cyclo(L-Phe-trans-4-OH-L-Pro)) and antitumor (phenylahistin, ambewelamides A and 

B) activities1–4. In all cases except albonoursin biosynthesis, the synthesis of the DKP 

scaffold is catalyzed by nonribosomal peptide synthases (NRPSs) either by dedicated 

NRPSs or as truncated products of larger peptide synthesis clusters5–8.

It was recently reported that the Streptomyces noursei protein AlbC catalyzes the formation 

of the albonoursin cyclodipeptide precursor cyclo(L-Phe-L-Leu) (cFL) using aminoacyl-

tRNAs9. AlbC is a 239-residue polypeptide that is unrelated not only to NRPSs but also to 

all other structurally and functionally characterized proteins. In silico analysis of gene 

databases identified 7 other proteins exhibiting sequence similarity to AlbC. Mycobacterium 
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tuberculosis has a chromosomally encoded AlbC homolog (Rv2275) exhibiting 26% 

sequence identity to AlbC. Recombinant M. tuberculosis Rv2275 catalyzed the Tyr-tRNA-

dependent formation of cYY in E. coli cell lysates9. In M. tuberculosis, the adjacent gene 

encodes a cytochrome P450 (Rv2276) that catalyzes C-C bond formation between the 

carbons ortho to the phenolic hydroxyl of cYY, producing what we term mycocyclosin (Fig. 

1a)10. Rv2276 was found to be an essential M. tuberculosis gene and it was suggested that 

either mycocyclosin was essential, or that the overproduction of cYY is toxic10,11.

The crystal structure of Rv2275 was solved at a resolution of 2.0 Å (Supplementary Table 

1,2; Supplementary methods). The structural model consists of the entire Rv2275 sequence 

minus forty-eight N-terminal residues (1–48), five C-terminal residues (285–289) and a loop 

between α6 and α7 (residues 212–216), which were not observed in electron density maps. 

Rv2275 exhibits a single domain 3-layer βαβ structure with a Rossmann fold (Fig. 1b; 

Supplementary Fig. 1). The core consists of a mostly parallel β-sheet bound on either side by 

helices. A structural homology search by secondary-structure matching (SSM)12 identified 

Rv2275 as being structurally similar to the catalytic domains of tyrosyl and tryptophanyl-

tRNA synthetases (class-Ic aa-tRNA synthetases). The top scoring result was the tyrosyl-

tRNA synthetases from Methanococcus jannaschii (MjTyrRS; PDBID=1J1U)13, with an 

r.m.s.d of 3.24 Å over 167 matched Cα positions, and 10% sequence identity (Fig. 1c). 

Rv2275 lacks the anticodon recognition domain typically found in aa-tRNA synthetases. 

Both Rv2275 and class Ic tRNA-synthetases are dimers, however they have significantly 

different dimer interfaces (Supplementary Fig 2).

Class I aa-tRNA synthetases contain an N-terminally located HIGH sequence that interacts 

with ATP. The HIGH sequence motif is located at the β2/α3 loop in an “open” 

conformation, held by interactions with α5. In Rv2275, the corresponding loop (β3/α2) lacks 

the same interactions with the corresponding helix but instead folds back on itself, with N91, 

Y93 and F94 completely occupying the position corresponding to the ATP binding site (Fig. 

1b; Supplementary Fig. 3). These interactions are most likely essential to the CDPS active 

site architecture, as the position and interaction of two crucial catalytic residues, S88 (β3/α2 

loop) and Y253 (β6) (see below) are strongly influenced by the conformation of the β3/α2 

loop.

There is very low sequence identity between the members of the CDPS family, with most 

exhibiting less than 30% overall sequence identity (Supplementary Fig. 4). Six of the twelve 

completely conserved residues are clustered near a surface accessible pocket that roughly 

corresponds to the amino acid binding pocket of class I aa-tRNA synthetases (Fig. 1d). With 

the exception of Y253, all of the strictly conserved pocket residues are contained within the 

two consensus CDPS sequences, H82x[LVI][LVI]G86[LVI]S88 and Y229[LVI]xxE233xP235 

identified earlier9. The base of the pocket consists of mostly hydrophobic residues (V84, 

G86, M170, L236, F237) with the exception of N251. Most of the strictly conserved 

residues in the substrate-binding pocket (G86, S88, Y229, E233, P235 and Y253) are 

arranged in two distinct clusters about the entrance to the hydrophobic pocket. On one side, 

S88 from the β3/α2 loop is hydrogen bonded (2.6 Å) to the side chain hydroxyl of Y253, 

while on the opposite side the side chains of Y229 and E233 project into the entrance (Fig 

1d).
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Determination of a CDPS crystal structure and localization of putative active site residues 

facilitates an examination of the CDPS mechanism. Since CDPSs utilize charged tRNA 

substrates, the enzymes must somehow co-localize two activated amino acids. One 

possibility is the binding of more than one charged tRNA per CDPSs subunit, with the 

enzyme catalyzing the formation of a dipeptide intermediate which then cyclizes. A second 

possibility is that the charged-tRNAs bind to a single site consecutively, with the first 

charged amino acid passed to an enzyme group by transesterification followed by release of 

tRNA. The second charged tRNA could then bind the same enzyme surface, followed by 

formation of dipeptide on the enzyme or the second tRNA.

To test these two possibilities enzyme kinetics and radioactive tagging experiments were 

performed. Firstly, kinetic parameters were determined for our Rv2275 enzyme preparation. 

Incubation of Rv2275 with L-Tyr, Tyr-tRNA, EcTyrRS, ATP and MgCl2 yielded cYY in a 

time dependent manner (Supplementary Fig. 5a) as previously observed 9. Rv2275 exhibited 

a Km value of 3.6 ± 0.3 μM for E. coli Tyr-tRNATyr and a turnover number of 2.50 ± 0.06 

s−1 (Supplementary Fig. 5b). The kinetic parameters, particularly the kcat/Km value observed 

here (0.7×106 M−1 sec−1) is comparable to the kcat/Km value of LvFemX (0.73×106 M−1 

sec−1) for E. coli Ala-tRNAAla, an aa-tRNA dependent nonribosomal peptidyltransferase for 

which the kinetic parameters are known14.

Rv2275 was then incubated with substoichiometric amounts of [14C]-Tyr-tRNATyr and the 

reaction mixture was fractionated by anion exchange HPLC to separate tRNA from Rv2275. 

Approximately 25% of the radiolabel coeluted with the protein (Fig. 2a), consistent with the 

formation of a covalent tyrosinoylated enzyme intermediate that is trapped under these 

conditions. Examination of strictly conserved residues suggested S88 as the likely 

nucleophile due to its relatively short hydrogen bond (2.6 Å) with the hydroxyl of Y253. 

Assays using the S88A mutant showed a complete loss of cYY-forming activity, and an 

abolition of protein radiolabeling (Fig. 2a; Supplementary Table 3).

Several additional mutants were made to examine the roles of conserved residues and to 

ensure that S88 was indeed the point of covalent attachment. The Y253F mutant retained a 

small but detectable amount of catalytic activity (200 fold decrease) consistent with the 

likely role Y253 plays in positioning and increasing the nucleophilicity of the S88 hydroxyl. 

The Y229F mutant only decreased in activity 20 fold, suggesting the phenolic hydroxyl 

plays a role in substrate binding. Both the E233A and the E233Q mutants demonstrated a 

complete loss of cYY-forming activity. The isosteric E233Q mutant was examined for 

retention of the covalent intermediate by HPLC (Fig. 2a). The E233Q mutant retained about 

55% of the radiolabel amounting to approximately twice as much radiolabel as wild type. 

These results argue that E233 is not the point of covalent attachment and may play a role in 

the collapse of the tyrosyl-enzyme ester intermediate. The presence of the early peak (Tyr) 

in catalytically incompetent S88A and E233Q mutants is due to the hydrolytic instability of 

aminoacyl-tRNA.

We confirmed the presence of a covalently bound intermediate by isolating the tyrosyl-

enzyme intermediate under two different denaturing conditions. In the first, 

substoichiometric amounts of [14C]Tyr-tRNATyr was mixed with WT Rv2275, E233Q and 
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S88A mutants and the proteins were separated on SDS-PAGE and autoradiographed. 

Radioactivity is clearly visible associated with WT Rv2275, while the E233Q mutant 

retained a higher amount of the radiolabel and S88A did not retain any radiolabel (Fig 2b). 

In a second experiment, His6 tagged WT and mutant proteins were similarly radiolabled and 

bound to Ni-NTA beads. Beads were repeatedly washed with 5M urea. Denatured protein 

was eluted with imidazole and the radioactivity in the fractions was measured. No 

radioactivity above background was detected in the imidazole eluate of the S88A mutant. 

The WT Rv2275 and the E233Q mutant retained 3% and 15% of the total radioactivity, 

respectively (Supplementary Fig. 6). These results confirm the presence of a covalently 

bound tyrosyl-enzyme intermediate and S88 as the point of covalent attachment.

Based on the structure and our mutational analysis we propose catalysis occurs with the 

initial binding of Tyr-tRNATyr in an orientation such that α-amino group of tyrosine is 

positioned to allow for interaction with E233 (Fig. 3a). Nucleophilic attack by the S88 

hydroxyl on the ester carbonyl results in the formation of the covalently tyrosinoylated 

enzyme and free Tyr-tRNA (Fig. 3b). In order for a second Tyr-tRNATyr to bind, the 

covalently bound tyrosine must swing out of its original binding pocket and the rotation of 

the side chain of S88 (from chi 1 = 55° to chi1 = 178°) would place the tyrosine in a large 

secondary surface depression (Supplementary Fig. 7). The formation of radiolabled 

tyrosinoylated enzyme with the E233Q mutant form of Rv2275 suggests that this initial 

transesterification chemistry does not require E233. The second Tyr-tRNATyr binds and the 

chemistry here becomes ambiguous. The α-amino group of the enzyme-bound tyrosine 

could attack the carbonyl ester of the Tyr-tRNATyr to generate the enzyme-bound dipeptide 

or the α-amino group of the tRNA-bound tyrosine could attack the enzyme bound tyrosine 

to generate the tRNA-bound dipeptide. The structure suggests that the latter is more likely, 

given the need for a general base to deprotonate the α-amino group to attack the enzyme 

ester bond. Once the first peptide bond is formed, the second chemical step occurs, and in 

this step E233 could assist in protonating the product 3′-hydroxyl group of tRNA. It is 

unclear how the protein plays a role in orienting the dipeptide to promote this cyclization 

chemistry, and although the intramolecular cyclization of a dipeptide ester is facile, it 

requires that the dipeptide be in a cis conformation to place the amine in proximity to the 

ester15,16.

In conclusion, the structural determination of Rv2275 is the first of a member of the 

cyclodipeptide synthetase family and unexpectedly resembles the catalytic domain of class I 

tRNA-synthetases. However, Rv2275 lacks an ATP binding site, an anticodon binding 

domain and exhibits a different dimerization interface. The reaction proceeds via a ping-

pong kinetic mechanism with a unique intermediate produced by an aminoacyl 

transesterification reaction. Future structural and bioinformatics studies may shed light on 

the nature of their evolution; did they evolve from fully functional tRNA-synthetases by 

losing features, or do they represent a divergence from a common primitive tRNA 

synthetase ancestor?

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

aa-tRNA aminoacyl tRNA

aminoacyl-tRNA synthetases aa-tRNA synthetases

CDPS cyclodipeptide synthetase

cYY cyclo(L-Tyr-L-Tyr)

DKP diketopiperazine

EcTyrRS Escherichia coli Tyrosyl-tRNA synthetase

MjTyrRS Methanococcus jannaschii Tyrosyl-tRNA synthetase

NRPS nonribosomal peptide synthases

TyrRS Tyrosyl-tRNA synthetase
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Figure 1. Cyclodityrosine synthetase reaction and 3-dimensional structure
(a) Reaction scheme for synthesis of cyclodityrosine in Mycobacterium tuberculosis. Ribbon 

diagrams of (b) Rv2275, (c) catalytic domain of MjTyrRS. The terminal ends of a mobile 

loop not seen in the Rv2275 structure are labeled with red diamonds. The CP1 domain, a 

series of α helices located in the middle of the Rossmann fold of type I aa-tRNA 

synthetases, is colored green. (d) Stick diagram of residues around the two sequence motifs 

of CDPSs (H82x[LVI][LVI]G86[LVI]S88 and Y229[LVI]xxE233xP235) and which are 

proposed to be involved in binding and catalysis. Residues at the base, the rim and the 

periphery of the pocket are colored with cyan, yellow, and salmon carbons respectively. A 

dotted line is shown to illustrate the hydrogen bond between S88 and Y253. (e) Model of the 

S88-tyrosyl ester with the tyrosyl group bound to the internal pocket, and S88 in its 

observed position. Tyrosine ester shown with yellow carbons and S88 with green carbons. 

Potential hydrogen bonds between E233, Y229 and the tyrosyl amide shown as dashes. The 

side chain of N251 is approximately 4.5 Å from the tyrosyl hydroxyl and therefore the 

dashed lines are for illustrative purposes only.
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Figure 2. Visualization of acyl-enzyme intermediate
(a) Enzyme was mixed with [14C]Tyr-tRNATyr and separated by ion exchange 

chromatography as described in Methods. Radioactive counts (cpm) from individual 

experiments were overlaid; WT Rv2275 (orange), S88A (magenta), and E233Q mutants 

(green) along with A280 nm (dotted Blue) of the chromatogram. (b) Enzyme was mixed with 

[14C]Tyr-tRNATyr, separated on SDS-PAGE and autoradiographed as described in 

Supplementary Methods. Left panel is Coomassie blue stained SDS-gel. Lanes 1–3 are 20 

μg - WT Rv2275, E233Q and S88A mutants, respectively; lane 4, molecular weight markers 

(top to bottom, 250, 150, 100, 75, 50, 37, 25, 20 and 15kDa). Right panel developed 

autoradiogram of 20 μg WT Rv2275 (lane 1), E233Q (lane 2) and S88A (lane 3) mutants, 

respectively.
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Figure 3. Proposed mechanism of cyclodipeptide formation for cyclodipeptide synthetases
Shown is the mechanism where the dipeptide ester is formed on the tRNA. An equivalent 

argument could be made for the formation of the dipeptide ester of S88, however the roles of 

the enzyme groups would not change.

Vetting et al. Page 9

Nat Chem Biol. Author manuscript; available in PMC 2011 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


