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Abstract: Dilated cardiomyopathy (DCM), a heterogeneous cardiomyopathy, is a major cause of
heart failure and heart transplant. Currently, immunotherapy is believed to be an effective treatment
method for DCM. However, individual differences are so obvious that the clinical effect is not satis-
factory. In order to find immune-related biomarkers of DCM to guide treatment and improve clinical
efficacy, we downloaded a GSE120895 dataset from the Gene Expression Omnibus (GEO) database us-
ing CIBERSORT and WGCNA algorithms in RStudio and visualizing the protein–protein interaction
(PPI) network for key modules by Cytoscape, and finally obtained six hub genes. A GSE17800 dataset
was downloaded from the GEO dataset to verify the diagnostic values of hub genes, MYG1, FLOT1,
and ATG13, which were excellent. Our study revealed unpublished potential immune mechanisms,
biomarkers, and therapeutic targets of DCM.

Keywords: dilated cardiomyopathy; heart failure; immunity; GEO; WGCNA; CIBERSORT

1. Introduction

Heart failure (HF) is a clinical syndrome with typical symptoms, such as breathlessness
and ankle swelling, resulting from cardiovascular or noncardiovascular disease [1]. There
are approximately 64.3 million people worldwide suffering from HF, which plays a vital role
in the global burden of diseases, and a trend of younger HF patients needs our attention [2].
The authors of [3] found that although the age-specific mortality was decreased, the absolute
number of deaths increased owing to population growth and aging based on mortality
data from the Global Burden of Disease Study 2013.

Dilated cardiomyopathies (DCMs), one of the leading causes of HF, are a heteroge-
nous heart muscle disease without ischemia characterized by systolic dysfunction and
ventricular dilatation, which has a rising prevalence reaching 1/250 but with a poor progno-
sis [4]. Failure of the heart is the most important pathway of DCM identified by ingenuity
pathway analysis (IPA) in a meta-analysis [5]. The pathophysiology of HF in DCM is
complicated, and immune activation in the myocardium after virus infection is considered
to be the main reason for this [6]. Barth [7] studied the identification of a common gene
expression signature in DCM across two different studies, showing that the most obvious
downregulation was the immune response process in both microarray types. Addition-
ally, a number of autoantibodies against different cardiomyocyte proteins in DCM have
been found [8]. Owing to the disorder of the immune system in DCM, immunotherapy
relying on precision medicine came into being, including immunosuppressants and im-
munoadsorption [9]. However, an increase in antibodies and a decrease in contractility
were observed in DCM 12 months after immunoadsorption therapy and subsequent IgG
replacement (IA/IgG) treatment [10]. The effectiveness of immunotherapy needs to be
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further evaluated. Moreover, it is worth exploring which kind of patients can reap the
maximum benefit from immunotherapy.

In recent years, the vigorous development of high-throughput biological analysis tech-
nology has promoted the explosive growth of genomic biological data, and the application
of informatics in biomedical research has been increasing [11]. The systematic method in
biology breaks the traditional analysis of a single gene or multiple genes at a time, giving
rise to a totally new level of gene research, with which we can identify the gene expression
profiles of complex diseases [12]. Gene expression provides a key link in the prognosis of
disease. Laura [13] proposed, for the first time, that it was possible to judge the efficacy
of adjuvant systemic therapy in breast cancer patients by analyzing DNA microarrays,
patients who would benefit from which could be selected for treatment, greatly improving
the efficiency and reducing the cost of treatment. CIBERSORT is an analytical tool of
immune infiltration developed by the Stanford University research team and published in
the Nature Methods in 2015 using a deconvolution algorithm to estimate the composition
and abundance of the immune cells in the mixed cells based on transcriptome data [14].
Weighted gene coexpression network analysis (WGCNA) is another biological method
performing relevant network analysis on the dataset to obtain biomarkers or therapeutic
targets [15]. Based on the above methods, we aimed to use gene expression data from the
Gene Expression Omnibus (GEO) dataset to reveal immune-related biomarkers of DCM
and provide assistance in assessing the effectiveness of immunotherapy in individuals
(Figure 1).
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Figure 1. Study flowchart (GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes
and Genomes; MAD, median absolute deviation; DEGs, differentially expressed genes; WGCNA,
weighted gene coexpression network analysis; PPI, protein–protein interaction; ROC, receiver operat-
ing characteristic).

2. Materials and Methods
2.1. Data Processing and Analysis

We downloaded the GSE120895 [16] and GSE17800 [17] datasets from GEO (URL:
https://www.ncbi.nlm.nih.gov/geo/ (accessed on 17 January 2022)) using RStudio 4.1.1
software (URL: https://www.r-project.org/ (accessed on 2 September 2021)). Subsequent
data processing and analysis were all performed in RStudio. The GSE120895 dataset

https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/


Genes 2022, 13, 393 3 of 13

(GPL570 platform), which was updated in 2021, was used for transcriptome analyses of the
endocardium myocardia of 47 DCM patients and 8 individuals with normal left ventricular
ejection fraction (LVEF). The GSE17800 dataset (GPL570 platform) found 40 endocardial
samples from DCM and 8 normal control endocardial samples. Both GSE120895 and
GSE17800 comprised DCM patients with left ventricular systolic dysfunction (LVEF < 45%)
and symptoms of HF according to New York Heart Association (NYHA) classifications
II and III. Gene expression values were log2 transformed and normalized by “limma”
package [18]. We used the “hgu133plus2” package to convert to gene symbols and finally
obtained a gene expression profile containing 12,412 genes from 55 samples of GSE120895.
Differentially expressed genes (DEGs) were filtered by |Log2 fold change| > mean plus
twice the standard deviation and p-value < 0.05.

2.2. Functional Enrichment Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
for all expression data was performed by gene set enrichment analysis (GSEA) with the
“clusterProfiler [19]” and “DOSE” packages [20] in RStudio, setting the p-value to less than
0.05 and the number of permutations to 1000.

2.3. CIBERSORT

In order to determine the differences in the composition of immune cells between
DCM with HF and normal individual controls, CIBERSORT was used to analyze DEGs.
We used the LM22 signature and 1000 permutations in RStudio to obtain the proportion
of each type of immune cell in the samples of two groups [21]. We visualized the results
obtained above using the “ggplot2”, “ggpubr”, and “heatmap” packages in RStudio.

2.4. WGCNA

WGCNA in RStudio was introduced to construct a coexpression network (undirected
weighted gene networks [15]) with the top 5000 genes with the highest median absolute
deviation [22]. We constructed the adjacency matrix with a suitable soft threshold (ß = 17)
when R2 reached 0.85 after calculating the Pearson correlation coefficient between any two
genes in the immune cells. We combined similar modules (modules are clusters of highly
interconnected genes [15]) with a similarity of 0.85 and then identified modules related to
immune cells.

2.5. Protein–Protein Interaction (PPI) Network Analysis and Obtained Hub Genes

Cytoscape (v3.8.2, URL: https://cytoscape.org/ (accessed on 4 September 2021)) was
used to visualize the PPI network (a tool to describe a biological system according to
proteins and the relationships [23]) of the top 300 genes with a weight value of the key
modules. Hub genes (highly connected genes [15]) were selected through the Cytoscape
plugin cytoHubba [24], and we chose 3 hub genes from each module according to the
largest degree.

2.6. Validation of Hub Genes

For the identification of hub genes, we used the “pROC” package to draw receiver
operating characteristic (ROC) curves and calculated the area under the ROC curve (AUC)
in GSE17800 [25]. AUC > 0.7 indicated that the gene had a good fitting effect, and p < 0.05
indicated statistical significance. We further confirmed the expression values of hub genes
in each group.

3. Results
3.1. Identification of DEGs

GSE120895 from the GEO dataset contained 12,412 genes in 55 samples of endocardium
myocardium from 47 DCM patients with HFrEF and 8 individuals with normal LVEF.
A total of 473 genes were identified as DEGs in GSE120895, among which 268 genes

https://cytoscape.org/
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were upregulated and 205 genes were downregulated, which is shown in a volcano plot
(Figure 2A). A heatmap was used to visualize the top 25 genes of DEGs (Figure 2B).
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Figure 2. Volcano plot and heatmap for differentially expressed genes identified in the GSE120895
dataset; red indicates upregulated genes, and blue indicates downregulated genes. (A) The volcano
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differentiated genes in individuals.

3.2. Functional Correlation Analysis

The results of KEGG from GSEA (Figure 3B) showed that the KEGG pathways were
enriched in human papillomavirus infection, focal adhesion, the PI3K-Akt signaling path-
way, the cGMP-PKG signaling pathway, viral carcinogenesis, Epstein–Barr virus infection,
and herpes simplex virus 1 infection, participating in the process of viral infection and
immunity. Most of them were at the top (Figure 3A).
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3.3. Immune Cell Infiltration

There was a significant difference between the DCM with HF and controls in the
composition of immune cells (Figure 4). CD4 memory resting T cells (p = 0.035), CD8 T
cells (p = 0.05), CD4 naive T cells (p = 0.015), plasma cells (p = 0.0047), macrophages M0
(p = 0.059), and NK resting cells (p = 0.017) were significantly higher in the DCM with HF.
Otherwise, B cells naive (p = 0.015), B cells memory (p = 0.0074), T cells follicular helper
(p = 7.1 × 10−7), and CD4 memory activated T cells (p = 1.3 × 10−6) were much lower in
the DCM patients with HF.
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3.4. Construction of Weighted Coexpression Network and Identification of Immune-Corrected Modules

In this study, after filtering an outlier (Figure 5A), ß = 17 (scale-free R2, 0.85) was chosen
as the soft threshold to construct a scale-free network, while the network topology with
1–30 threshold weights was analyzed (Figure 5B). We merged the modules with similarity
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greater than 0.85 and finally obtained six modules (Figure 5C). The correlation between
the modules and 22 kinds of immune cells was shown in a network heatmap (Figure 5D),
which indicated that the blue and black modules were the key modules. Correlation
analysis was performed between module eigengenes (MEs, the first principal component
of a module [15]) and immune cells. Blue and black modules significantly correlated with
NK resting cells and B cells (Figure 5E), which were further validated by the scatter plot
(Figure 6).
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Figure 5. Weighted gene coexpression network analysis (WGCNA) for GSE120895. (A) The sample
clustering to detect an outlier. (B) Analysis of the scale-free index (left) and mean connectivity
(right) for various threshold powers. ß = 17 (scale-free R2, 0.85) was chosen as the soft threshold.
(C) Clustering dendrogram of genes, together with assigned module colors. Merge modules with a
similarity of 0.85. (D) Network heatmap plot in the coexpression modules. Light color represents
higher overlap. (E) Module–trait relationships; the numbers in the cell represent the correlation
coefficient and corresponding p-value. The correlation coefficient is between −1 and +1, and the
larger the absolute value, the stronger the association.
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3.5. PPI Network Construction and Identification of Hub Genes

The top 300 genes with weight values of the key modules were introduced into
Cytoscape to establish PPI networks, and 10 hub genes are shown in different colors
(Figure 7). We selected six hub genes according to the highest degree: MYG1 (degree = 104)
and FLOT1 (degree = 104) with GPX1 (degree = 47) in the black module, and LINC00520
(degree = 59), ZNF548 (degree = 52), and ATG13 (degree = 36) in the blue module.
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colors (the darker the gene, the higher the score). (A) PPI network for black module. (B) PPI network
for blue module. MYG1 (degree = 104), FLOT1 (degree = 104), GPX1 (degree = 47), LINC00520
(degree = 59), ZNF548 (degree = 52), and ATG13 (degree = 36) were selected as hub genes.
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3.6. ROC Curve Analysis of Hub Genes

We drew the ROC curve of hub genes in RStudio so as to clarify the diagnostic value.
The results showed MYG1 (AUC = 0.741), FLOT1 (AUC = 0.766), GPX1 (AUC = 0.672),
LINC00520 (AUC = 0.716), ZNF548 (AUC = 0.706), and ATG13 (AUC = 0.806) in the
GSE17800 validation set (Figure 8), out of which MYG1, FLOT1, and ATG13 (p < 0.05) had
significant diagnostic values. The gene expression level provided further proof (Figure 9),
showing that MYG1, FLOT1, and ATG13 were all upregulated.
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Figure 9. GSE17800 was used to verify the expression levels of hub genes in DCM and control.
(A) Gene expression values of MYG1 among samples. (B) Gene expression values of FLOT1 among
samples. (C) Gene expression values of GPX1 among samples. (D) Gene expression values of
LINC00520 among samples. (E) Gene expression values of ZNF548 among samples. (F) Gene
expression values of ATG13 among samples.
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4. Discussion

The Prospective Urban Rural Epidemiology (PURE) cohort study [26] published in
Lancet suggests that, among adults aged 35–70 around the world, cardiovascular disease is
still the major cause of death, and heart failure is one of main events leading to mortality.
While the global burden of HF is quite heavy with a stubbornly high prevalence and
mortality rate, targeted therapy (precision medicine) based on high-throughput molecular
biology technology may provide a new direction [27].

Immune response as a defense mechanism results in long-term myocardial immune
infiltration, which can cause ventricular remodeling in HF patients [28]. Evidence suggests
that HF is related to the infiltration of immune cells in the myocardium [29]. DCM is
one of the most common causes of HF worldwide, with myocardial injury mediated by
multiple factors, such as familial susceptibility, infection, immunity, toxicants, endocrine,
and metabolic abnormalities [30]. Abnormalities of immune cells are considered to connect
with the outcome of DCM [31,32]. In addition, Staudt [33] found that the disturbance of
humoral immunity might promote the development of HF, and it was identified that there
were a number of autoantibodies against cardiac cell proteins in DCM, some of which
were related to HF [34]. In a word, humoral and cellular immune disorders in DCM are
gradually uncovered, playing an important role in the pathogenesis. With bioinformatics
algorithms and tools, we can explore the immune mechanism of DCM with HF and find
immune markers of DCM.

In our study, the results of KEGG from GSEA suggested that the KEGG pathways
were enriched in the process of viral infection and immunity. We attempted to determine
the immune-related pathological process and marker genes in DCM with WGCNA and
CIBERSORT algorithms based on the GSE120895 dataset from the GEO database. The
composition of immune cells in two groups was totally different. The high expression
of NK cells and CD8 T cells in DCM with HF indicated that the cellular immunity was
active. CD4 memory-activated T cells, naive B cells, memory B cells, and follicular helper
T cells were clearly reduced in DCM, while plasma cells significantly increased, which
meant that the humoral immune system was abnormal in DCM. CD4 T cells are closely
involved in the progression of cardiac insufficiency [35]. The authors of [36] found that the
number of NK cells in DCM was significantly more than that in the control in the 1990s, and
functional abnormalities of NK cells might contribute to pathogenesis in DCM. Recently,
immunoadsorption has become a new treatment option for DCM, but the clinical effect has
not met expectations, and individual differences are obvious due to uncertain reasons [37].
Bhardwaj [38] attempted to distinguish between DCM patients who responded and those
who did not respond to immunoadsorption at the proteomics level, and they found that
the proteins S100-A8, perilipin-4, and kininogen-1 had the potential to help stratify patients
with immunoadsorption therapy. We aimed to identify DCM patients who may respond to
immunotherapy at the genetic level so as to improve the effectiveness of immunotherapy
and achieve precision medicine.

We constructed six modules correlated with immune by WGCNA analysis, in which
blue and black modules showed a strong correlation with NK resting cells, B cells, and
plasma cells. We finally obtained six hub genes, MYG1, FLOT1, GPX1, LINC00520, ZNF548,
and ATG13, from blue and black modules. MYG1, FLOT1, and ATG13 were verified in
GSE17800 (AUC > 0.7, p < 0.05).

MYG1 (melanocyte proliferating gene 1) located in the nucleus and mitochondria has
exonuclease activity, mainly controlling mitochondria’s functions [39]. As a ubiquitously
expressed and highly conserved factor, MYG1 is involved in immune regulation [40], which
is not only associated with leukoplakia susceptibility, but also promoting the progression
of lung adenocarcinoma and inhibiting autophagy [41]. Compared with the control, MYG1
was differentially expressed in DCM in our study. We suppose that the involvement of
MYG1 in DCM progressed to HF, which requires further research to confirm.

FLOT1 (flotillin-1), another ubiquitously expressed and highly conserved raft-associated
protein, maintains the membrane integrity of B and T lymphocytes [42], playing a role
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in T-cell activation [43]. Flotillin-1 was reported to be involved in cell adhesion, the over-
expression of which enhanced cell spreading [44]. FLOT1, with a great diagnosis value
shown by the ROC curve, was overexpressed in DCM with HF, and we also found that
focal adhesion was one of the significant enrichment pathways in our study. Based on the
above, we could make a hypothesis that FLOT1 has an effect on the development of DCM
by activating T cells and speeding up cell spread.

As a key component of ULK1 (unc-51 like autophagy activating kinase 1), ATG13 (autophagy-
related protein 13) is responsible for activating ULK1 kinase, which is closely associated with
autophagy, which may have a connection with inflammation [45]. Autophagy proteins par-
ticipate in the development and homeostasis of the immune system, antigen presentation,
and regulation of immune signals, playing an essential role in controlling inflammation [46].
Autophagy may take part in the development of HF in DCM [47]. ROC curve analysis
showed that the AUC of ATG13 was greater than 80%, which, with increased expression,
could provide a sign of immune disorders in DCM.

Ischemic cardiomyopathy (ICM), which is another disease causing inflammation in
the heart, has some difference in the enriched pathway from DCM. The cytoskeletal and
immune pathways belong to ICM, while the adhesion pathway is enriched in DCM [48].
Aiqing [49] found that upregulated DEGs in DCM or ICM were not associated with each
other, and the hub genes in our study were not on the list of common regulated genes from
Aiqing’s study. ICM was excluded by angiography in GSE120895 and GSE17800 datasets,
so the hub genes in ICM may not be upregulated, while arrhythmogenic right ventricular
cardiomyopathy (ARVC), characterized by the fibrofatty replacement of myocardium, has
more active inflammatory signaling compared with DCM [50]. ARVC and DCM differ
markedly at the transcriptomic level [51]. However, it cannot be ruled out that MYG1,
FLOT1, and ATG13 are upregulated in ARVC. Further experiments can identify genetic
changes in ICM and ARVC.

Immune-related MYG1, FLOT1, and ATG13 had excellent diagnostic values. We may
determine the success rate of immunotherapy by measuring the expression of these genes
and increasing clinical effectiveness.

5. Conclusions

In summary, we used the WGCNA and CIBERSORT bioinformatics algorithms to
identify immune biomarkers in DCM with HF, and obtained two key modules and six
hub genes, out of which MYG1, FLOT1, and ATG13, with good diagnostic values, may be
potential diagnostic biomarkers and therapeutic targets. We speculate that these genes
have the ability to predict the success rate of immunotherapy, which needs to be confirmed
by further experiments.
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