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ABSTRACT

High-throughput sequencing technologies have gen-
erated massive protein sequences, but the annota-
tions of protein sequences highly rely on the low-
throughput and expensive biological experiments.
Therefore, accurate and fast computational alterna-
tives are needed to infer functional knowledge from
protein sequences. The gene ontology (GO) directed
acyclic graph (DAG) contains the hierarchical rela-
tionships between GO terms but is hard to be in-
tegrated into machine learning algorithms for func-
tional predictions. We developed a deep learning
system named PANDA2 to predict protein functions,
which used the cutting-edge graph neural network
to model the topology of the GO DAG and integrated
the features generated by transformer protein lan-
guage models. Compared with the top 10 methods in
CAFA3, PANDA2 ranked first in cellular component
ontology (CCO), tied first in biological process ontol-
ogy (BPO) but had a higher coverage rate, and sec-
ond in molecular function ontology (MFO). Compared
with other recently-developed cutting-edge predic-
tors DeepGOPlus, GOLabeler, and DeepText2GO,
and benchmarked on another independent dataset,
PANDA2 ranked first in CCO, first in BPO, and sec-
ond in MFO. PANDA2 can be freely accessed from
http://dna.cs.miami.edu/PANDA2/.

INTRODUCTION

The number of protein sequences generated by high-
throughput experiments far exceeds the number of exper-
imentally annotated proteins. Computational protein func-
tion predictors can quickly annotate proteins, which are
fast and affordable alternatives to biochemical experiments.
The automatic protein function prediction is a multi-label
classification problem. A predictor labels a protein from
about 45 937 Gene Ontology (GO) terms (1). GO terms
are defined in three ontologies: molecular function ontol-
ogy (MFO), biological process ontology (BPO) and cel-

lular component ontology (CCO). For each ontology, the
relationships between GO terms can be represented as a
directed acyclic graph (DAG), where a node indicates a
GO term, and an edge shows the relationship between
two GO terms. Since these hierarchical relationships are
hard to be integrated with deep learning algorithms, only
a few methods consider the hierarchical structures of GO
terms in their algorithms (2,3). To improve performance,
DeepGOPlus (4) no longer conducts hierarchical classi-
fication as their previous tool DeepGO (2). The recent
development of graph neural networks (5,6) provides an
approach to naturally integrate the deep learning algo-
rithms and the hierarchical relationships between GO term
classes.

According to the keyword analysis of CAFA3 participat-
ing teams (7), machine learning and sequence alignment are
the most widely used and helpful approaches for protein
function prediction. Approaches such as sequence-profile
alignment, profile-profile alignment, homolog, sequence
properties are also popular and helpful. Alignment-based
approaches were heavily used in our previous method,
PANDA (8). PANDA includes profile-profile alignments
against protein databases, where profiles are position-
specific scoring matrices (PSSMs) generated from multi-
ple sequence alignments (MSAs). PANDA also uses PSI-
BLAST (9), a profile-sequence alignment approach, to
search for homologous proteins against UniProt (10). The
protein domain is a structurally or functionally reserved
segment. PANDA uses a profile-profile alignment approach
to detect protein domains and then integrates a Bayesian
statistic model that infers GO terms based on domains.
PANDA uses Z-scores to pool and filter all candidate GO
terms, then uses an affinity propagation algorithm to clus-
ter the remaining GO terms, and then performs a second
round of filtering on the GO term clusters. However, the
performances of alignment-based approaches highly rely
on homologous sequences having functional annotations.
If a protein only has less than 60% global sequence identi-
ties with annotated proteins, it is usually labeled as a dif-
ficult protein (11). For these difficult proteins, other fea-
tures (such as sequence properties) are needed to predict
their functions. For example, GOLabeler (12), one of the
best methods based on the evaluations of CAFA3 (7), uses
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sequence property features including biophysical proper-
ties, domains, and motifs.

Sequence properties can also be learned by deep learn-
ing algorithms. The protein-sequence-language models can
generate sequence representations directly from a protein
sequence without BLAST (9) search. UDSMProt (13),
a tool that uses a supervised recurrent neural network
(RNN) and modern natural language processing methods
to predict protein functions directly from sequences, has
achieved competitive performances with the leading meth-
ods in CAFA3. Heinzinger et al. retrained the language
model ELMo (SeqVec) for modeling unlabeled protein se-
quences (14). Littmann et al. transferred protein annota-
tions according to the similarity of sequence embeddings
from the language models (15) and achieved comparable
performance with the best ten CAFA3 methods. Rives et al.
used attention networks to learn sequence representations
from 250 million protein sequences (16). The representation
space of this evolutionary-scale language modeling (ESM)
of proteins contains protein structures, functions, and bind-
ing information. By adding language modeling features to
the state-of-the-art methods, the performances of protein
secondary structure prediction and residue-residue contact
prediction have been improved (16). In our PANDA2, ESM
was used as one of the deep learning features since ESM
outperformed SeqVec in terms of secondary structure pre-
dictions and long-range residue-residue contact predictions
(16).

Machine learning algorithms are the most widely used
and successful methods according to the keyword analysis
of CAFA3 (7). GOLabeler and DeepGOPlus are two of the
best-performed methods on the CAFA3 dataset (4). GOLa-
beler (12) applied the algorithm of learning to rank (17) on
candidate GO terms. DeepGOPlus used a one-dimensional
(1D) convolutional neural network (CNN) to capture the
associations between motifs and GO terms. UDSMProt
(13) used a supervised recurrent neural network (RNN) to
predict protein functions from sequences. However, these
leading machine learning methods do not take advantage
of the hierarchical structure of gene ontology (GO) terms.

Graph network (GN) frameworks process the data repre-
sented in graph domains for relational reasoning (6). GNs
can be implemented with neural networks or other ap-
proaches. Those GNs implemented with fully connected
layers are referred to as graph neural networks (GNNs), and
those GNs implemented with convolutional layers are re-
ferred to as graph convolutional networks (GCNs) (6). Sev-
eral GN applications are closely related to protein struc-
tures and function predictions. GraphQA (18) used GCN
to assess the qualities of predicted protein structures (6).
DeepFRI (19) and PersGNN (20) used GCN (5) to predict
protein functions from residue-residue contact maps. Deep-
goa (21) used a correlation matrix of GO terms to represent
the hierarchical structure of GO terms and then integrated
DeepGOCNN (4) and GCN (5) to predict maize protein
functions.

Protein function prediction can also benefit from other
types of approaches. DeepText2GO (11) outperformed GO-
Labeler by integrating relevant citation knowledge and
sequence-based features. Protein structure is another key
feature that can help predict protein functions. I-TASSER

is a structure-based approach, which predicts protein func-
tions by transferring functions from similar templates that
have known functions (22). The limitations of using a three-
dimensional (3D) structure-based feature are slow compu-
tation and large memory usage. To represent protein 3D
structures in a memory-efficient way, some groups simpli-
fied protein 3D structures as residue–residue contact maps
and then applied graph networks to learn the relationship
between complex structures and functions (19,20). More-
over, protein-protein interaction (PPI) provides useful in-
formation in terms of biological processes (2,23). For ex-
ample, the authors of (23) inferred protein functions by in-
tegrating PPI and retrieving functions from the literature.
Furthermore, gene expression is also useful for predicting
protein functions by providing closely associated genes with
the query protein (24).

We developed and benchmarked a protein function pre-
diction system named PANDA2, which used the cutting-
edge graph neural network to model the GO DAG.
PANDA2 also used the ESM features, which were generated
by the single-sequence protein language models that were
trained from 250 million protein sequences using trans-
formers (16). Benchmarked on the CAFA3 dataset, the Fmax
of PANDA2 ranked first in CCO, tied for first in BPO but
with a higher coverage rate, and ranked second in MFO
when compared with the best 10 CAFA3 methods. Bench-
marked on another dataset and compared with the top
performed methods GOLabeler, DeepGOPlus and Deep-
Text2GO, the Fmax of PANDA2 ranked first in CCO and
BPO and ranked second in MFO.

MATERIALS AND METHODS

Datasets

The first dataset we used for training and testing is
CAFA3 official training data and target proteins. The data
is publicly available at https://www.biofunctionprediction.
org/cafa/. Protein sequences are from Swiss-Prot, a man-
ually annotated and reviewed knowledge base (10). Pro-
tein annotations are from both Swiss-Prot and gene ontol-
ogy annotation (GOA) (25). The training and validation
datasets contain 66 841 proteins. Each protein has at least
one experimentally annotated GO term(s). We used the GO
definition released on 2016-01-16. The experimental anno-
tations are linked with experimental codes: EXP, IDA, IMP,
IGI, IEP, TAS or IC (26). The blind test dataset contains the
target proteins that did not have experimentally annotated
GO terms (no knowledge) before the challenge (Septem-
ber 2016) but gained experimental annotations before the
benchmark (November 2017).

The second dataset we used to compare PANDA2 with
the leading methods is the 2016 dataset provided by Deep-
GOPlus (4), which was generated using the same time-
delayed evaluation method (7) as the one used by GOLa-
beler (12) and DeepText2GO (11). The proteins with ex-
perimental annotations before t0 (January 2016) belong to
the training dataset. The proteins having no experimentally
annotated GO term (no knowledge) before the t0 but gain-
ing experimental annotation between the t0 and t1 (October
2016) belong to the testing dataset.

https://www.biofunctionprediction.org/cafa/
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Table 1. The number of proteins and GO terms in the training, validation
and testing datasets

Dataset
training

size
validation

size
testing

size
MFO
classes

BPO
classes

CCO
classes

2016 58 525 6503 1788 652 3904 545
CAFA3 60 157 6684 3328 677 3992 551

The GO terms counted in this table are annotated with at least 50 proteins.

The third dataset (27) was only used for blind testing,
which contained the hypothetical proteins of pathogenic
genera of nine bacterial phyla: Actinobacteria, Bac-
teroidetes, Chlamydiae, Cyanobacteria, Firmicutes, Fu-
sobacteria, Proteobacteria, Spirochaetes and Tenericutes.
Hypothetical proteins (HPs) are proteins whose functions
are unknown (28), and the existences of HPs lack experi-
mental evidence at protein, transcript, or homology levels.
The proteins with the evidence of existence ‘predicted’ or
‘uncertain’ and with the annotation scores of less than 3
points out of 5 were included in the third dataset. The an-
notation score measures the annotation content of a protein
in UniProt, where 1 point out of 5 indicates a protein with
only basic annotation, and 5 points out of 5 denotes having
the best annotations.

By cross-referencing the third dataset created in 2019
with the Swiss-Prot dataset released in March 2021, we col-
lected the hypothetical proteins that have been manually re-
viewed during this period. These recently reviewed proteins
in general have limited function annotations, that is, most
annotations are inferred from electronic annotation (IEA)
that is not an experimental evidence code. Only the hypo-
thetical protein O33285 (putative envelope-preserving sys-
tem protein Rv2742c) in the third dataset was annotated
with the GO:0005886 (plasma membrane) by high through-
put direct assay (HDA) that was an experimental evidence
code. Our deep learning models were trained using the data
that were gathered before 2019, which did not include the
annotation of this protein. Therefore, this protein along
with its HDA-based GO term was used for benchmarking
the prediction accuracy of our system on hypothetical pro-
teins.

We trained PANDA2 using the GO terms that were an-
notated to at least 50 proteins (4). Propagated annotations
were taken into account, which meant that if a GO term was
annotated to a protein, then all of its ancestor GO terms
would also be annotated to that protein. All types of GO
term relationships were considered. Table 1 shows the num-
ber of proteins for training, validation and testing and the
number of GO terms used for training. In both CAFA3 and
2016 blind test datasets, the 23 target species evaluated in
CAFA3 (7) were considered.

Supplementary Table S1 shows the number of proteins
and the number of GO terms (target classes for the graph
neural networks) when the GO terms with at least 100 pro-
teins (instead of 50 as in Table 1) were used as the target
classes. Supplementary files 1 and 2 list each GO term in
the CAFA3 and 2016 datasets, respectively, and the number
of training and validation proteins that are annotated with
each of the GO terms.

Learning architecture

Overview. Figure 1 shows the neural network architecture
of PANDA2. There are three graph neural network blocks
(GNNs) in PANDA2, each of which is a basic computa-
tional unit that updates edge, node, and global features. In
the first and second graph network blocks, we sequentially
updated edge features, node features, and global features
with all features of the graph neural network. We used a
fully connected layer to change the size of ESM features to
the number of classes. Then we concatenated node features,
the output of the fully connected layer, DIAMOND scores,
and priority scores and inputted them into the third graph
network block. We used node features of the third graph
network block as the final prediction after a sigmoid func-
tion.

In PANDA2, we trained one model to predict the GO
terms in BPO, CCO, and MFO ontologies at once instead
of three different models predicting for the three ontologies.
The graph topology that is modeled by the graph neural net-
work of PANDA2 is the GO DAG. For different query pro-
teins, the topology of the input GO term graph or DAG
is the same, which contains all of the GO terms that have
at least 50 proteins annotated with them, except that the
node and global features are different and determined by
the specific query protein. In comparison, the graph mod-
eled by the GNN in another research in protein model qual-
ity assessment (18) consists of protein residues. By stacking
the GNN blocks, the PANDA2 network learns knowledge
from neighboring GO terms using the first block and then
enlarges to a broader range containing more GO terms in
the DAG using the following two blocks.

The features of PANDA2 include the bidirected un-
weighted graphs of GO terms (GO DAGs), sequence-
alignment-based features, and sequence-based features. The
nodes in the graph are the GO terms having at least 50 anno-
tations with an experimental evidence code in the training
and validation sets. The edges are ‘is a,’ ‘part of,’ and ‘regu-
lations’ relationships between GO terms. Each directed edge
starts from a ‘sender’ node and ends at a ‘receiver’ node.

The sequence-alignment-based node features contain
PSI-BLAST top 10 scores, DIAMOND scores, and priority
scores (See the following sections for details). Those scores
are engineered based on the sequence alignment results of
the query protein. We used the pseudo amino acid compo-
sition (PAAC) (29) as the global feature of the graph neural
network. Moreover, after a fully connected layer, we merged
the ESM features into node features.

Graph neural network. We trained GNN with node fea-
tures, edge features, and global features. The node feature
was a vector of length 12, including PSI-BLAST top 10
scores, a DIAMOND score, and a priority score. The edge
feature is a vector with length one that has an initial value of
1 if there is an edge between two GO terms. We tested differ-
ent values for ‘is a,’ ‘part of,’ and ‘regulates,’ e.g. 0.8, 0.6 and
0.5, but our evaluations indicated that having initial values
of 1 for all relationships achieved the best performance. The
global feature is a vector of amino acid composition with a
length of 20 (30).
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Figure 1. The overall architecture of the learning system of PANDA2. Psitop10 denotes PSI-BLAST top 10 scores; Dia denotes DIAMOND scores; Pri
denotes priority scores; PAAC denotes the pseudo amino acid composition of sequence; ESM denotes ESM representation; V, V′, V′′, V′′′ denotes node
features; E, E′, E′′ denotes edge features; u, u′, u′′denotes global features; ϕe, ϕv, ϕu denote feature ‘update’ functions; and ρe→v, ρe→u , ρv→u denote
feature ‘aggregation’ functions.

These features were updated in three GNN blocks, each
of which was a basic computation unit in the GNN frame-
work (6). Table 2 shows the step-by-step computations
in a GNN block of PANDA2. A GNN block has ‘up-
date’ functions ϕ and ‘aggregation’ functions ρ. We used
a Linear-ReLU-Linear layer in the ‘update’ functions. In
other words, we used fully connected layers in the GNN
blocks since a linear layer in Pytorch (31) was implemented
as a fully connected layer. These blocks could also be imple-
mented as convolutional layers and recurrent layers.

The major dimensions of features and the dimensions of
inputs and outputs of each fully connected layer are also
shown in Table 2. We averaged features over receivers and
graphs to aggregate features with the scatter mean function
(31). Before aggregating edge features per node, we used
the Linear-ReLU-Linear layer to update edge features. The
steps in the first and second blocks are the same. The dif-
ference between the third block and the first two blocks is

that the third block does not need to update global features.
Therefore, steps 4, 5 and 6 apply for blocks 1 and 2 only.

Features

PSI-BLAST top 10 scores. The query protein was
searched against the training and validation proteins using
PSI-BLAST (9). PSI-BLAST top 10 scores were engineered
by transferring the annotations of top 10 PSI-BLAST hits.
We converted the E-value of an alignment result to a confi-
dence score as:

con f idence score = min(−log10 E−value/40, 1),

where the E-value greater than or equal to 1 was filtered out.
For each protein sequence in the top 10 hits, we transferred
its experimental annotations to the query protein with a
confidence score between 0 and 1. The GO terms associated
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Table 2. Computational steps in a GNN block

procedure GNNBlock(E, V, u): // Sender: the start node of a directed edge The major dimensions of features in different blocks

// Receiver: the end node of a directed edge Block 1 Block 2 Block 3
// E: input edge features 1 10 10
// V: input node features 12 20 23
// u: input global features 20 30 20
// u edge: the global features merged to edges 20 30 20
// u node: the global features merged to nodes 20 30 20
// v sender: the node features of all senders 12 20 23
// v receiver: the node features of all receivers 12 20 23
// step1: update edge features (ϕe)
E’ ← concatenate(v sender, v receiver, E, u edge) 45 (E’) 80 (E”) 76 (E”’)
E’ ← linear transformation(E’) 45→5 80→5 76→5
E’ ← ReLU(E’) 5→5 5→5 5→5
E’ ← linear transformation(E’) 5→10 5→10 5→10
// step2: aggregate edge features per node (ρe→v)
e v ← concatenate(v sender, E’) 22 30 33
e v ← linear transformation(e v) 22→15 30→20 33→23
e v ← ReLU(e v) 15→15 20→20 23→23
e v ← linear transformation(e v) 15→20 20→25 23→10
e v ← scatter mean(e v) //average e v over receivers 20→20 25→25 10→10
// step3: update node features (ϕv)
V’ ← concatenate(V, e v, u node) 52 (V’) 75 (V”) 53 (V”’)
V’ ← linear transformation(V’) 52→20 75→25 53→10
V’ ← ReLU(V’) 20→20 25→25 10→10
V’ ← linear transformation(V’) 20→20 25→20 10→1
// step4: aggregate edge features globally (ρe→u )
e u ← scatter mean(E’) //average E’ over receivers 10→10 10→10
e u ← scatter mean(e u) //average e u over graphs 10→10 10→10
// step5: aggregate node features globally (ρv→u )
v u ← scatter mean(V’) //average V’ over graphs 20→20 20→20
// step6: update global features (ϕu )
u’ ← concatenate(u, v u, e u) 50 (u’) 60 (u”)
u’ ← linear transformation(u’) 50→25 60→25
u’ ← ReLU(u’) 25→25 25→25
u’ ← linear transformation(u’) 25→30 25→20
returnE’, V’, u’
end procedure

Steps 4, 5 and 6 are only applied in blocks 1 and 2.

with the PSI-BLAST top 10 hits along with their confidence
scores were input to the GNN as node features.

DIAMOND score. This score was generated by applying
a fast and sensitive sequence alignment tool DIAMOND
(32) to search against the training and validation proteins.
The DIAMOND score was defined in (4):

S (q, f ) =
∑

s∈E bitscore (q, s) ∗ I ( f ∈ Ts)∑
s∈E bitscore (q, s)

,

where q was a query sequence, s was a set of sequences, E
was a set of similar sequences with E-values smaller than
0.001, Ts was a set of experimental annotations for sequence
s, and I was an identity function that returned 1 if same and
0 otherwise. The GO terms associated with DIAMOND
hits (E-values < 0.001) were input into the GNN as node
features.

Priority score. We defined a new type of score named pri-
ority score that integrated the identity score of PSI-BLAST
hits and the number of occurrences of each GO term asso-
ciated with the top hits. We only considered the hits with
E-values <1. The priority score for a GO term was calcu-

lated as:

Priori tyG O = MaxSeq Iden(G O)

×
(

Occurs (G O)
2 × Occurs (G O) + 1

+ 1
2

)
,

where MaxSeq Iden returned the highest sequence identity
of the sequences that were annotated with the GO term or
its descendants, and Occurs counted the total occurrences
of a GO term and its descendants in the annotations of the
top hits. The GO terms and their priority scores were input
into the GNN.

Evolutionary-scale language model. PANDA2 was inte-
grated with the evolutionary-scale language model that was
trained on 250 million protein sequences covering 66%
of publicly available protein sequences (16). We inputted
each query protein sequence into the evolutionary-scale lan-
guage model that outputted a vector of 1280 by the se-
quence length. The mean was calculated along the sequence
length to obtain a fixed-length vector of 1280 by 1. Since the
ESM was pre-trained, we only used a fully connected layer
or a neural network to change the dimension of the ESM
output to the number of GO terms or target classes of our
GNN.
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Availability of node features. Supplementary Figure S1
shows that most of the proteins in the training and valida-
tion sets have at least 10 PSI-BLAST hits. Supplementary
Figures S2–S4 show that most of the target GO terms or
nodes in the input GO DAG in the first two GNN blocks
have non-empty node features. The output of the neural net-
work for ESM features makes all target GO terms or nodes
in the GO DAG have non-empty node features for any pro-
tein in the CAFA3 and 2016 datasets.

Implementation details

We implemented PANDA2 with the PyTorch library (31)
and a graph network framework library (6). The models
were trained on an NVIDIA Tesla V100 GPU with a train-
ing time of about 40 min. The usage of GPU memory was
less than 10GB. The loss function that we used was binary
cross-entropy with a log function. Since the negatively la-
beled GO terms are much more than the positively labeled
GO terms, we set a positive class weight of 3 when calculat-
ing loss values. We tested different combinations of learn-
ing rates, dropout rates, number of GNN blocks, number
of channels, and loss functions, and we eventually selected
the model with the lowest validation loss. We used an Adam
optimizer with a learning rate of 0.01 for the GNN and an-
other Adam optimizer with a learning rate of 0.0001 for the
neural network modeling ESM features. These two optimiz-
ers updated the parameters of the graph network and the
neural network separately.

We implemented a web server for PANDA2 at http://dna.
cs.miami.edu/PANDA2/. The model trained on the CAFA3
dataset was used by the web server, which could make pre-
dictions for 5220 GO terms. The PANDA2 web server can
annotate a protein with 601 amino acids in 1 min and 40
s, including ∼30 s for predicting functions and about 1
min and 10 s for preprocessing and loading models. The re-
sults of a query job will be sent back to the user by email.
The users need to check their spam folder, as that email
sometimes will be mistakenly labeled as a spam email.

Evaluation metrics

We performed protein-centric evaluation measures using
the official CAFA assessment tool (7,33) on the CAFA3
and 2016 datasets. The evaluation was performed on prop-
agated predictions and ground truth. A propagated predic-
tion or ground truth contains the GO term annotations and
their ancestors. In the benchmarks with the CAFA3 dataset,
we compared PANDA2 with the literature results of CAFA
top-performing methods, DeepGOPlus (a recently devel-
oped leading method), Naı̈ve, and BLAST methods (4,7).
The Naı̈ve method predicted GO terms according to the
relative frequency of each GO term shown in the Swiss-
Prot database. The BLAST method predicted GO terms
based on the hits of BLAST (9). In the benchmarks with
the 2016 dataset, we compared PANDA2 with the literature
results (4,11–13) of UDSMProt, DeepGOPlus, GOLabeler,
and DeepText2GO.

The evaluation metrics that we used included the max-
imum F-measure (Fmax), the minimum semantic distance
(Smin), and the area under the precision-recall curve

(AUPR). The Fmax and the Smin are the official measures
in CAFA1-3 (7,26,33). The Fmax score is the maximum F-
measure over confidence score thresholds t. F-measure is a
combination of precision and recall. Precision and recall of
a protein were calculated based on the predicted GO term
set Pi that had confidence score greater than or equal to t
and true GO term set Ti. Only when Pi had at least one GO
term, we calculated precision and recall for a protein. The
precision and recall for Pi with confidence score threshold t
were calculated as:

pri (t) =
∑

f I ( f ε Pi ∧ f ε Ti )∑
f I ( f ε Pi )

,

rci (t) =
∑

f I ( f ε Pi ∧ f ε Ti )∑
f I ( f ε Ti )

,

where f was a GO term, and I was an indicator function.
Precision and recall for all testing proteins over threshold

t were averaged as:

pr (t) = 1
m (t)

×
∑m(t)

i = 1
pri (t),

rc (t) = 1
n

×
∑n

i=1
rci (t),

where m(t) was the number of proteins with at least one GO
term having a confidence score greater than or equal to t,
and n was the number of total testing proteins.

The best F-measure was calculated as:

Fmax = max
{

2 × pr (t) × rc (t)
pr (t) + rc (t)

}
.

The Smin score was the metric that considered the unbal-
anced information content (IC) of GO terms. The IC of a
GO term f was calculated as:

IC ( f ) = −log10
Occur f

Occurall terms
,

where f was a GO term, Occur f indicated the number of
occurrences of f and its descendants in the GO DAG, and
Occurall terms was the total occurrence of all GO terms.

The remaining uncertainty and misinformation were cal-
culated as:

rui (t) =
∑

f
IC ( f ) × I( f /∈ Pi (t) ∧ f ∈ Ti ,

mii (t) =
∑

f
IC ( f ) × I( f ∈ Pi (t) ∧ f /∈ Ti ,

ru (t) = 1
n

×
∑n

i=1
rui (t),

mi (t) = 1
n

×
∑n

i=1
mii (t),

where ru(t) and mi (t) were the average of remaining uncer-
tainty rui (t) and misinformation mi (t). The Smin was calcu-

http://dna.cs.miami.edu/PANDA2/
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lated as:

Smin = min
t

{√
ru(t)2 + mi (t)2

}
.

RESULTS

Comparison with the leading methods in CAFA3

We trained PANDA2 on the CAFA3 training dataset
and then performed the protein-centric evaluation on the
CAFA3 testing dataset using the official CAFA assess-
ment tool (7,33). Figure 2 shows the evaluation results
of PANDA2, CAFA3 top 10 methods, and DeepGOPlus.
PANDA2 achieved the Fmax scores of MFO: 0.5849, BPO:
0.3964 and CCO: 0.6374, respectively. The performance of
CAFA3 top-performing methods, DeepGOPlus, and Naı̈ve
and BLAST methods were downloaded from (4,7). Ac-
cording to the Fmax scores, PANDA2 ranked first in cellu-
lar component, tied for first in biological process but with
higher coverage rate, and ranked second in molecular func-
tion.

Comparison with the state-of-the-art methods

We further trained and benchmarked PANDA2 on the
2016 dataset and then collected the results from the litera-
ture (4,11–13) for Naı̈ve, DIAMONDBlast, DeepGOPlus,
UDSMProt, GOLabeler, and DeepText2GO on the same
dataset. The benchmark of our previous method, PANDA,
was performed using the predictions of the PANDA web
server on the 2016 testing dataset. Table 3 shows the per-
formance of these methods in terms of Fmax, Smin and the
area under the precision-recall curve (AUPR). PANDA2
achieved the best Fmax and AUPR in BPO and CCO and the
second best Fmax and AUPR in MFO. By using the graph
network and new features, PANDA2 outperformed our pre-
viously developed method PANDA in terms of Fmax, Smin
and AUPR. The semantic distance between PANDA2 pre-
diction and the ground truth is larger than some of the other
predictors, which is something we could improve in the fu-
ture.

Feature importance

To benchmark the importance of network components
and features, we trained and evaluated PANDA2 by re-
moving different parts of the networks or features. Ta-
ble 4 shows the results evaluated on the 2016 dataset. For
example, PANDA2 rm GNN (PANDA2 with GNN re-
moved) denotes the performance solely based on ESM with
a fully connected layer. According to the validation loss,
we found the following importance of network components
and features: GNN > ESM > PSI-BLAST top 10 scores
> DIAMOND scores > the pseudo amino acid composi-
tion (PAAC) > priority scores. This ranking indicates that
graph neural networks and ESM features are the two most
important components and features of the prediction of
PANDA2.

Supplementary Table S2 shows the results of the same
type of evaluations as in Table 4 except that the target classes
of PANDA2 in Table S2 are the GO terms each of which

has at least 100 proteins annotated with it. This causes a
decrease in the number of target classes or GO terms that
could be predicted by the model. The performances of the
models trained with at least 100 annotated proteins were
much lower than those trained with at least 50 proteins.
Therefore, the final version of PANDA2 was trained with
≥50 as the threshold of the number of annotated proteins.

Figure 3 shows the Fmax bar plots and precision-recall
curves, demonstrating the importance of GNN and other
features. We added the performance of DeepGOPlus as a
baseline in Figure 3 so that one can compare that leading
method with different versions of PANDA2 with GNN or
other features removed.

Evaluation of PANDA2 on hypothetical proteins

Mishra’s method (34), a deep learning method of protein
function prediction, was specially designed to predict the
MFO terms of hypothetical proteins. Since the lack of
enough experimental annotations, it is hard to evaluate
PANDA2 and other methods on all hypothetical proteins.
However, we calculated the functional similarities between
the predictions of PANDA2 and Mishra’s method on all
hypothetical proteins in the third dataset and plotted the
histogram of similarity scores in Supplementary Figure S5.
It can be found that the highest similarity score is around
0.648 and the peak is at around 0.33. Supplementary file 3
contains all PANDA2 predictions for the hypothetical pro-
teins dataset.

Table 5 shows the top 10 CCO terms predicted by
PANDA2 for the hypothetical protein O33285, which is the
only protein that we have found having been annotated with
a GO term based on experimental evidence. The seman-
tic similarities of predicted GO terms and the experimen-
tally determined GO term GO:0005886 were calculated by
GOGO (35). Table 5 also shows the depths of predicted
CCO GO terms in the GO DAG. It can be found that the
sixth predicted GO term from PANDA2 is exactly the ex-
perimentally annotated GO term.

DISCUSSION

The 45 937 currently available GO terms are organized in
directed acyclic graphs (DAGs) with ‘is a’, ‘part of’, and
‘regulations’ relationships between GO terms. It would be
very hard or almost impossible for traditional deep learning
algorithms to model this type of network topology. How-
ever, the graph neural networks provide a way to naturally
model this graph architecture between GO terms and then
use it to predict protein functions. The results from this re-
search prove that graph neural networks indeed can be used
to model the GO DAG topology and predict protein func-
tions in the format of GO terms.

The graph neural network has edge features, node fea-
tures, and global features, and in each block of the graph
neural network, the edge features are updated and ag-
gregated with node and global features and similarly for
the node features and global features. In this research, we
model GO DAG as a graph and define the ‘is a’, ‘part of’,
and ‘regulations’ relationships between GO terms as edges.
Moreover, we define the confidence scores of each GO term
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Figure 2. Performance of PANDA2, CAFA3 top10 methods and DeepGOPlus. The evaluation was performed based on molecular function, biological
process and cellular component. C (coverage) denotes the percentage of testing proteins that have predictions made by a predictor.

Table 3. The performance of PANDA2 and selected top-performed predictors on the 2016 dataset. The highest Fmax, smallest Smin , and highest AUPR
are in bold and italic

Fmax Smin AUPR

Method MFO BPO CCO MFO BPO CCO MFO BPO CCO

Naive 0.306 0.318 0.605 12.105 38.890 9.646 0.150 0.219 0.512
DIAMONDBlast 0.525 0.436 0.591 9.291 39.544 8.721 0.101 0.070 0.089
UDSMProt 0.582 0.475 0.697 8.787 33.615 7.618 0.548 0.422 0.728
DeepText2GO 0.627 0.441 0.694 5.240 17.713 4.531 0.605 0.336 0.729
GOLabeler 0.586 0.372 0.691 5.032 15.050 5.479 0.549 0.236 0.697
DeepGOPlus 0.585 0.474 0.699 8.824 33.576 7.693 0.536 0.407 0.726
PANDA 0.486 0.367 0.520 11.751 45.096 12.723 0.396 0.289 0.394
PANDA2 0.598 0.478 0.709 9.670 40.229 9.558 0.564 0.436 0.744

Table 4. The performance of PANDA2 and different versions of PANDA2 after removing GNN or other features. PANDA2 rm GNN denotes the system
after removing GNN, which only contains the ESM features and the fully connected layer (or neural network) related to them. The PANDA2 rm NN
denotes only using GNN and related features. The PANDA2 rm PAAC denotes the PANDA2 after removing the global (PAAC) features. The PANDA2
rm Psitop10 denotes the PANDA2 after removing PSI-BLAST top 10 features. PANDA2 rm Prior denotes the PANDA2 after removing priority score
features. The PANDA2 rm Dia denotes the PANDA2 after removing DIAMOND score features. The highest F max, smallest Smin , highest AUPR, and
smallest validation loss are in bold

Fmax Smin AUPR

Method MFO BPO CCO MFO BPO CCO MFO BPO CCO Validation loss

PANDA2 rm GNN 0.566 0.432 0.687 10.273 42.554 10.289 0.521 0.386 0.714 0.07100
PANDA2 rm NN 0.561 0.456 0.651 9.860 40.913 10.188 0.530 0.400 0.668 0.07563
PANDA2 rm PAAC 0.593 0.475 0.709 9.727 40.476 9.523 0.558 0.434 0.750 0.06676
PANDA2 rm Psitop10 0.597 0.476 0.708 9.782 40.443 9.577 0.552 0.434 0.748 0.06686
PANDA2 rm Prior 0.596 0.478 0.709 9.720 40.270 9.604 0.563 0.437 0.751 0.06649
PANDA2 rm Dia 0.592 0.472 0.702 9.663 40.826 9.656 0.563 0.428 0.745 0.06681
PANDA2 0.598 0.478 0.709 9.670 40.229 9.558 0.564 0.436 0.744 0.06632

generated from the homologs of the query protein as node
features and the pseudo amino acid composition as the
global feature. In this way, the relationships between thou-
sands of GO terms, which is something not directly associ-
ated with the query protein but in general for all GO terms,
are naturally aggregated with the knowledge of the query
protein.

Instead of taking the amino acid sequence of the
query protein as input, PANDA2 attempts to use the
evolutionary-scale language modeling (ESM) representa-
tion of the query protein sequence. This ESM-based se-
quence representation was trained by other scientists based

on 250 million protein sequences, and other studies have
proven that this model can provide much more knowledge
for the query protein sequence compared to only using the
amino acid sequence of the query protein. Since it is en-
riched with knowledge about the query protein, we use a
fully connected layer to change its data shape to the number
of possible GO terms and then directly input it to the last
block of the graph network. In this way, this ESM-based
feature will have a higher weight or impact on the final pre-
diction.

One may argue that since the ESM model was trained on
250 million protein sequences, the blind test proteins used
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Figure 3. The Fmax and precision-recall curves of different versions of PANDA2. The evaluation was conducted on the 2016 dataset. A–C show the bar
plots of Fmax in terms of BPO, CCO and MFO, respectively. The empirical bootstrap was applied to estimate the 95% confidence interval with 10 000
resamples on the benchmark dataset (36). The empirical bootstrap was not applied to the literature result of DeepGOPlus. D–F show the precision-recall
curves for three ontologies. The highlighted dots on the precision-recall curves indicate the precisions and recalls where Fmax scores were found.
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Table 5. Top 10 CCO terms predicted by PANDA2 for the hypothetical
protein O33285. GO terms were ranked by confidence scores generated by
PANDA2. Depth 0 indicates that the predicted GO term is the root term
in the CCO DAG. GO:0005886 (plasma membrane) in bold is the only GO
term that is annotated with an experimental evidence code

Predicted GO
term

Confidence
score from
PANDA2

Semantic
similarity

between the
predicted GO

term and
GO:0005886

Depth of the GO
term in the CCO

DAG

GO:0044464 0.62 0.574 1
GO:0005575 0.61 0.313 0
GO:0005623 0.56 0.43 1
GO:0071944 0.43 0.685 2
GO:0016020 0.39 0.49 1
GO:0005886 0.37 1 2
GO:0005622 0.27 0.344 2
GO:0005618 0.23 0.414 3
GO:0044424 0.2 0.315 2
GO:0030312 0.2 0.527 2

in our benchmarking may already be exposed. However,
we want to argue and point out that the ESM model was
trained in an unsupervised way, which was nothing related
to GO terms but only based on protein sequences. There-
fore, using the ESM model to get sequence representation
of the query protein does not introduce the data leakage
problem to the machine learning architecture.

Since the node, edge and global features are updated and
aggregated in each block of the graph neural network, when
we stack multiple blocks, it can extract knowledge from
increasing neighborhoods or receptive fields. Previous re-
search has taken advantage of that by applying graph net-
works onto protein residues, in which the graph network
blocks can learn, for example, the knowledge regarding �-
helices and �-sheets using the first block, domains for the
second block, and then the arrangement of domains for
the third or fourth blocks (18). For PANDA2, instead of
applying this increasing inceptive manner onto the protein
residues, we apply it onto the GO terms, that is, it can model
or learn knowledge for neighboring GO terms using the first
block and then enlarge to a wider range containing more
GO terms using the next two blocks. Moreover, our design is
not only modeling the query-protein-independent relation-
ships between GO terms but also with the sequence and ho-
mologous information of the query protein integrated as the
node features. All of this knowledge is integrated naturally
by taking advantage of graph neural networks.
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