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Abstract

Given the increasing prevalence of lung cancer worldwide, an auxiliary diagnostic method is

needed alongside the microscopic examination of biopsy samples, which is dependent on

the skills and experience of pathologists. Thus, this study aimed to advance lung cancer

diagnosis by developing five (5) artificial neural network (NN) models that can discriminate

malignant from benign samples based on infrared spectral data of lung tumors (n = 122; 56

malignant, 66 benign). NNs were benchmarked with classical machine learning (CML) mod-

els. Stratified 10-fold cross-validation was performed to evaluate the NN models, and the

performance metrics—area under the curve (AUC), accuracy (ACC) positive predictive

value (PPV), negative predictive value (NPV), specificity rate (SR), and recall rate (RR)—

were averaged for comparison. All NNs were able to outperform the CML models, however,

support vector machine is relatively comparable to NNs. Among the NNs, CNN performed

best with an AUC of 92.28% ± 7.36%, ACC of 98.45% ± 1.72%, PPV of 96.62% ± 2.30%,

NPV of 90.50% ± 11.92%, SR of 96.01% ± 3.09%, and RR of 89.21% ± 12.93%. In conclu-

sion, NNs can be potentially used as a computational tool in lung cancer diagnosis based on

infrared spectroscopy of lung tissues.

Introduction

Lung cancer is considered the leading cause of death due to cancer worldwide [1] and has

been the biggest cancer killer among men globally, and for women in countries such as North

America, East Asia, Northern Europe, Australia, and New Zealand [2].

The initial evaluation of patients suspected of lung cancer starts with history taking and

physical examination complemented with complete blood count and chest radiography [3, 4].
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A negative result from the chest radiography, however, is not definitive as the location and size

of the tumor, state of metastasis, and type of lung cancer must be checked as well [3, 5]. All

patients who are eligible for treatment with the intention of curing the disease must be offered

with computed tomography (CT) [4, 6], a positron emission tomography (PET) scan if neces-

sary, and then a diagnostic evaluation shall be made [3]. CT scans must be done prior to any

invasive procedures as it provides knowledge regarding anatomical changes which increase

the diagnostic yield of investigation [4]. At present, Centers for Disease Control (CDC) only

recommends low-dose computed tomography (LDCT) as the means of screening lung cancer

[7]. However, this process is still known to provide false-positive results, leading to overdiag-

nosis [7], while also exposing the patients to low doses of radiation [7, 8].

Combinations of other testing are also employed. Magnetic resonance imaging (MRI),

bronchoscopy, and histopathologic examinations are done as needed for diagnosis [9].

Although MRI is known to offer a non-invasive assessment without the radiation, it is still sus-

ceptible to cardiac and respiratory motion artifacts [9]. Meanwhile, bronchoscopy plays an

important role in confirming diagnosis but it is dependent on tumor size and location [4]. The

current gold standard, which is the microscopic examination of hematoxylin and eosin

(H&E)-stained biopsies, would take about a week to complete [10]. Additionally, it is prone to

interobserver variability, leading to diagnostic disagreement among pathologists which may

affect the prognosis and future course of action [11–16]. In light of a disagreeing diagnosis, a

genetic and/or molecular analysis may be requested for an even more definite diagnosis and

treatment guidance [17].

Innovations to improve the diagnosis of lung cancer approach quickly. Attenuated total

reflection Fourier transform infrared (ATR-FTIR) spectroscopy is one of the newer methods

being ventured for a fast yet reliable diagnosis for cancer. It has been proven that ATR-FTIR

can identify molecular fingerprints from different biofluids, thus making it a promising clinical

diagnostic tool [18]. Consequently, it has been initially applied for the diagnosis of breast can-

cer and gynecological cancer, both of which have yielded high sensitivity and specificity values

[19, 20]. Bangaoil et al. have also used it as an adjunct method in the assessment of H&E-

stained biopsies of lung cancer, and it was concluded to be able to provide results that are at

par with the gold standard [21].

Ergo, an axillary tool that has the combined characteristics of the aforementioned auspi-

cious diagnostic measurement and the latest technological update may be utilized that would

give birth to advancement in medical diagnostics. This would not only relieve the workload of

medical professionals but could also provide a tool that is even more specific and sensitive

with a shorter turn-around time.

Artificial intelligence (AI), more specifically deep learning (DL), has proven its ability over

the past few years in several facets of everyday activities. These advancements of AI technology

have also been integrated into several cancer studies, such as in thyroid cancer [22], ovarian

cancer [23, 24], and breast cancer [25] to improve the accuracy and speed of diagnosis, ulti-

mately delivering better healthcare services to patients. Its application in lung cancer diagnosis

has also started. Most of which have been generally focused on the image analysis of either

lymph nodes or pulmonary nodules [26–28]. One of the downsides, however, of image-based

AI diagnostics is that it is heavily reliant on the abnormalities that are only visible on the

scanned regions. This may cause a late diagnosis for the patient who might be already suffering

from an advanced stage malignancy. Additionally, unstandardized protocols and procedures

of different laboratories regarding dyes and other contrasting agents may become a hindrance

in the training of the AI model.

This study then aims to combine the potential of both ATR-FTIR and AI in the diagnosis of

lung cancer. FTIR-based AI gives an edge over image-based AI as it would only require
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minimal sample amount and preparation [29] all while being able to capture small differences

in detailed cell signatures [30], hence answering the limitations of image-based AI diagnostics.

Additionally, the results generated by FTIR come at a smaller file size that is easier to process

compared to images. Its training would then be faster, easier, and cost-efficient. The possibility

of utilizing both FTIR spectroscopy and AI could secure an efficient diagnosis with high accu-

racy without compromising the patient’s health by repeatedly exposing them to health hazards

such as radiation.

Six (6) of the most widely used machine learning models were compared with five (5)

designed NN models in terms of classifying spectral data of lung samples as malignant or

benign. This method may serve as an efficient adjunct tool that could provide more insights

for pathologists and medical practitioners upon diagnosis.

Materials and methods

Ethical clearance

The study of Bangaoil et al. was ethically cleared by the Institutional Review Boards (IRB) of

both study sites, (1) University of Santo Tomas Hospital (USTH) in Manila, Philippines

(Ref. No.: IRB-2017-09-191-IS) and (2) Mariano Marcos Memorial Hospital and Medical Cen-

ter (MMMH-MC) in Ilocos Norte, Philippines (Ref. No.: MMMHMC-RERC-15-006) [21].

The current study was also ethically cleared by the Faculty of Pharmacy Ethics Committee

(FOPREC) in Manila, Philippines (Reference No.: FOP-ERC-2021-01-014). The current study

was limited to the use of the spectral data of the said specimen; thus, no written informed con-

sent was applicable as well. No additional procedures were performed that may potentially

cause a risk of harm to subjects. The current study was done in accordance with the funda-

mental principles of ethics and the Declaration of Helsinki.

Study population and sample preparation

FTIR spectral data (n = 122; 56 malignant, 66 benign) of FFPE lung biopsies from 112 adult

patients seen at MMMH-MC and USTH from 2015 to 2017 comprised the dataset. No partici-

pants were recruited for this study as the spectral data were acquired from the previous study

of Bangaoil et al. [21].

Sample preparation and pretreatment of specimens before ATR-FTIR analysis were also

discussed in the previous study [21]. Three (3) adjacent sections were cut uniformly (5-μm

thick) from the FFPE cell blocks using a microtome (Leica Biosystems, Germany) and then

mounted on glass slides. The outer sections (2) were stained with H&E and distributed to two

(2) external evaluators (pathologists) blinded of the original diagnosis for validation. The mid-

dle section was deparaffinized following standard protocols using xylol [31, 32], washed with

water, and left to air dry overnight before spectral analysis [33]. The classification (i.e., whether

spectral data was benign or malignant) was based on the microscopic examination of H&E-

stained tissues from each study site.

Prior to spectral measurement, performance qualification (PQ) test protocols using the

automated validation program of the OPUS 8.0 software were conducted. The deparaffinized

tissue sections were placed and oriented directly in contact with the ATR diamond surface (2

mm x 2 mm). All 122 tissue sections were examined in the mid-IR region (4000 cm-1 to 600

cm-1) with an average of 48 scans added to obtain an adequate signal-to-noise ratio [34–36],

yielding 122 spectral data with a resolution of 4 cm-1. This is further supported by the soft-

ware’s validation program as “acceptable”. Majority of the malignant samples were scanned

entirely since the specimens were composed mostly of cancer cells. Otherwise, only the areas

identified by the pathologists to contain cancer cells were scanned. For the benign tissue
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sections, they were scanned randomly, covering 50% of the total area of the specimen. All spec-

imens were scanned three (3) times for reproducibility. Spectral data in the fingerprint region

(1800 cm-1 to 850 cm-1) were extracted and the median infrared spectra were calculated. The

overall method implemented in the study is summarized in Fig 1, through a generalized pro-

cess flowchart.

Data measure/instrumentation

Bruker Alpha II Fourier Transform Infrared (FTIR) spectrometer (Bruker Optics, Ger-

many) equipped with a platinum ATR single reflection monolithic diamond sampling

module was used to acquire the infrared (IR) spectra. The fully automated validation pro-

gram of OPUS 8.0 software (Bruker Optics, Germany) was used for the performance

qualification (PQ) test. The same software was used for baseline correction of obtained

IR spectra.

MATLAB R2020b (MathWorks, USA) was used to normalize all the spectral data, and to

simulate the training, validation, and testing of all NN models and other machine learning

models. All of the deep learning designs and classification models were coded from scratch to

implement the design specifications of each model.

All models were primarily implemented on a personal computer workstation that has an

AMD Ryzen 5 3600 6-core 12-thread processor, 3.60 GHz CPU, 16 GB RAM, 500 GB SSD

hard drive, and an EVGA RTX 3070 XC3 ULTRA (California, United States).

Fig 1. Experimental design process flowchart. The figure shows the experimental design of the study from acquisition of spectral data to machine learning

training and evaluation.

https://doi.org/10.1371/journal.pone.0268329.g001
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Pre-processing of spectral data

The spectral dataset XSD consisted of 122 elements which corresponded to 66 known benign

and 56 known malignant samples. Each element X ið Þ
SD 2 XSD in the spectral data set consisted of

462 variables, which corresponded to the absorbance of a tissue sample for each wavenumber

from 1800 cm-1 to 850 cm-1.

Normalization and baseline correction comprised the pre-processing of the spectral data

set, XSD. All spectral data were normalized using peak normalization before peak analysis and

spectrum visualization. The normalization was performed to eliminate bias from y-value dis-

crepancies among the IR samples due to environmental noise and instrument parameters. The

peak normalization equation is as follows

X ið Þ
SD ¼

X ið Þ
SD � min X ið Þ

SD

� �

max X ið Þ
SD

� � 8 sample i ð1Þ

where the min X ið Þ
SD

� �
and the max X ið Þ

SD

� �
terms refer to the minimum and the maximum

absorbance of the ith spectral data, respectively. Note that the normalization was done per spec-

tral data element/vector X ið Þ
SD; hence the spectrum from other spectral vector does not influence

the results of normalizing another spectral vector.

As regards the training process, the spectral data was normalized using z-score normaliza-

tion since it is the recommended method of normalization for the scaled exponential linear

unit (SELU)-based feed forward neural networks [37]. The normalization was done per spec-

tral vector using the equation

X ið Þ
SD ¼

X ið Þ
SD � mean X ið Þ

SD

� �

std X ið Þ
SD

� � 8 sample i ð2Þ

where the mean X ið Þ
SD

� �
and std X ið Þ

SD

� �
notations denote the mean and standard deviation of the

elements of the vector X ið Þ
SD.The implemented normalization scales the elements of X ið Þ

SD to have

an overall mean of 0 and a standard deviation of 1. Note that similar to the peak normalization,

the z-score normalization was performed per spectral vector X ið Þ
SD.

Prior to the acquisition of spectral data, baseline correction and performance qualification

tests had been conducted in the previous study [21]. The performance qualification tests

included the signal-to-noise test, deviation from 100%-line test, interferogram peak test, and

wavenumber accuracy test, all of which must be passed before ATR-FTIR analysis could be

performed. XSD was processed using Opus 8.0 (Bruker Optics, Germany). Rubber-band base-

line correction with 64 baseline points was performed to approximate a polynomial fit based

on the minima of y-values in each spectral vector X ið Þ
SD. The fitted polynomial was then

deducted for all X ið Þ
SD to create the baseline-corrected spectrum [38–42]. Finally, the corrected

spectrum was scaled within the fingerprint region, from 1800 cm-1 to 850 cm-1 [40, 43]. Other

than baseline correction using the rubber band method, no further user intervention was done

to assess the spectral data.

Visual peak analysis

To characterize the data set, significant absorbance peaks in the fingerprint region were visu-

ally identified in XSD. A test of normal distribution using the Shapiro-Wilk test was performed
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for the identified peaks to decide whether a parametric or non-parametric test should be con-

ducted. Since the spectral data set followed a non-normal distribution, they were subjected to

the Mann-Whitney U test to further assess if the peaks of malignant samples were significantly

different (p-value< 0.05) from that of benign samples. All the said statistical analyses were

performed using MATLAB 2020b.

Principal component analysis

To visualize the distribution of the spectral characteristic of the malignant and benign samples,

XPCA was plotted in a principal component analysis (PCA) biplot using the two most dominant

principal components, F1 and F2. The process of translating XSD to the reduced variable space,

XPCA (XSD! XPCA) is given by the equation

XPCA ¼ XSD �
�XSDð Þ � S

!

F1

T; S
!

F2

T
h i

ð3Þ

where XPCA 2 RN×2 is the reduced sample space, �XSD is the mean absorbance value of

x
! ið Þ
SD 2 XSD8 i � N, and S

!

F1
and S

!

F2
are the eigenvectors corresponding to the largest two eigen-

values of the covariance matrix SSD ¼ XSD �
�XSDð Þ T � XSD �

�XSDð Þ.

Machine learning models

The most common machine learning models were utilized as classical benchmarks to compare

the designed NN models in terms of diagnostic performance metrics. six (6) classification

models were implemented in the study: linear discriminant analysis (LDA), support vector

machine (SVM), logistic regression (LR), decision tree (DT), random forest (RF), and Naïve

Bayes (NB).

Five (5) neural networks were designed and implemented, wherein three (3) were feed for-

ward neural networks (FNN), one (1) single-layered recurrent neural network (RNN), and

one (1) convolutional neural network (CNN). A Gaussian random initialization was per-

formed to initialize the weights, while a zero-value initialization was done for the biases. All

neural networks utilized scaled exponential linear unit (SELU) activation functions for all con-

nections except for the output, which utilized a softmax function. Stochastic gradient descent

was used to train and optimize the NN parameters where they were updated using adaptive

gradient algorithm (AdaGrad). The cost function made use of the binary cross-entropy cost

function. Genetic algorithm (GA) was used to optimize the NN hyperparameters.

Linear discriminant analysis. The LDA model was constructed following Fisher’s Crite-

rion [44], J wð Þ ¼ wTSBw
wTSww

, where SB and SW denotes the between-class and the within-class

covariance matrixes, derived from the training set XTR 2 XSD, respectively; where XTR is a

matrix of samples having 462 variables. Here, w is the eigenvector with the highest eigenvalue

derived from the solution of
dJ wð Þ
dw which is equal to eig S� 1

C SB
� �

. The probability of malignancy, p
(X), for each sample X(i) was derived using the formula

p Xð Þ ¼ softmax ½fnorm s;mB; sð Þ; fnorm s; mM; sð Þ�ð Þ j s ¼ X � w ð4Þ

where the function fnorm denotes the value of a Gaussian probability density function at a point

s, with means μB and μM which are the benign and the malignant mean projected values,

respectively, from the training set, and σ is the linear distance between μB and μM. The process

was repeated for 50 trials to ensure stability.

Support vector machine. The designed support vector machine (SVM) is a linear SVM.

The SVM is designed using the elements of the training set XTR 2 XSD, by considering an
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unconstrained Lagrange optimization problem [45, 46]. To determine sub-optimal values for

the parameters of the SVM, stochastic gradient descent (SGD) was used. A grid search was per-

formed to select the best learning rate for the SGD; the validation set accuracy was considered

as the optimization metric which determined the superiority of one model over the other. The

output probability diagnosis of the model for benign and malignant cases was computed using

Platt’s method [47]. The process was repeated for 50 trials to ensure stability.

Logistic regression. The designed logistic regression (LR) model is a 462-input classifier

with an output probability quantifying the likelihood of a sample to be malignant. In training

the model, SGD was used over a training set, XTR 2 XSD using the binary cross-entropy func-

tion as the loss function. A grid search was performed, similar to that of the SVM, to optimize

the SGD learning rate. The process was repeated for 50 trials to ensure stability.

Decision tree and random forest. The classification and regression trees (CART) algo-

rithm were used to generate decision trees (DTs) of binary splits. The Gini’s diversity index

[48] was used to find the best input variable (ω = XT | ω 2 R462 × N) for splitting the training

set for each iteration of branching. Since the values of ω are continuous, the best value of sepa-

ration was identified by considering the variable ωj 2 ω having the least Gini metric [49]. The

branching was recursively performed for each newly created node until the performance in the

validation set accuracy decreased. The process was repeated for 50 trials to ensure stability.

The designed random forest (RF) model utilized the creation of trees following the previ-

ously discussed. The diagnosis of the RF was determined as the prevailing diagnosis made by

its constituent bags of DTs. To determine the optimum number of trees NRF for the RF, a grid

search from 3 to 100 trees was performed. The validation set accuracy was considered as the

optimization criteria of the search. Each simulation was repeated over 50 times for each itera-

tion to ensure stability. The average performance metric over the 50 trials served as the final

performance metric of the RF with the number of trees set to NRF.

Naïve bayes. The designed NB is a classifier of 2 classes. For each input variable ωj 2 ω,

the best value of separating the two sub-classes was determined. The algorithm for finding the

best value of separation is the same as that of the DT and RF designs where the Gini’s index

was used. The NB classifier outputs a malignant diagnosis when the probability obtained was

more than 50%, otherwise the diagnosis is benign. In order to determine the optimal number

of input for the classifier, the number of inputs was increased from 3 to 462, where the inputs

of the least GINI(j)t value were considered first. The optimization was terminated at the itera-

tion where the validation accuracy of the model started to decrease. Each iteration of was

repeated for 50 trials, where the average validation accuracy from the 50 trials was the consid-

ered optimization metric criterion. The final NB constituted to the design with the highest

average validation accuracy.

Feed forward neural network design. Three (3) FNN models were designed with varying

layer sizes (N = 2, N = 4, N = 8). The number of neurons per layer was kept constant for every

hidden layer. Each hidden layer hi made use of a 90% SELU dropout as recommended by

SELU-based NNs [37]. Fig 2 shows the general architecture of the designed FNNs.

Recurrent neural network design. The designed RNN classifier made use of a recurrent

neural network (RNN) base, coupled with a single-layered FNN at its output layer. The

designed RNN architecture is illustrated in Fig 3, where an unrolled RNN is shown.

Convolutional neural network design. The designed convolutional neural network

(CNN) model classifier made use of a CNN base with a single-layered FNN connected at the last

convolutional layer (Fig 4). The last convolutional layer was flattened to allow connectivity to the

FNN layer. The filter size and the filter skip were kept the same for all convolutional layers. Fur-

thermore, the number of kernels in the CNN progressively increased by a factor of 2N from the

input layer to the output layer; where the variable N denotes the Nth convolutional layer.
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Genetic algorithm design

Each NN was optimized using genetic algorithm (GA). All designed GA had the same hyper-

parameter configurations for the maximum number of generations (G), the number of indi-

viduals (N), the mutation rate (%m), the crossover method, and the fitness function. An

individual is a solution that is made up of a unique combination of NN parameters. The gener-

ation of individuals begins once each parameter has been accurately defined. Individuals are

created at random in this method. This stochastic generation of individuals refers to the selec-

tion of a random value for each parameter of each individual. The GA architecture per

designed NN only varied in terms of individual gene expression; since each NN type had dif-

ferent architectures and hence different NN hyperparameters. To limit the GA search space,

the values for each hyperparameter were bounded in the initialization process. Table 1 summa-

rizes the gene expression for each NN.

A population of 30 individuals was created for each designed GA, which was evolved up to

30 generations. Individuals were ranked using the validation set accuracy, where individuals

exhibiting higher validation set accuracy were declared fitter individuals. An elitism criterion

was implemented where 50% of the fittest individuals were merited 100% chance to mate to a

Fig 2. FNN design architecture.

https://doi.org/10.1371/journal.pone.0268329.g002

Fig 3. RNN design architecture.

https://doi.org/10.1371/journal.pone.0268329.g003
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respective random individual within the population while the other 50% were replaced by new

individuals resulted in the crossover of elite individuals. Elite individuals were carried over to

the next generation. Considering mutation, the 50% least fit individuals were assigned a 5%

mutation rate where a completely random chromosome was assigned to a mutated individual.

The GA was terminated when the number of iterations reached the maximum generation

Fig 4. CNN design architecture.

https://doi.org/10.1371/journal.pone.0268329.g004

Table 1. Neural network hyperparameters for GA.

GA-optimized hyperparameters

FNN (N = 2, N = 4, N = 8) RNN CNN

variable search space variable search space variable search space

Epoch (E) [10,300] 2 N Epoch (E) [10,300] 2 N Epoch (E) [10,300] 2 N
Learning rate (LR) 10-k | k = [0,7] 2

R
Learning rate (LR) 10-k | k = [0,7] 2

R
Learning rate (LR) 10-k | k = [0,7] 2

R
Neurons per layer (l) [2,30] 2 N RNN input partitions (ΔT) [10,100] 2 N Number of conv. Layers (N) [1,5] 2 N
AdaGrad optimization constant

(ε)

10-k | k = [0,7] 2

R
Neurons per fold (lf) [2,30] 2 N Filter size (N(;)) [2,11] 2 N

Neurons per FNN layer (l) [2,30] 2 N Filter skip (s) [2,N(;)] 2 N
AdaGrad optimization constant

(ε)

10-k | k = [0,7] 2

R
Kernel count for N = 1 (k) 2k | k = [1,5] 2 N

Neurons per FNN layer (l) [2,30] 2 N
AdaGrad optimization constant

(ε)

10-k | k = [0,7] 2

R

Non-optimized hyperparameters

Weight Initialization Gaussian Random: s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

input size ;
q

m ¼ 0

Input Normalization
Z-score normalization: x! :¼

x! � mean x!ð Þ
std x!ð Þ

Activation Functions Input/Hidden layers–SELU ()

Output layer–softmax ()

NN cost function Binary cross-entropy

FNN dropout/ regularization 90% SELU dropout

Training optimizer AdaGrad stochastic gradient descent (SGD)

https://doi.org/10.1371/journal.pone.0268329.t001
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count of 30. The fittest individual in the 30th population is taken as the GA’s resulting solution.

The GA per NN design was repeated for over 50 trials to ensure stability. All the said hyper-

parameters of the GA are summarized in Table 2.

Evaluation of models

Stratified k-fold cross-validation was performed to select the best design among the models,

where k = 10. In the 10-fold cross-validation, the data was divided into k = 10 folds of equal

sizes consisting of data of approximately equal quantity for each class. 70% of the spectral data

set, XSD, were used for the training set STR� XSD, and the remaining 30% were equally divided

for the validation set SV� XSD (15%) and the test set STS� XSD (15%). To ensure greater stabil-

ity, the cross-validation procedure was repeated over 50 trials (T) [50]. The elements of the sets

STR, SV, and STS were randomly reselected from XSD for each trial. The sets satisfied the criteria

S ið Þ
TR [ S

ið Þ
V [ S

ið Þ
TS ¼ XSD and S ið Þ

TR \ S
ið Þ
V \ S

ið Þ
TS ¼ ;8i 2 N � T. For each set, the ratio of malignant

and benign samples was preserved.

To evaluate the performance of each model, the metrics to be quantified were the metrics:

area under the curve (AUC), accuracy (ACC), positive predictive value (PPV), negative predic-

tive value (NPV), recall rate (RR), and specificity rate (SR). The overall mean and standard

deviation of the metrics over the 50 trials were obtained using the formulas

Mm ¼
1

T

XT

1

1

N

XN

1
mn;t

� �

ð5Þ

X

m
¼

1

T

XT

1
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

1
mn;t � �mn;t

� �2

N � 1

s

ð6Þ

in which Mm and Sm are the overall mean and overall standard deviation of a metric m, where

mn,t is the metric value of a metric m, for a trial t 2 N� T and a fold n 2 N� 10. In addition,

the variable �mn;t in Eq 6 is the N-fold mean of a metric m, which is also equal to 1

N

XN

1
mn;t

from Eq 5.

Pseudo-clinical test

122 FFPE lung cells or tissue blocks used to acquire the spectral data set were reevaluated by

two (2) external evaluators (pathologists) blinded to the original diagnosis of the respective

study sites. Microscopic analysis was performed by the external evaluators by identifying

H&E-stained sections of the samples as either malignant or benign. After which, the samples

Table 2. Hyperparameters of GA design.

Hyperparameter Description/Value

Maximum number of generations (G) 30

Number of individuals (N) 30

Mutation rate (%m) 0% for the fittest 50%; else 5%

Crossover rate (%c) 100% for fittest 50%; else 0%

Crossover method Single point crossover

Fitness function Validation set accuracy

Elitism Fittest 50% as parents with 100% survival rate, and 50% as new individuals

Termination criteria Generation count reaches G

https://doi.org/10.1371/journal.pone.0268329.t002

PLOS ONE Artificial neural network in lung cancer diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0268329 May 12, 2022 10 / 28

https://doi.org/10.1371/journal.pone.0268329.t002
https://doi.org/10.1371/journal.pone.0268329


were clustered (concordant or discordant) based on the results of the reevaluation. To ascer-

tain the probability of discordant lung tissue samples as either malignant or benign in origin,

the NN models were used to provide a prediction per sample.

In the prediction process, the NN models were retrained using the concordant lung spectral

data as the training set while the discordant spectral data were used as the test set. Each NN

type (FNN2, FNN4, FNN8, RNN, and CNN) underwent 50 trials and was run over 10 times to

account for the instability of the NN models. The hyperparameters derived from the GA opti-

mization process were used to design the 50 NNs per model type. The average probability pre-

sented by each NN model design for each sample was then determined.

Results

Spectral data

The spectral data set consisted of 122 spectral vectors comprising 56 malignant FTIR data and

66 benign FTIR data. The data set was further reduced to 118 (53 malignant and 65 benign) by

the removal of 4 outlier spectra that had peaks that deviated from the rest of the spectral data.

Each spectral vector consisted of 462 elements which constituted absorbance readings within

the fingerprint region of 1800 cm-1 to 850 cm-1 at ~2 cm-1 steps. The clinical characteristics of

the lung samples were presented in the study of Bangaoil et al. [21]. The median absorbance

spectrum of the benign and malignant lung tissue samples is shown in Fig 5.

Fig 5. Median ATR-FTIR absorbance spectra of malignant (n = 53) and benign (n = 65) lung tissue samples. The figure shows the median FTIR spectrum of

malignant and benign lung tissue samples and their corresponding peaks identified via visual analysis.

https://doi.org/10.1371/journal.pone.0268329.g005
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Visual peak analysis of spectral data

All of the visually identified absorbance peaks for malignant and benign samples in the finger-

print spectral region, with their corresponding functional group, vibrational mode, molecular

source assignments, and p-values are indicated in Table 3. The test of homogeneity demonstrated

distinct differences (p<0.05) between the absorbance peaks of malignant and benign samples,

specifically at bands, 1537 cm-1 / 1535 cm-1, 1314 cm-1 / 1312 cm-1, 1051 cm-1 / 1030 cm-1, and

880 cm-1 / 878 cm-1. No distinct differences (p>0.05) were noted at bands 1636 cm-1 /1638 cm-1,

1452 cm-1 / 1452 cm-1, 1401 cm-1 / 1397 cm-1, 1236 cm-1 / 1236 cm-1, 1160 cm-1 / 1160 cm-1.

This implies that identified molecular sources that corresponded to the wavenumbers with sig-

nificant differences were distinct among the two classes. Amide II proteins were found to have

significantly decreased absorbances in malignant samples. Phosphorylated protein and glycogen,

conversely, were found to have increased absorbance values in malignant samples. This finding

suggests that identified molecular sources, amide II, glycogen, and phosphorylated protein, may

be considered as a point of comparison between malignant and benign classes.

Principal component analysis of spectral data

The variation between benign and malignant samples is shown in Fig 6. As presented in the

PCA plot, the first principal component F1 was associated with 85.65% of the variability, while

only 5.67% was associated with the second principal component F2. The majority of the benign

samples were situated in the negative domain of the F1 axis while most of the malignant sam-

ples were scattered throughout the F1 axis. A clear separation between the two sample classes

was not distinct, as shown in the aforementioned figure, hence implying that some malignant

and benign samples shared some characteristics and thus difficult to differentiate.

The resulting variance for each biomolecular source in Table 3 was also shown in Fig 6.

Phosphorylated protein was associated with the highest variance in the F1 axis and is positively

correlated with glycogen.

Genetic algorithm optimization

The GA fitness over generation curves shown in Fig 7 suggests that the NN hyperparameter

tuning via GA for each NN model was able to converge, or at least obtain a steady-state solu-

tion of satisfactory performance.

Table 3. Computation of the spectrum variables (peak positions and normalized absorbances) of malignant and benign lung samples in the fingerprint IR region

(1800 cm-1 to 850 cm-1).

Malignant Samples (n = 53) Benign Samples (n = 65) Functional Group Vibrational Mode Molecular Source [43, 51–55] p-value�

Peak Position Mean abs ± SD Peak Position Mean abs ± SD

1636 0.9605 ± 0.0856 1638 0.9885± 0.0139 O = C–N–H v(CO), v(CN) Amide I, protein 0.6991

1537 0.7884 ± 0.0898 1535 0.8585 ± 0.0491 O = C–N–H γ(N–H), ν(C–C), ν(C–N) Amide II, protein << 0.05

1452 0.3659 ± 0.0687 1452 0.3714± 0.0510 –(CH2)n,–(CH3)n– δas(CH3), δas(CH2), δs(CH3) Lipids 0.9851

1401 0.3244 ± 0.0694 1397 0.3480 ± 0.0542 –(CH2)n– δs(CH3) Lipids 0.0590

1314 0.1334 ± 0.0582 1312 0.1711 ± 0.0591 - - - << 0.05

1236 0.165 ± 0.0766 1236 0.1921 ± 0.0775 RO–PO2−–OR νas(PO2−) DNA, RNA, phospholipids 0.1138

1160 0.0467 ± 0.0343 1160 0.0506 ± 0.0475 C–O–H ν(CO), γ(COH) Carbohydrates 0.4302

1051 0.3131 ± 0.1274 1030 0.1716 ± 0.0875 C–O–H def(CHO) Glycogen << 0.05

880 0.5786 ± 0.3124 878 0.2595 ± 0.1665 C–O–P ν(COP) Phosphorylated protein << 0.05

� Mann-Whitney U test (two-tailed); significant when p<0.05.

��Values in bold refer to significantly different peak absorbance between malignant and benign samples (p>0.05).

Abbreviations: v: stretching; δ: bending; γ: wagging, twisting and rocking; s: symmetric; as: asymmetric; def: deformation.

https://doi.org/10.1371/journal.pone.0268329.t003
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Visually evident is that the GA performed for the FNN models were the fastest to obtain

steady state performance, where convergence was evident at about the 9th to 13th generation.

The GA for the CNN model, on the other hand, was able to converge at about the 14th genera-

tion while the GA for the RNN model was able to converge only at about the 20th or later gen-

erations, which took the longest. Also evident from each plot are the comparatively larger

range of values observed among RNN-type individuals per generation. Such can also be

observed from the earlier generations among CNN-type individuals. The slow convergence of

the RNN and the CNN model might be attributed to the larger search space considered for

their cases. Relative to the FNN models, which only optimized 3 hyperparameters, the RNN

and the CNN models considered 4, and 7 hyperparameters respectively. The larger hyperpara-

meter scope may also explain the high variation of RNN-type and CNN-type individuals dur-

ing the early generations, while the FNN-type individuals varied relatively less. It is worth

noting, however, that the range of validation set accuracy performance among CNN-type indi-

viduals decreased in magnitude as the generation progressed, while those of RNN-type indi-

viduals were still significantly varied. It might be the case that RNN models of very good

performance (ACCv> 90%) were harder to find and train within the GA-RNN search space

relative to the FNNs and the CNN. This might also be the reason why the RNN converged at a

lower value of validation accuracy relative to the other models. Hence, there might be a need

for the GA to extend longer for the RNN case in order to obtain a higher average performance

metric.

From all GAs performed, it can be seen that the average validation set accuracy of the NN

models are higher than their training set accuracy. Such may be attributed to the high dropout

Fig 6. PCA biplot showing the distribution of malignant and benign samples and the variances contributed by each biomolecule. The red points represent the

malignant samples while the blue points represent the benign samples.

https://doi.org/10.1371/journal.pone.0268329.g006
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magnitude (90%) assumed for each NN. Due to the dropout, it might have been the case that

the NNs were limited of computational power to generalize well during training due to

reduced number of parameters. However, during validation, since dropout is no longer imple-

mented, the increased number of parameters might have helped it generalize better [56]. The

high values for both the training and the validation accuracy for all models suggest that they

Fig 7. Average performance accuracy of NN models per generation. The plots show the average accuracy of each NN model during the GA-based NN hyperparameter

tuning process. The averaged metric shown for each generation is derived from the metric of the best individual over 50 trials. Evident in the GA plots, the FNN models

were the fastest to achieve steady-state performance while the RNN model was the slowest. The RNN plot also shows a comparatively larger range of values per generation,

which may suggest that the search space for RNN models of very high accuracy is relatively smaller than those of the FNNs and the CNN; hence RNN models may be the

most difficult to tune. A. Average performance accuracy of FNN2-type individuals per generation. B. Average performance accuracy of FNN4-type individuals per

generation. C. Average performance accuracy of FNN8-type individuals per generation. D. Average performance accuracy of CNN-type individuals per generation. E.

Average performance accuracy of RNN-type individuals per generation.

https://doi.org/10.1371/journal.pone.0268329.g007
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are not over-fitted models; and thus poorer metric from the more complex models (those of

more parameters such as the CNN and the RNN models) might need more training data and/

or training time [57].

Genetic algorithm-optimized hyperparameters

The hyperparameters of the neural networks are summarized in Tables 4–6. The tabulated

median and range value for each hyperparameter quantifies the average value and the search

space per hyperparameter which results in an increased probability of attaining excellent per-

formance. The obtained set of median values and ranges per hyperparameter provides a spe-

cific search space for future studies concerning NN design using FTIR input data. Through

narrowing down the search space, future NN models utilizing FTIR input may be trained

faster and more efficiently even for very large data sets; hence providing better predictive capa-

bility. For FNNs, both the epoch and the learning rate showed decreasing behavior at increas-

ing network depth. On the other hand, no distinct trend was observed for the number of

neurons per layer as a function of network depth, since the trained network’s median values

were relatively similar. The results, as shown in Table 4, imply that for FNNs, deeper models

required less training iterations and less learning rate for them to par shallower models; or at

least perform within excellent standards. Results regarding the epoch hyperparameter were

consistent with the usual NN design architecture where more complicated models–those usu-

ally having a higher number of parameters–tend to be better when trained for sufficiently less

iterations to avoid overfitting.

The results concerning FNN learning rates were, however, in contrast to usual trends in

design, where a larger learning rate usually comes in hand with less training time [58]. Such a

trend is usually evident in deeper models where higher learning rates usually compensate for

short training time. Considering the trained networks, the observed contrasting behavior

might have been due to increased chances of overfitting for deeper networks and/or for net-

works of high hyperparameter count when using higher values of learning rate. The inherent

similarity between classes in the FTIR data set might have also aided the increased probability

of overfitting at higher learning rates since NNs usually tend to overfit when distinguishing

very similar classes. Overall, the results show that deeper models, when trained with higher

learning rates, may have performed worse during validation and testing due to overfitting pat-

terns from the training set or due to large parameter oscillations.

Table 5 shows the hyperparameters of the RNN model. In comparison to the FNN models,

both the RNN median epoch and median learning rate are less than those of FNN8’s. This

behavior is consistent with the observed FNN trend and its given explanation that the designed

RNN architecture had more parameters than the FNN8 architecture. However, it must be

noted that the FNN layer of the designed RNN had a greater median neuron count (n = 21)

than that of FNN2 (n = 17). The increase in neurons may imply that the spatial features pro-

duced by the RNN design might have been more complex than the input’s, making it more dif-

ficult to differentiate and thus requiring more computational power. The increased complexity

Table 4. FNN hyperparameters.

Median (25th percentile, 75th percentile)

Epoch Learning Rate Neurons per Layer

FNN2 241 (201.5, 268) 3.95 × 10−3 (1.83 ×10−3, 1.59 × 10−2) 17 (7.75, 24)

FNN4 229.5 (166, 267) 2.17 × 10−3 (1.60 × 10−3, 5.01 ×10−3) 19 (15.75, 25.5)

FNN8 218.5 (189, 270.25) 1.75 × 10−3 (1.13 × 10−3, 3.45 × 10−3) 18 (13, 26)

https://doi.org/10.1371/journal.pone.0268329.t004
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produced by the RNN layer is also evident from the decreased search space (for top individu-

als) of the RNN’s FNN layer.

Table 6 shows the hyperparameters of the CNN model. Similar to that of the RNN, the

CNN model has an epoch and learning rate which are less than that of FNN8’s. Implications of

its lessened training time and learning rate relative to those of the FNNs follow the same rea-

soning as that of the RNN. However, as shown in Table 6, the FNN layer of the designed CNN

architecture quantifies to about the same neuron count per layer as those of the FNN2. This

implies that the designed CNN layer may have been able to translate the data set to a more sep-

arable or similarly separable dimension relative to its initial dimension. Compared to the

RNN, this shows that the CNN model may have been able to successfully determine more dis-

tinguishable patterns for separability; hence may serve as a better or par model to the FNNs.

As per the design, most CNN generated by the GA was not able to attain good performance

when designed to have deep convolutional layers (N > 2). This may be due to the fact that

deeper CNNs may have produced more complex abstraction that may be difficult for the FNN

layer to distinguish; hence may have necessitated either more neurons per layer, longer train-

ing, or other modifications in hyperparameters.

Diagnostic performance of machine learning models

The results of the diagnostic performance metrics of all ML models are summarized in

Table 7, giving a side-by-side comparison between the NN models and the classical ML models

(DT, RF, NB, LDA, LR, SVM). In general, the metric values of NNs across all performance

metrics were notably higher than that of classical models, except for the SVM model whose

results were comparable to NNs and was identified as the best benchmark model. Among the

NN models, CNN had the highest accuracy (98.45% ± 1.72%), PPV (96.62% ± 2.30%), and SR

(96.01% ± 3.09%). On the other hand, RNN had the highest results for NPV (94.03% ± 9.26%)

and RR (92.87% ± 13.18%), while FNN4 had the best result for AUC (92.85% ± 9.98%).

In comparison to the best benchmark model, none of the NN models was able to outper-

form SVM in the AUC metric (99.38% ± 1.97%) since all NNs showed significantly lower

AUC (Table 8). However, all NN models surpassed the diagnostic accuracy of SVM by an aver-

age of 4.06% for FNN2, 4.27% for FNN4, 3.94% for FNN8, 1.92% for RNN, and 4.18% for

CNN. In terms of NPV and SR, the majority of NN models did not significantly differ from

SVM, while most of the NNs showed significantly higher PPV.

Table 6. CNN hyperparameters.

Epoch Learning Rate Filter Size Skip Length Number of Conv. Layers (N) Kernel size at N = 1 FNN neurons per layer

Median 205 1.07 ×10−3 8 4 2 8 17.5

25th Percentile 162 1.04 × 10−5 6 2.75 1 7 14.75

75th Percentile 221.25 2.02 × 10−2 9 4 2 16 22

https://doi.org/10.1371/journal.pone.0268329.t006

Table 5. RNN hyperparameters.

Epoch Learning Rate RNN Neurons per Fold FNN Neurons per Layer

Median 202.5 1.43 × 10−3 24 21

25th Percentile 152.5 3.77 ×10−5 21 17.75

75th Percentile 264.25 8.60 × 10−2 28.25 26.25

https://doi.org/10.1371/journal.pone.0268329.t005
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Pseudo-clinical test

Among the specimens, 94 samples (42 malignant; 52 benign) were in diagnostic concordance

with the external evaluators and the original diagnosis of the study site; while for the 24 sam-

ples, the pathologists had discordant readings. The distribution of discordant samples in the

PCA score plot is shown in Fig 8. The majority of the discordant benign and malignant sam-

ples were situated similarly within the region of the concordant benign and malignant samples,

respectively. Moreover, the discordant readings followed a similar distribution, indicating that

they were not outliers. The discrimination of the NN models for all discordant samples was

consistent with the diagnoses of the respective study sites.

Fig 9 shows the predictive capacity of each NN model for each discordant sample. The

median score for each sample corresponds to the model’s most probable predictive score,

while the range corresponds to the variation of predictive scores for each model per sample. A

short measure of range and a high predictive median score imply that the sample is confidently

predicted. This infers that the sample’s spectrum might be common on the training set; hence,

might be a common type of lung tumor. On the other hand, a wide-ranged, relatively low pre-

dictive median score implies that a sample differs in spectrum relative to those used in the

training set. This infers that the sample may be morphologically and/or chemically different,

which may imply that it could be a relatively rarer type of tumor. This may also mean that the

sample might have been extracted between the border of malignant and benign tissues. In any

case, further investigation is recommended for samples predicted with such characteristic such

as a re-examination of its corresponding H&E sample.

In terms of confidence, the FNN models were the most confident in predicting malignancy

and benignancy, having median prediction scores that were 80% and above; in which most

were well above 99%. The CNN model was also able to obtain high prediction confidence for

all samples with the exception of sample NMLB056, in which it was only ~60% confident.

Lastly, the median prediction scores for the RNN model were relatively less and were more

spread out compared to the other models. Thus, the RNN model may not be reliable, consider-

ing the limited data used. After a visual examination of the results shown in Fig 9, the FNN4

Table 7. Mean and standard deviation of diagnostic performance of all the machine learning models.

FNN 2 FNN 4 FNN 8 RNN CNN DT RF NB LDA LR SVM

AUC (%) 92.41 ± 10.28 92.85 ± 9.98 92.77 ± 9.62 90.40 ± 11.62 92.28 ± 7.36 78.93 ± 19.87 92.15 ± 13.79 77.91 ± 21.22 62.92 ± 13.44 82.16 ± 19.84 99.38 ± 1.97

ACC (%) 98.41 ± 4.07 98.39 ± 3.57 97.61 ± 4.91 95.98 ± 6.25 98.45 ± 1.72 77.58 ± 16.91 85.87 ± 15.11 75.13 ± 19.14 65.45 ± 14.60 72.19 ± 18.68 94.38 ± 9.69

PPV (%) 94.92 ± 9.49 96.03 ± 8.63 96.48 ± 8.01 90.91 ± 11.99 96.62 ± 2.30 73.95 ± 30.28 83.55 ± 26.14 64.65 ± 33.42 59.54± 20.84 65.25 ± 36.13 93.85 ± 14.92

NPV (%) 92.79 ± 11.95 93.57 ± 11.28 93.22 ± 10.75 94.03 ± 9.26 90.50 ± 11.92 80.11 ± 21.98 87.60 ± 18.36 82.21 ± 22.01 70.25 ± 15.13 94.89 ± 30.57 94.57 ± 12.11

SR (%) 94.60 ± 11.41 94.67 ± 11.57 95.30 ± 10.64 86.63 ± 17.58 96.01 ± 3.09 84.36 ± 18.04 90.78 ± 14.34 79.79 ± 18.68 69.08 ± 14.50 74.97 ± 25.98 96.75 ± 8.03

RR (%) 89.84 ± 16.36 90.88 ± 16.13 90.10 ± 15.66 92.87 ± 13.18 89.21 ± 12.93 73.35 ± 28.25 83.74 ± 24.06 71.10 ± 33.83 62.13± 17.14 64.49 ± 35.74 94.46 ± 12.64

https://doi.org/10.1371/journal.pone.0268329.t007

Table 8. Difference of average performance metric between NN models and the SVM model.

Difference of average performance metric (p-value)�

AUC(%) ACC(%) PPV(%) NPV(%) SR(%) RR(%)

FNN2 -6.97 (<< 0.05) 4.03 (<< 0.05) 1.07 (0.1094) -1.78 (0.0448) -2.15 (0.0041) -4.62 (<< 0.05)

FNN4 -6.53 (<< 0.05) 4.01 (<< 0.05) 2.18 (0.0024) -1.01 (0.4156) -2.08 (0.0734) -3.57 (<< 0.05)

FNN8 -6.60 (<< 0.05) 3.23 (<< 0.05) 2.63 (<< 0.05) -1.36 (0.9560) -1.45 (0.1992) -4.36 (0.0185)

RNN -8.98 (<< 0.05) 1.60 (0.0023) -2.94 (0.0099) -0.54 (0.8857) -10.12 (<< 0.05) -1.59 (0.0713)

CNN -7.10 (<< 0.05) 4.07 (<< 0.05) 2.77 (0.0015) -4.07 (<< 0.05) -0.74 (0.8493) -5.25 (<< 0.05)

https://doi.org/10.1371/journal.pone.0268329.t008
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model was the most suitable model considering the limited training data of the study, since it

constituted the model of the highest predictive median score and smallest range for each dis-

cordant sample. This implies that the quantity of parameters from FNN4 is suitable to account

for the amount of training data (n = 94), the number of spectral variables considered (N(XSD)

= 462), and the variations of spectral data. It is expected, however, that in order to account for

a higher variation and more numerous tumor spectrum, a deeper FNN model or a different

deeper architecture (such as the RNN and the CNN) may become more appropriate. Regard-

less of the model, it is very important that multiple instances of NNs be considered for predict-

ing any test sample. This consideration accounts for the instability of solutions derived during

the NN training process since the optimization space for NN parameters is non-convex;

hence, solutions may be caught up in different local optima [50]. This need for multiple runs is

apparent from Fig 9, especially for deeper models in which prediction probabilities range in

multiple values.

Depending on the architecture, each NN model showed different degrees of predictive con-

fidence for each sample, as shown in Fig 9. These differences show how different architectures

learn the feature variations considered from the training set (set of concordant readings).

However, regardless of the model, some discordant samples, in particular NMLB046 from the

benign group and MLB054 from the malignant group, were not confidently predicted. This

common inference from different NN architecture suggests that these samples significantly

vary in spectrum from those in the training set. Further investigation of the causes of difficulty

in diagnosing these samples is outside the scope of the current study.

Fig 8. Distribution of discordant samples from concordant samples via PCA. The plot shows the diagnosis of the models per discordant samples (dark-colored points)

over the distribution of concordant malignant samples (light red) and concordant benign (light blue) samples. The diagnoses of the models for all discordant samples were

consistent with the original diagnoses of the study sites.

https://doi.org/10.1371/journal.pone.0268329.g008
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Discussion

The potential of artificial neural networks in the detection of lung cancer based on infrared

spectroscopy is presented in this study. This method could become an adjunct tool whenever

discordant readings among pathologists arise or when there are uncertainties in the malig-

nancy of the H&E-stained specimens. FTIR spectroscopy is known to be an assistive diagnostic

Fig 9. Prediction probability of NN models per discordant samples. The figures show the prediction probability of each NN model for the discordant benign (n = 13)

and discordant malignant (n = 11) samples. The discordant samples were grouped according to the diagnosis by the pathologist of their respective study sites. All NN

models show a median prediction score that is above the 0.5 (50%) mark, meaning that all the models had the same prediction as that of the diagnosis of the pathologist. A.

Prediction probability of FNN2 models per discordant samples. B. Prediction probability of FNN4 models per discordant samples. C. Prediction probability of FNN8

models per discordant samples. D. Prediction probability of CNN models per discordant samples. E. Prediction probability of RNN models per discordant samples.

https://doi.org/10.1371/journal.pone.0268329.g009
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technique for multiple cancers as it yields highly specific and accurate results [59]. Different

chemometric techniques with the likes of artificial neural networks (ANN) and principal com-

ponent analysis (PCA) have been utilized to bring about chemo-physical evidence from spec-

tral data [60]. With the surge of development in computer-aided diagnosis, most medical

imaging techniques, such as mammography, chest radiographs, and chest CT, utilized for

diagnosis have been focused on and are growing exponentially [61]. However, even with these

advancements, detection and classification remain difficult at some point [62]. Thus, auto-

mated FTIR spectroscopy, albeit less intuitive than medical imaging, now receives more atten-

tion as it could reduce intra- and inter-operator variability [63]. Its application with neural

networks may be seen in the study of Santillan et al., where infrared spectral data of thyroid

tumors were discriminated by NNs. This study produced a 98% accuracy using its RNN model

and even outperformed the LDA model in most metrics [22]. Not only does it allow a stan-

dardized method for diagnosis, but it also permits automatic data analysis of large data sets by

algorithms done by non-spectroscopists [63].

To effectively understand the differences in biochemical composition of the lung samples,

their clinical characteristics must be taken into consideration. The majority of malignant lung

samples used in this study were diagnosed as non-small-cell lung carcinoma (NSCLC), mostly

in their advanced metastatic form (stage III/IV), and with lung and pleural tissues as main

biopsy sources [21, 64]; hence, a more progressive metabolic reprogramming may be observed.

The nine (9) distinct band positions identified by ATR-FTIR spectroscopic analysis eluci-

dated the metabolic changes in malignant samples. Several band positions had shown no sig-

nificant difference between malignant and benign samples (Table 3). This implies that the

spectral data of both classes were difficult to differentiate, especially when using simple linear

models. However, there were three (3) band positions that showed significant differences in

absorbances.

Band absorbance of 1537 cm-1 is within the amide II protein region. There was a significant

decrease in amide II proteins in malignant samples compared to benign samples. The decrease

in absorbance in the amide band region can be due to proteolysis in the lung cells induced by

tumor metabolism [65], resulting in protein remodeling [66, 67].

The peak absorbances for glycogen (1051 cm-1) and phosphorylated proteins (880 cm-1)

were significantly increased in malignant samples. These are aligned with the findings of several

lung cancer studies [43, 51, 68, 69], but contrary to the findings of Kaznowska et al. where glyco-

gen is decreased in squamous cell carcinoma and adenocarcinoma [70]. Glycogen metabolism

plays an important role in cancer cell survival. Guler et al., detected higher amounts of glycogen

in cancer cells compared to normal cells which suggested that its accumulation is one of the

essential strategies employed by cancer cells for continuous glucose utilization and metabolic

adaptation caused by hypoxia [71–73]. Thus, an increased glycogen level may be considered as

a biomarker for lung cancer, suggesting energy metabolism during synthesis, cell proliferation,

and cell survival [52, 73]. Similar to the findings of Bangaoil et al., there was no significant dif-

ference found in the absorbance intensity of carbohydrates (1160 cm-1) between the malignant

and benign samples [21]. It is likely that both malignant and benign samples utilize glycogen,

hence no significant difference in absorption intensity of carbohydrates was observed.

On the other hand, an increase in absorbance peak in the phosphorylated protein region was

apparent, exhibiting hyperphosphorylation in malignant cells [74]. Lee et al. also found a greater

occurrence of phosphorylation in lung malignant cells compared to normal lung cells [75]. Cell

deregulation, such as phosphorylation modification of p53, a tumor suppressor protein, may

have contributed to the increase in absorbance in the phosphorylated protein region [75].

It can be noted that while the current study and that of Bangaoil et al. analyzed the same

spectral datasets, the latter observed no significant difference in the phosphorylated protein
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(880 cm-1/ 878 cm-1) region of malignant and benign lung cancer samples [21]. Compared to

Bangaoil et al., normalization was done in this current study, which is a crucial step to remove

any biases and discrepancies in absorbance readings due to confounding factors such as vary-

ing densities of samples [52, 76]. If a non-normalized spectral dataset was used, the discrimina-

tion done by the machine learning models would primarily be based on the absorbance

intensity, whereas the use of normalized spectra would highlight the distinct biochemical

structures that could differentiate malignant from benign samples [76].

Using normalized ATR-FTIR data, the NNs exhibited an accuracy of at least 95%. This met-

ric proves the superior overall effectiveness of NNs in discriminating malignant from benign

lung spectral data. Among the NNs, CNN was the most accurate in detecting true malignant

spectra, while RNN was the most accurate in detecting benign spectra. Overall, CNN had the

best diagnostic performance. This may be explained by the fact that CNN is known to provide

exemplary results in the reduction of parameters [77]. Moreover, Acquarelli et al. demon-

strated that even a shallow CNN achieved significantly better classification accuracy using

one-dimensional data (e.g. vibrational spectroscopic data) compared to other machine learn-

ing models such as LDA and k-nearest neighbors [78].

Among the classical models, only SVM had performance metrics comparable to that of

NNs. The significantly higher ACC rate of the NNs compared to SVM denotes that NNs are

generally better overall classifiers. ACC is a viable intuitive metric of comparison since the

spectral dataset used in the study was roughly balanced (53 malignant and 65 benign), and

both classes (i.e., malignant and benign) are considered of equal importance. However, such

metric does not entail better individual class effectiveness [79]. The non-significantly different

SR values of most NNs and SVM indicate the equal effectiveness of the models in identifying

benign spectra. Meanwhile, the RR values of NNs were significantly lower than that of SVM,

implying that the latter is more effective in identifying malignant spectra.

In terms of predictive values, there were no significant differences in the NPVs of NNs and

SVM, signifying equal predictive power in identifying truly benign samples. Conversely, the

majority of NNs were observed to have significantly higher PPVs compared to SVM. Such

denotes that most NNs were better classifiers in terms of identification of malignant spectra as

truly malignant. A high PPV reduces the occurrence of false positives [80]. Falsely classifying

patients as having malignant tumors can result in negative short-term psychosocial conse-

quences [81], possibly resulting in non-adherence to subsequent lung cancer screening tests

[82]. Moreover, misdiagnosing patients with rare benign tumors that mimic malignant neo-

plasm will not only entail higher medical care costs [83], but will also lead to an intractable

condition due to further surgical procedures, chemotherapy, and radiotherapy that are

designed for treating malignant cases [84].

The choice between NNs and SVM is highly dependent on the point of interest presented

by the problem domain. If there is a need for more accurate true malignant infrared spectra

detection, NNs, specifically CNN, may be deemed more superior than SVM. Conversely, for a

more accurate true benign infrared spectra detection, either NNs or SVM may be utilized

since both were observed to be comparable.

Newman-Toker et al. and Richards et al. stated that lung cancer recorded the highest rate of

variation in error and harm frequency that even the screening tests available are below the rec-

ommended levels [85, 86]. A missed lung cancer diagnosis is a common medicolegal issue

despite the availability of advanced imaging techniques for diagnosis. Chest radiography

amounts to 90% of misdiagnosis, while the remaining 10% are from CT examinations and

other imaging studies [87]. Assessing chest films and scans is subjective and observations may

vary from one radiologist to the other [88], hence misdiagnosis can occur. While observer

error remains as one of the biggest factors for misdiagnosis [89], other pulmonary diseases,
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such as sarcoidosis [90] and tuberculosis especially in countries with limited facilities [91],

may also play role in misleading the diagnosis. Bangaoil et al. further mentioned that the

benign samples that were subclustered, through hierarchical component analysis (HCA), with

malignant samples came from patients who suffered from pulmonary tuberculosis and chronic

granulomatous disease [21]. Earlier studies have shown that these two diseases may potentially

lead to the development of lung carcinoma [69, 72]. This entails that appropriate timing to a

certain stage is also vital. Missed lung cancer diagnosis also has an impact on the prognosis of

the disease–an earlier diagnosis will constitute a better prognosis and a wide possibility for

eventual treatment [89].

It is then undeniably beneficial to establish an exceptional and reliable lung cancer diagnos-

tic process. This part of the medical process is heavily reliant on the knowledge, skills, and

experience of the pathologist and the reliability of the samples gathered [84]. There is a poten-

tial for the improvement of lung cancer diagnosis by introducing an automated method of

classifying tissues based on the vibrational spectroscopic patterns in the infrared fingerprint

region. A similar study done by Kaznowska et al. showed that FTIR spectral data from distinct

regions can be used to discriminate between benign and malignant lung cancer tissue using

PCA-LDA and a physics-based computation model to analyze their data. Their results showed

that the model is 78% to 99% sensitive and 65% to 99% specific [70]. Another study by Abbas

et al. differentiates malignant pleural mesothelioma (MPM) from lung cancer as well as benign

pleural effusion (BPE) using the FTIR spectral data from pleural samples wherein hierarchal

cluster analysis (HCA) and PCA was applied. Their model was 100% sensitive and specific in

differentiating MPM from lung cancer, and 100% sensitive and 88% specific in differentiating

MPM from BPE (n = 69; BPE n = 25; LC n = 20; MPM n = 24) [92]. To further advance these

findings, more sophisticated computational tools such as NNs may be used in the discrimina-

tion of spectral data. The designed NNs of this study are 89.84% to 92.87% sensitive (RR) and

86.63% to 96.01% specific (SR). While the sensitivity and specificity of Kaznowska et al.’s study

can reach 99% [70], it has higher variability in discriminating samples compared to the NNs.

Thus, SVM or NN-aided diagnosis using infrared spectroscopy may be utilized and is a better

adjunct tool in identifying truly benign or malignant tissue samples.

Furthermore, the consistency of the diagnoses of the models with the original diagnoses of

the respective hospital sites for all discordant samples emphasizes the potential of NNs to pro-

vide a second opinion to pathologists in identifying lung cancer. In the clinical setting, the

final histological diagnosis, especially in problematic cases, is usually a consensus approach

among pathologists. Hence, using infrared spectral data of biopsy tissues may assist in making

an accurate diagnosis of the patient.

Albeit the accuracy of the results was exemplary, it is still recommended to apply the NN

models in a diagnostic cohort study to test its reliance in the clinical setting and real-world

practice. This study utilized a diagnostic case-control research design which creates spectrum

biases due to limited samples, ergo the diagnostic performance may be inflated [93, 94]. The

obtained performance metrics of the NN from a diagnostic case-control would not suffice as it

cannot be applied in the clinical setting [93]. A diagnostic cohort study, on the other hand, is

done in a setting similar to that of the real-world practice [95]. Moreover, cohort studies can

determine the prevalence of the disease and assess the predictive values of the tests [95]. Diag-

nostic case controls are commonly utilized in initial studies as it is easier to manage experi-

mental conditions and is exploratory in nature. Diagnostic cohort studies, meanwhile are

confirmatory in nature, making the latter more applicable in succeeding studies [95]. Lastly,

utilizing biofluids, such as pleural fluids or blood samples, may further expand the use of auto-

mated ATR-FTIR in lung cancer early screening process.
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Conclusion

The findings of the study further proved the potential of integrating NN models as a computa-

tional tool in diagnosing lung cancer based on ATR-FTIR spectra. The principal component

analysis of the spectral data of malignant and benign samples showed evident intersection, and

thus simple models such as linear models may show subpar diagnostic performance. NNs gen-

erally showed better diagnostic performances compared to other common machine learning

models, except SVM which exhibited results that were at par with NNs. Among the NN mod-

els, CNN demonstrated the best diagnostic effectiveness (98.45% ± 1.72%) and positive predic-

tive value (96.62% ± 2.30%) while RNN obtained the best negative predictive value (94.03% ±
9.26%).
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