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Abstract

The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand
binding, and understanding general composition of these sites is of great importance if we are to gain insight into the
functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for
improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD
database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data
for establishing general trends of residue composition from currently available protein structures. We present an analysis of
3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding
regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant “valid” ligands
from “invalid” small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no
known biological function. Contacts are found to differ between these classes of ligands, indicating that residue
composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from
surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a
rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent
in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general
trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future

studies of binding-site composition.
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Introduction

Understanding general properties of protein-ligand binding sites
is of great importance to gain insight into the functional diversity
of the proteome. One of the most fundamental properties of the
receptor surface is the set of amino acids available for interactions
with ligands. In many protein families, this set is well known and
structurally conserved due to the functional role of the residues,
and several insightful studies have summarized catalytic residue
content in sets of enzymes [1-3]. These provided insightful
heuristics for predicting enzymatic sites, but the studies did not
provide as much detail on non-catalytic interactions. Non-catalytic
contacts cannot be ignored because they are an important
component of a valid binding site, helping the ligand maintain
the correct binding mode and often dictating binding specificity.
Overall, the more general trend of amino-acid distribution within
binding sites across a variety of protein and ligand types is less
understood; previous studies have explored limited sets of proteins
[4] or interactions of specific interest [5]. With ever-increasing
numbers of protein structures available and numerous databases
dedicated to protein-ligand analysis [6-10], a wider view of the
residue composition of binding sites is now possible and necessary.
Establishing general trends of binding-site composition can help
develop valuable tools for identifying a protein functional site
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without prior information about the protein’s structural homology.
Such tools can be invaluable for the characterization of proteins
emerging from current structural genomics projects [11]. The
recent use of binding-site composition to bolster methods for de
novo prediction of binding sites [12—15] is an encouraging example
of the utility of the general binding-site composition trends.

To study the composition of ligand binding sites across the
broadest set of available protein structures, we analyzed the
propensity of residues in all the binding sites present in the Binding
MOAD database - one of the largest sets of curated protein-ligand
complexes [8]. Of course, the diversity of the database is limited to
the diversity in the PDB, so there is a heavy bias toward enzyme
structures and against membrane-bound systems. Also, the poor
resolution of very large complexes excludes most of them from this
study. Our analysis summarizes surface composition of binding
sites of biologically relevant ligands, such as substrates, products,
drugs, and co-factors. We also show how composition of binding-
site surfaces varies with number of structures analyzed; this
measure of statistical significance is not presented to this extent in
other studies to date. Another unique aspect of this study is our
examination of the binding of spurious co-crystals, such as
crystallization buffers, solvents, and stray ions, which exhibits
some markedly different trends than the binding of functional
ligands.
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Author Summary

Describing the general structure of protein binding sites is
fundamentally important for guiding drug design and
better understanding structure-function relationships.
Here, we analyze small molecules bound to proteins
within our large database, Binding MOAD (Mother of All
Databases, pronounced like “mode” as a pun referring to
ligand-binding modes). We focus on different contacts
across the residues in the binding sites, and we normalize
the data relative to the protein’s entire surface. A key
feature of this study is the use of a “control” where we
compare real, functional binding sites to the random
contacts seen for crystallographic additives against the
protein surface. Controls are required in experimental
biology, but they are ill-defined in many computational
approaches. This allows us to describe how true binding
sites are unique on the protein surface and distinct from
random patches that attract common, small molecules.

Methods

Large, Non-redundant Data Set of Binding Sites

We began by assembling a non-redundant set of 3295 protein-
ligand structures, each representing a closely related protein family
from the 2009 release of Binding MOAD. The non-redundant set
of Binding MOAD is composed of families grouped by 90%
sequence identity; the 3295 complexes embody the variation of the
full set of 14,720 complexes with 41,721 binding sites. A binding
site was defined as the set of protein residues which have at least
one non-hydrogen atom within 4.0 Aofa ligand’s non-hydrogen
atom. These residue interactions were then labeled as side chain
(SC) or backbone-only (BB-only) depending upon which atoms
participated in the interaction. A residue classified with a BB-only
interaction did not have any side-chain atoms within the
interaction distance. Residues were classified as SC if the
interaction was solely through the side chain or through both its
side chain and backbone atoms. Glycine residues are considered a
special case, and interactions with glycine’s Co are always
classified as SC regardless of the absence of a side chain. A single
protein residue could have interactions with more than one ligand,
in which case the residue interactions were considered indepen-
dent, and the residue was included in each ligand’s binding site
provided it was within 4.0 A. Since a ligand-based definition of the
binding site was used, smaller ligands may not make contacts with
all possible residues in a large binding site. Only the residues in
contact with the ligand are part of the calculation of a site’s
solvent-accessible surface area (SASA).

In accordance with Binding MOAD annotation, each binding
event is classified as “valid” or “invalid” depending on the
biological relevance of the ligand [8]. Since all structures in
Binding MOAD must contain a valid ligand, the likelihood of an
invalid ligand occupying a biologically relevant site is greatly
reduced. While it is still possible, the rate of such occurrence is
much less than using all the structures in the Protein Data Bank
(PDB) [16]. For each protein structure, multiple sites of a unique
ligand were analyzed for redundancy by comparing the counts of
each residue. Binding MOAD uses biounit structures, which can
contain multimeric proteins; in fact, 1958 of the 3295 complexes
involved multimeric proteins. Biounits are the entire biologically
relevant structure. Each multimeric structure was treated as “one
entire protein” when identifying surface residues, and no buried
residues in the interface were accidentally counted as exposed. Of
course, some interface residues are solvent exposed, and any
binding sites located between monomers were properly defined as
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being composed of exposed residues from both monomers during
the surface area calculation. To avoid over-representing ligand
sites of multimeric proteins, only one site was retained when
multiple sites with an identical ligand and identical binding-site
residues existed in the same structure. In multimers where the
same ligand exhibited different contacts in symmetry-related
pockets, one example of each case was included to represent the
inherent variability of the binding. There were 2571 valid ligands
(~68% of the data set) represented by only one unique binding site
in its respective protein biounit, while the other 1225 had more
than one representation. For 923 ligands (~24% of the data set),
there were 2 non-redundant representations of the binding event.
Among the remaining 8% of ligands in biounits, 171 (4.5%) had 3
unique binding sites, 80 (2.1%) had 4, and 1.4% had 5-14 unique
representations. The valid ligands with more than 2 representa-
tions tended to be sugar molecules bound to sugar-processing
enzymes. For invalid ligands, 717 out of 1485 ligands in biounits
(~49% of the data set) had a single representation in the respective
biounit, 364 had 2, and the remaining 27% had 3 or more unique
representations in a biounit. Dataset Sl in the supporting
information lists the number of unique sites for each ligand in
each biounit.

Definition of Surface Residues

Solvent accessibility of residues was calculated using the
NACCESS program [17]. NACCESS rolls a probe with the
diameter of a water molecule across the entire van der Waals (vdw)
surface of the protein and uses the path traced by the probe’s
center to calculate the SASA of each residue. It is important to
note that this is different from the molecular surface area (MSA),
which is the path traced by the probe’s contact surface. Known
ligands were removed from the structure before the SASA
calculation. The default probe size was used, and any waters,
hydrogens, or remaining HET groups were ignored (also default
behavior). The NACCESS value of abs_side was used to define
surface residues for the SC set and abs_main to define surface
residues for the BB-only set. These report the absolute areas (in A%
of the residue side chain, and backbone, respectively (calculated
using default NACCESS atom types and vdw radii). Since
NACCESS treats the Gly Co as a side chain, the largest of the
abs_main or abs_side values was used for that residue. SASA was
calculated for all residues in a protein, which included any
binding-site residues. We compared two definitions of “surface”
residues: =5 A” SASA and =0.5 A* SASA.

Residue Propensity Calculation

In accordance with previous studies, we used residue propensity
as a measure of residue over-representation to explore the binding-
site composition [1,2,4,14]. The cumulative propensity P; for each
amino acid ¢ = Ala, Arg, Cys .. .elc. was calculated by taking the ratio
of the frequency of the amino acid in binding sites £ and its
frequency on the protein surface F*. The binding-sites frequency
was obtained by summing across the surfaces of all binding sites
J=1...7 in a binding-site class (SC or BB-only). The protein
frequency F™ was obtained by summing up the occurrence of the
amino acid across the surfaces of all proteins p=1...P, where
P=3295 in our case.

. . . FS
Equation 1: Propensity calculation. P;= 5 where
BS 3 i
2N 2N
FPS = and F/S = e~

J
CETY SEE
J 1 14 i
The propensities were calculated separately for valid versus

invalid binding sites, and SC versus BB-only sets. Propensities
greater than 1.0 show over-representation of a residue in the
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binding sites, relative to the entire protein surface, and values less
than 1.0 show under-representation. Since propensity is a ratio of 2
ratios and unit changes in its value represent fold changes in § H
. =l
frequency, we preser}t the propensity values on log-scaled axes. 38| = =
Note that the residue counts were summed across the set of cla |2 K5 &5 2
structures or binding sites before division. This is necessary
because calculating a propensity value for a single protein may — |5
result in division-by-zero errors when rare residues, such as <% g © o
. . . (] O~
cysteine, are absent on the protein surface. Per-protein propen- z 2| = -
sities for rare residues can also result in extremely large propensity E o o
values due to division by a small protein surface frequency, making S|2|¥ g S w <
summary results harder to interpret. Moreover, most binding sites i
do not contain all 20 common residues, which leads to many zero c S
. .. . .. (] et
per-protein propensities. In calculations of propensities for a set of 5 @
. . . . . . [T}
binding sites, only proteins that contained at least one site of that o | 2 AN '%
type (SC or BB-only, valid or invalid) were included in the s S
. ~ f=
calculations. pi é g ; N g oo &
Hydrogen Bonding and van der Waals Contacts. As a =
noted above, all interactions between the ligands and the residues i °
were noted by their type (SC or BB-only, valid or invalid). The o 8 3
interactions were also noted at the atomic level to describe b W< 2 5 9 =
- . . . c |5
hydrogen-bonding and vdw interactions. All distances between & Z|(8 & @a=C £
ligands and the protein were calculated, and distances of 4.0 A or %
less were tabulated. All interactions with distances greater than 2 3
3.5 A and within 4.0 A were counted as vdw interactions. Any § ‘2 8
distance of 3.5 A or less were counted as vdw if they involved a o % = g
: . . . = == B =
carbon on either the protein or ligand. Distances between non- 2lE|E &8 % S = g
carbon atoms (N, O, S, P...) of the protein and ligand were g
counted as hydrogen bonds if they were within 3.5 A. For “ «~ |5 2
tractability on this scale, angle criterion and more specific atom 5 <% |, © o - | o
typing were not used to determine hydrogen bonding. © % =8 %=1 3&F g
=} = c
v < w
Results/Discussion Ei 22180303354
= Wi | ¢ m = & ¢ W
. . . c 3 . . = )
Roughly a third the 3295 structures had invalid binding sites in 2 c =
addition to one or more valid site. The set yielded 7712 valid ol % F
binding sites and 4909 invalid binding sites (Table 1), which g g |- - ol 8
. . . . - N 0N o~ = = "
together represent a comprehensive set of protein-ligand variety o < | g =
. . = o
present in the PDB. However, it means that the number of = b O P S
.. . . . . c nle|2|= < 9 « -
binding-site residues available for frequency and propensity = g |2l |= b S = 28
calculations is different between valid and invalid sites. After ® 2 < g
. . . .o . . . 4] = ] < ‘G
taking into account site redundancy and eliminating incredibly > : g 2 o
small binding sites (those that could not accommodate a solvent 9( P : DRl EEE 23 g
i «“ » resi o W Z |8 882 g £t
probe atom and thus did not have any “exposed” residues), there s 85
were 5562 valid and 3552 invalid sites. Again, Dataset S1 in the o %% o
supporting information lists the number of unique sites for each _g ” o o o g é
. . . . . . . = = ©
valid and invalid ligand in each biounit. £ 8 < < 0 27T
@ 5 Q Q g5 g
£ S8 8888 Y| %2y
. . €8
“Raw” Contacts between the Proteins and Ligands L sz &
We first examined the raw contacts between all ligands and 0 " 5&5
e . . . . g g |2 2 8 8| Boc
their binding sites, defined as all amino acids with at least one 3 RS 2 8 2| r5 5
heavy atom (HA) within 4.0 A of the ligand’s HA. On average, the S 2 g £
binding sites of valid ligands have 17.7 residues that provide 11.6 72 s 2y
oG ; Y N X J s 258
hydrogen bonds and 108 vdw contacts, but the binding sites of o % Q m R g>E=
invalid ligands have only 5.2 residues that provide 10.4 hydrogen s =2 5 5
I . . © 5=
bonds and 80 vdw contacts. This is expected because valid ligands ° £8°¢%s
in our set tend to be larger and more buried than invalid ones. It is g £ z 23
appropriate that the ratio of hydrogen bonds to vdw contacts is 1S 2L
larger for invalids, which is consistent with the more hydrophilic g 9, | 85°¢
. . . n g o| 583
set of molecules found in the invalid set. . " E. €| 58CS
. . . . . x| E IN
The total raw contacts for all residues interacting with valids are : g “:': N| £ £ .% =
. . . . - = © -
shown in Figure 1. The average number of interactions for each ) Y|z = >t 89s9
. . . . . . . © S |® > c o U © .=
atom In each residue is denoted with increasing radii and hotter i alsS E 0 z| fFLS

colors to represent more contacts. Clearly, the greatest interactions
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GLU HIS

PRO

Composition of Protein-Ligand Binding Sites

Figure 1. Bigger, hotter atoms have more “raw” contacts with ligands, on average. Each amino acid is shown with its total number of raw
contacts represented by vdw radii and color. The average contacts per atom range 0.16 to 2.42, which has been offset and scaled to 1.0-3.0 vdw radii.
The hotter colors indicate more contacts per atom: deep blue =0.30, cyan=0.70, green =1.00, yellow = 1.55, orange =2.00, and red =2.30.

doi:10.1371/journal.pcbi.1003321.g001

are to Gly and hydrogen-bonding side chains. Table 2 delineates
the total raw contacts for both valid and invalid ligands, and
Dataset S2 in the supporting information gives the contacts to the
atomic detail seen in Figure 1. Almost all residues have more
contacts to valid residues (an additional 0.7 contacts/residue for
Asn up to an additional 2.81 for Tyr), but His shows no significant
difference. Only Cys has more contacts to invalids (+1.4 contacts/
residues). Residues have 4-9 contacts to valid ligands, with Ala,
Val, Leu, and Pro having less than 4.5 contacts/residues and Tyr,
Arg, and Trp having 7.5 or more contacts/residues. Obviously,
the largest residues are capable of providing many more contacts
than the smallest. To correct for the size difference, we also
compared the contacts per HA of the residues, which ranged 0.53—
1.32. Leu, Ile, Val, Phe, and Pro had the fewest contacts per HA
(=0.62), and Cys, Ala, Thr, Asp, Ser, and Gly had the most with
=0.78 contacts/HA.

Ligand Contacts with Protein Surface Residues

Of course, the raw contact information is interesting for
understanding the molecular recognition of the ligands, but the
raw contacts do not correct for the different frequencies of the
amino acids in protein sequences. After all, more contacts with a
particular residue is not significant if that residue is overwhelmingly
present in the protein; random chance will result in increased
contacts to that residue. Furthermore, we were concerned that
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many of the contacts were from residues that were not exposed on
the protein surface. Typically, analyses of this sort concentrate on
the exposed residues because correcting for the different frequencies
of the amino acids is most appropriately done by comparing the
surface of the binding site to the surface of the entire protein, which
is discussed further below.

We chose to use the common standard of =5 A? SASA as the
definition of a “surface” residue [18,19]. However, we were
concerned that this definition included only 84% of SC binding-
site residues, so we also examined the effect of lowering the
minimum SASA cutoff to 0.5 A? to ensure we were not omitting
significant parts of the binding site. Lowering the cutoff for the
surface definition increased the total number of binding-site
residues so that 98% of the residues within interaction distance of
the ligand were considered “‘surface”. However, the respective
increase in total binding-site SASA was only 0.2%, a contribution
so small that it can be misleading to count those residues.
Furthermore, the 0.5-A% definition led to inappropriate frequen-
cies for amino acids on the surface of the protein (Figure 2).
Specifically, more hydrophilic residues such as Arg, Asp, Lys, and
Glu have the highest surface frequencies with the 5-A% cutoff
(>7%), which is in line with other studies [20]. Although the
relatively hydrophobic Leu had high frequencies with both
definitions, it is not appropriate that counting many small-SASA
contributions (at 0.5-A” cutoff) should make Leu more frequent
(7.8%) than Arg (6.1%) or Lys (7%). Including the minimal
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contributions of small-SASA residues simply leads to erroneous
conclusions when counting residue frequencies and propensities.
When examining the sites based on their exposed residues
(5 A-SASA definition), valid binding sites were ~5 times larger in
terms of the number of residues and ~2 times larger by surface
area than invalid ones. The smaller number of contacts for invalids
is consistent with the data in Table 1 that shows invalid sites have
smaller SASA and fewer residues. Table 2 shows that the average
number of contacts per residue increases for both valids and
invalids when focusing on the surface residues, though the trend is

SC Residue Frequencies on Protein Surface. SASA > 5A2 vs. SASA > 0.5A2

ol

[ Bl

o

Table 2. Comparison of “raw” ligand contacts to “surface” ligand contacts.

All Contacts to Residues within 4 A All Contacts to Residues within 4 A and with =5 A% SASA

Valids Invalids Diff (V - 1) Valids Invalids Diff (V - 1)

Contacts per Contacts per Contacts per Contacts per Contacts per Contacts per

Res  %Site Res Atom® %Site Res Atom” Res Atom® %Site Res Atom® %Site Res Atom”? Res Atom?
Gly 1.1 53 1.3 8.1 4.0 1.0 13 0.32 6.8 6.5 1.6 5.0 4.1 1.0 24 0.60
Ser 6.6 58 0.96 6.0 4.5 0.74 13 0.22 5.0 6.8 1.1 53 4.7 0.78 2.1 0.35
Asp 57 7.1 0.88 5.1 4.7 0.58 24 0.30 5.6 74 0.93 5.6 4.7 0.58 2.8 0.35
Thr 6.3 58 0.82 5.6 4.6 0.66 1.1 0.16 55 6.6 0.94 5.1 4.7 0.67 1.9 0.27
Ala 6.1 4.1 0.82 4.9 3.1 0.62 1.0 0.20 4.0 5.1 1.0 34 3.3 0.65 1.8 0.36
Cys 1.7 4.7 0.78 1.6 6.1 1.0 -14 -0.23 1.0 6.5 1.1 1.3 749, 1.3 =15 -0.24
Asn 47 6.2 0.77 53 55 0.68 0.7 0.09 4.4 7.1 0.88 59 6.2 0.77 0.9 0.11
Arg 6.7 8.4 0.77 11.2 6.1 0.55 23 0.21 10.1 9.0 0.81 14.6 6.2 0.56 2.8 0.25
Lys 4.5 6.7 0.75 6.1 4.6 0.51 22 0.24 5.8 6.8 0.75 7.9 4.4 0.49 24 0.26
Gin 2.8 6.3 0.70 34 4.4 0.49 1.9 0.21 3.1 7.1 0.78 4.0 4.5 0.50 25 0.28
Glu 43 6.3 0.70 55 4.5 0.50 1.8 0.20 4.0 6.3 0.70 6.2 4.5 0.50 1.8 0.20
His 4.5 6.9 0.69 6.0 7.2 0.72 —03 —0.03 4.8 85 0.85 6.5 8.3 0.83 0.2 0.02
Trp 24 9.1 0.65 2.3 6.9 0.49 22 0.16 33 10.8 0.77 2.6 8.0 0.57 2.8 0.20
Tyr 5.7 7.6 0.64 52 4.8 0.40 2.8 0.23 7.2 9.0 0.75 54 5.1 0.43 3.9 0.32
Met 24 5.1 0.63 1.7 3.6 0.45 1.4 0.18 2.8 59 0.74 1.9 4.0 0.50 1.9 0.24
Pro 2.8 4.4 0.62 3.8 3.1 0.44 13 0.18 32 4.7 0.67 4.2 32 0.45 1.5 0.22
Phe 5.0 6.7 0.61 4.5 4.2 0.38 25 0.23 6.3 8.2 0.75 3.9 5.0 0.45 33 0.30
Val 52 43 0.61 4.1 2.9 042 13 0.19 4.7 4.8 0.68 2.7 2.9 0.41 1.9 0.27
lle 5.0 4.7 0.58 3.8 3.0 0.38 1.6 0.20 53 5.6 0.70 3.1 32 0.40 23 0.29
Leu 6.4 43 0.53 59 2.9 0.36 14 0.17 7.1 4.8 0.60 54 2.9 0.36 1.9 0.24
Average contacts for valid and invalid ligands are compared across all residue types. The values and differences are given in both contacts/amino acid and contacts per
non-hydrogen atom. The maximum and minimum values in each column are noted with bold; values for invalid ligands are noted in italics. Due to rounding, columns
may occasionally sum to a value other than 100%.
*Number of non-Hydrogen atoms in each residue.
doi:10.1371/journal.pcbi.1003321.t002

smaller in the invalids. The increase in the average number of
contacts is the result of excluding buried amino acids with few,
weak vdw contacts to the ligands. For invalids, the contacts/
residue are only 2.9-8.3 and the contacts/HA are 0.36-1.3.
However, the valids have more complementarity in their sites as
demonstrated by contacts/residue ranging 4.7-10.8 and the
number of contacts/HA ranging 0.6-1.6. Many of the general
patterns seen in the raw contacts to valid ligands are still seen
when focusing on the surface residues, which increases confidence
that the findings are robust. The amino acids with the lowest

W5.0Ar2
00.5AA2

5%

4%

3%

2%

1%

%
ILE VAL LEU 0 HIS G

Figure 2. Frequencies of solvent-accessible SC with a cutoff of SASA =5 A? and SASA =0.5 A2, Residues are sorted by decreasing
hydrophobicity. With the smaller cutoff, the pattern shifts to more hydrophobic residues because poorly exposed, interior residues are able to meet
the criteria with only a small patch of exposed surface.

doi:10.1371/journal.pcbi.1003321.g002

PHE cys MET ALA GLY THR SER TRP TYR PR LU GLN ASP ASN LYs ARG
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contacts/residue are still Pro, Val, Leu, and Ala (<5.5 contacts/
residue), and Arg, Tyr, and Trp are still the residues with the most
(=9 contacts/residue). For the contacts per HA, the top residues
are still Asp, Thr, Ala, Cys, Ser, and Gly (>0.9 contacts/HA), and
four of the five lowest are the same. Leu, Pro, Val, Ile, and Glu
have =0.7 contacts/HA. Glu replaces Pro in the bottom-5.

Table 3 details the hydrogen-bonding contacts of the surface
residues to the valid and invalid ligands. Half of the residues have
little difference in their hydrogen bonding to valids vs invalids. Cys
has significantly more hydrogen bonds to valid ligands. The only
residues that showed more hydrogen bonds to invalid ligands were
Arg and Thr. Their most similar counterparts, Lys and Ser,
showed no significant difference between hydrogen bonds to valids
or invalids.

Residue Frequencies and Propensities

The BB-only interactions are relatively rare (Table 1) and are
dominated by Gly (Figures 3 and 4). Gly provides over twice as
many backbone interactions as any other amino acid; this is true
for valids and invalids, raw and surface-residue contacts. Most
residues with BB-only contacts to the ligand point their side chains
away from the ligand, otherwise a side-chain atom would likely be
within the interaction distance, and the residue would be classified
as having SC contacts. Additionally, since BB-only contacts
represent equivalent atom types from residue to residue, they are
not expected to provide diverse interaction environments based on
residue type. For all these reasons, we focus our discussion on

PLOS Computational Biology | www.ploscompbiol.org

Table 3. Comparison of the average number of hydrogen-bonding contacts to surface residues.
Ave Hydrogen Bonds to VALIDS (Res within 3.5 A and =5 A% SASA) Ave Hydrogen Bonds to INVALIDS (Res within 3.5 A and =5 A SASA)
Backbone Side Chains Sum H Bonds Backbone Side Chains Sum H Bonds
Res NHB OHB Atom HB Atom HB Atom HB All Al/Atom?’NHB OHB Atom HB Atom HB Atom HB All All/Atom?
Cys 0.18 0.08 SG 0.80 1.07 0.36 0.13 0.03 SG 0.35 051 0.17
Gly 039 0.28 0.68 0.34 0.41 0.22 0.62 0.31
Ser 0.22 0.11 oG 0.50 0.83 0.28 0.22 0.12 oG 0.41 0.75 0.25
Asn 0.14 0.11 OD1 037 ND2 045 1.08 0.27 0.11 0.11 OD1 028 ND2 036 0.85 0.21
His 0.07 0.09 ND1 029 NE2 047 090 0.23 0.07 0.06 ND1 030 NE2 0.32 0.74 0.19
Arg 0.07 0.05 NE 023 NH1 033 NH2 044 1.13 0.23 0.07 0.04 NE 029 NH1 046 NH2 061 147 0.29
Thr 0.12 0.11 OG1 042 0.66 0.22 0.23 0.11 OG1 046 0.79 0.26
Asp 0.10 0.12 OoD1 033 OD2 030 0.84 0.21 0.14 0.13 OoD1 020 OD2 020 066 0.17
GIn 0.10 0.10 OE1 030 NE2 031 0.81 0.20 0.14 0.08 OE1 018 NE2 030 071 0.18
Tyr 0.07 0.07 OH 0.42 0.56 0.19 0.05 0.07 OH 0.26 037 0.12
Ala 0.19 0.18 037 0.19 0.14 0.12 026 0.13
Lys 0.14 0.06 NZ 0.35 0.56 0.19 0.12 0.06 NZ 0.39 0.57 0.19
Glu 0.07 0.11 OE1 026 OE2 029 0.72 0.18 0.14 0.10 OE1 0.18 OE2 024 0.67 0.17
Met 0.09 0.09 SD 0.34 0.53 0.18 0.19 0.08 SD 0.11 038 0.13
Trp 0.05 0.07 NE1 0.26 038 0.13 0.04 0.05 NE1 0.31 040 0.13
Pro 0.10 0.12 023 0.11 0.08 0.11 0.19 0.09
Val 0.09 0.11 021 0.10 0.04 0.09 0.13 0.06
Leu 0.10 0.09 0.19 o0.10 0.10 0.10 020 0.10
lle 0.08 0.09 0.17 0.09 0.07 0.09 0.16 0.08
Phe 0.08 0.08 0.16 0.08 0.09 0.07 0.16 0.08
Hydrogen bonding of all valid and invalid ligands are compared across all residues that meet the surface definition. Both backbone and side-chain atoms are listed. The
values and differences are given in both hydrogen bonds per residue and contacts per hydrogen-bonding atom. Due to rounding, columns may occasionally sum to a
value other than 100%.
2Sum of all hydrogen bonds per number of hydrogen-bonding atoms.
doi:10.1371/journal.pcbi.1003321.t003

residues in the SC category, which includes all Gly and residues
with SC-only and SC+BB interactions.

Most proteins from the PDB exist in aqueous environments.
Therefore, it is generally accepted that the solvated outer surface of
the protein is composed of amino acids that tend to be hydrophilic
in nature. Conversely, the core of the protein is more hydrophobic,
a factor that contributes to the proper folding and stability of
proteins [21,22]. The opposite can be true for membrane bound
domains, but soluble proteins have hydrophobic residues that tend
to bury larger areas of their side chains upon protein folding than
hydrophilic ones [23]. However, the composition of the solvent-
exposed protein surface is not uniformly hydrophilic in nature, and
the correlation between residue hydrophobicity and solvent-
exposure is limited [20,23]. Since binding sites are a part of a
protein’s surface, the comparative analysis of binding-site compo-
sition must be performed with respect to the composition of the
entire protein surface.

In our analysis, charged and polar residues make up the largest
portion of protein surfaces (black bars in Figure 5A), but
surprisingly, Ala is more prevalent than the more hydrophilic
Thr and similarily, Leu is more prevalent than and Ser. All four of
these residues are frequent in sequence. Less-frequent hydropho-
bic residues such as Met, Phe, Trp, and Cys have low surface
frequencies. If we relax the surface definition to include less-
solvent-accessible residues, (Figure 2) very hydrophobic amino
acids like Ile, Val, and Leu increase in their relative surface
frequency. However, as discussed previously, their contribution in
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Classification of Ligand Contacts for Residues in Valid Binding Sites

100%
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TYR | ARG | TRP HIS MET ‘ LYS ‘ ASP | PHE | ASN ‘ ILE GLN | GLU LEU | THR | VAL

Hbb-only 6% 6% 7% 7% 8% ‘ 9% ‘ 9% 10% | 10% | 12% | 12% | 14% | 15% | 15% | 17%
sc-only 78% | 75% | 78% | 75% | 60% ‘ 68% ‘ 60% | 70% | 62% ‘ 55% | 63% | 67% | 59% | 40% | 52%
sc+bb 16% | 19% | 15% | 17% | 32% ‘ 23% ‘ 31% | 20% | 27% ‘ 34% | 25% | 19% | 26% | 45% | 31%

SER
17%
32%
50%

PRO
24%
46%
30%

CYs
28%
35%
37%

ALA
29%
28%
44%

GLY
100%
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Figure 3. Relative frequency of SC-only, BB-only or both (SC+BB) interactions per residue. The residues with “SC” interactions in our
analysis combine the SC-only and “SC+BB" contacts (blue+yellow). Residues are ordered by increasing BB-only frequency. Here, all Gly interactions are
shown as BB-only to show its overall contribution to BB-only contacts. Due to rounding, columns may occasionally sum to a value other than 100%.

doi:10.1371/journal.pcbi.1003321.9g003

terms of fraction of overall surface area would be miniscule. Gly,
which is common in protein sequences and unusual in its number
of backbone interactions with ligands, has a surface frequency
comparable to Asn and Pro.

Residue propensities in Figures 5B and 5C present the bias for
residues to appear in protein surface regions involved in ligand
binding. Pro, Glu, Gln, Lys, and Ala disfavor binding sites
(propensities of 0.46-0.76). Arg, Thr, Val, Leu, Ser, and Asn have
propensities within 0.2 of 1.0, showing that these are relatively
unbiased in their contributions to binding sites versus the rest of
the protein surface (Figure 5B). Though Arg, Leu, and Asp have
the first, third, and fourth largest contributions to binding sites
(Figure 5A) their relative propensities are ~1 because of their
equally high prevalence on the entire protein surface. Larger
propensities for binding sites occur when a residue is frequently
observed in binding sites, but is rare on the general surface. Cys,
Trp, Met, His, Phe, Ile, and Tyr all have low protein surface
frequencies (left side of Figure 5A), and show propensities of =1.4
(left side of Figure 5B). Tyr and Phe are excellent examples. They
are the second and seventh most common resides in binding sites,
respectively, and they are rare on the protein surface. These
residues are bulky and aromatic, so their exposure to solvent is
rather unfavorable. It is reasonable that evolution is judicious in
their use, placing them where they are most needed for a
functional role, such as conservation in binding sites [2,5,20]. Trp
also has a high propensity for binding sites, and similar physical
properties, but its exceptional propensity actually reflects its rarity
on the protein surface (<2% of all SC contacts). The same pattern
is seen for Cys, which is even more rare on the surface (<1% of
SC contacts). Gly is notable because backbones are uncommon on

protein surfaces (about 17% of the total protein surface area), but
when they are present, they are overwhelmingly Gly. Gly alone
accounts for 13% of all backbone protein surface area (data not
shown), and they tend to provide a large percentage of amino acids
in binding sites. Gly backbones account for ~50% of BB-only
interactions in valid binding sites. However, when normalized
relative to the whole protein surface, Gly shows a more modest
propensity for binding-site regions (center of Figure 5B). Overall,
our propensities for valid binding sites agree well with previously
published propensities from a set of ~35,000 redundant ligand-
binding sites (R?=0.81 and Spearman p=0.91 in comparison to
Davis and Sali [24]), and those from a smaller set of 41 drug-
binding sites (R?=0.79 and Spearman p=0.79 in comparison to
Soga et al. [14]). Propensities for invalid sites were less well
correlated with these data (R?=0.27 and R*=0.61, respectively).

Comparison of Frequencies and Propensities in Valid
versus Invalid Sites

A unique aspect of this study is our ability to compare the
binding-site interaction patterns for valid ligands to those in sites of
spurious additives. This provides a type of “experimental control”
which is usually not possible in analyses of binding-site databases.
The issue at hand is not necessarily the recognition of additives
themselves, but instead, with how valid and invalid binding differs.
Figure 5C demonstrates the propensities for valid and invalid
binding sites, ordered by the ratio between of the two. This data
emphasizes our caution in over-interpreting the high propensities
of Cys and Trp. They do not show any significant bias for valid
ligands over invalids. One could argue that Trp, Cys, or any other
residue may be inherently “sticky” for a/l small molecules, so of

Backbone Frequencies on Protein and Binding Site Surface

50%

11.60%

45% ‘\

40% |

35%
g 30% ‘\
g 25% |
g 20% |
= 15% |

10% |

5% - 2= B0 B B B R EE

0% ‘_-CI—,,-—-,__-:— | - - . - . L - -

CYs | TRP ‘ MFI‘T HIS | TYR | PHE | ILE | GLN | VAL | ASN | THR | ARG | PRO | LEU | SER | ASP | LYS | ALA ‘ GLU LGLY

W Protein Surface 0.90% 0.90%11.50%32.20% 2.50%) 2.90%)| 3.20%| 4.00%|4.60%| 5.00%| 5.00%| 5.40%| 5.50%| 6.70%6.80%)| 7.20%|7.60% s.zo%ia.ao%
Ovalid 2.10%) 0.30%11.10%‘1.50% 1.70%|2.30%|2.30%| 1.60%| 3.50%| 2.20%| 3.90%| 2.20%| 2.30%| 3.90%|5.40%)| 2.50%2.40%| 8.10%|2.90% 47.10%
® invalid 0.90%‘0.90%3140%11.20%‘2.40% 3.30%)|3.40%| 1.90%|5.10%) 3.50%|4.30%| 4.40%4.30%| 7.10%|5.20% 4.80% |4.50% s.m%!s.m%‘go.ao%

Figure 4. Frequencies of BB-only contacts in binding sites, sorted by increasing frequency on the protein surface. Surface residues
with 5 A% or greater backbone SASA are shown. Gly interactions are shown as BB-only to stress that it constitutes the vast majority of such contacts.

Due to rounding, rows may occasionally sum to a value other than 100%.
doi:10.1371/journal.pcbi.1003321.g004
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SC Frequencies on Entire Protein Surface and in Binding Sites
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Figure 5. Frequencies and propensities of surface residues. A) Frequencies of solvent-accessible side chains on the protein surface and in

binding sites with SASA cutoff =5 A% Due to rounding, rows in A) may occasionally sum to a value other than 100%.

B) Median propensity of

residues in ligand binding sites of valid and invalid ligands, analyzed across all proteins. Residues in A and B are ordered by increasing frequency on
surface. C) Ratio of residue propensity for valid versus invalid binding sites. Residues ordered by decreasing ratio. Error bars in B and C indicate 95™

percentiles of 10,000 leave-10%-out samples.
doi:10.1371/journal.pcbi.1003321.g005

course, they will attract both valids and invalids. Who cares if there
is a bias when these residues denote small-molecule binding sites?
On the contrary, we find that there are residues which show a
significant bias between the classes. This significance was
confirmed by randomly shuffling valid and invalid “labels” 1000
times (maintaining their relative proportion) and re-calculating the
propensities and ratios each time. All residues had an average ratio

PLOS Computational Biology | www.ploscompbiol.org

of 1 across the shuffled sets. The maximum and minimum of the
shuffled ratios was 1.2 and 0.8 respectively, both for Cys, with all
other residues having considerably narrower minimum and
maximum values (data not shown). We therefore consider
propensity ratios >1.2 and <0.8 as significant trends.

Ala, Ile, Met, and Val are the most biased toward biologically
relevant binding sites over indiscriminant associations (ratio >1.4),
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followed by a second tier of Phe, Cys, Leu, Gly, and Thr (ratio
>1.2). Conversely, His, Pro, Gln, Glu, Lys, and Arg show a bias
towards invalid binding sites (ratio <0.8), although all but His and
Arg have propensity for the surface rather than binding sites.
Considering Arg has among the highest catalytic propensities [1],
it should be present in many valid binding sites, but we do not see
strong correlations between binding-site propensity (valid or
invalid) and catalytic propensity (data not shown) or large
differences in propensity values when enzymes are considered
separately from non-enzymes (discussed further below). Instead,
looking at the distribution of Arg interactions in binding sites
(Tables 4 and 5) demonstrates that they make up most SC
interactions in 11 of the top-20 ligand sites and are present at high
rates (>15% of SC interactions) in sites of small, charged
molecules, such as sulfate (ligand name of SO4 in the PDB),
phosphate (PO4), acetate (ACY), and chloride (CL) ions. They are
also especially frequent in citrate (CIT) sites, which appear on both
valid and invalid lists, depending on the function of the bound
protein. Of the residues that show valid to invalid ratios of >1.2,
only Ile, Met, Phe, and Cys show a propensity for binding sites
versus the protein surface.

In solution, all charged side chains may be expected to attract
small, polar ligands classified as invalid in our dataset. However,
we see higher frequencies for positively charged residues (Arg, Lys)
than for negatively charged ones (Glu, Asp) in invalid binding sites.
It is unusual that Glu and Asp are under-represented in invalid
binding sites because positively charged ions are present in buffers
just like negative ions. Asp and Glu are indeed frequent in Mg*?
sites, where they comprise 22 of 30 residues across 18 sites.
However, the binding of positive ions is not observed often in our
dataset; Mg*?, Na*, and Ca*™® and are 20" and 23™ and 26"
highest occurring invalid ligands by frequency, and together, they

Composition of Protein-Ligand Binding Sites

represent less than 0.8% of all invalid binding sites. This is in
contrast to C1, I", and Br, which all make the top-20 list, and
comprise ~8% of invalid sites (Table 5). The higher desolvation
cost of a positive ion — particularly a divalent one — might make
such binding interactions less frequent and thus less likely to
appear in protein crystal structures (outside of functional active
sites, where they frequently appear as co-factors).

Assessment of Ligand Bias on Propensity Values

There is a significant bias in the PDB among the valid ligands
(abundance of nucleosides) and invalid ones (common buffer
molecules). To measure the bias introduced by preponderance of
such ligands, we recalculated propensities while leaving out any
binding sites containing the most frequent 20 ligands given in
Tables 4 and 5. Omission of the most frequent valid ligands
(~32% of the set) slightly raised propensities of Trp, Phe, His,
Met, and Glu and lowered those of Ser, Ala, and Pro (Figure 6A).
However, the omission had little effect overall. In contrast,
propensities for invalid binding sites were significantly affected by
the removal of the 20 most frequent invalids, which account for
about 82% of invalid sites (Figure 6B). The propensities for Trp,
Phe, Met, and Tyr rose sharply while propensities for Arg and Lys
fell, indicating a respective increase and decrease in frequencies of
these residues in the remaining binding sites (protein surface
frequencies remained basically unchanged, data not shown).

These changes highlight the dependence of the propensities upon
the size of the dataset and the variety of ligands it contains. While
the propensities calculated for valid binding sites represent a broad
array of ligands, invalid propensities are dominated by interactions
that are made to the most frequent ligands, namely — sulfate,
glycerol, ethylene glycol, and phosphate. This bias is inherent in
protein crystallographic data and should be kept in mind when

PLOS Computational Biology | www.ploscompbiol.org

Table 4. Composition of binding sites for the top-20 valid ligands.

HET  #Lig (%) Ala% Arg% Asn% Asp% Cys% GIn% Glu% Gly% His% lle% Leu% Lys% Met% Phe% Pro% Ser% Thr% Trp% Tyr% Val%
NAD 250 (449) 590 4.75 6.12 7.01 156 214 343 749 360 8.33 682 4.01 187 458 451 598 794 144 480 7.73
FAD 217 (3.90) 6.77 7.09 4.02 447 191 351 428 733 472 679 621 398 142 465 4.00 691 7.79 342 628 444
ADP 172 (3.09) 448 1046 5.43 537 050 235 336 11.42 280 498 520 996 1.85 414 274 576 867 078 504 470
NAP 165 (2.97) 637 897 5.68 4.02 0.59 225 201 9.93 301 678 599 564 201 225 412 876 865 097 578 6.23
FMN 130 (2.34) 5.09 10.99 7.17 243 139 388 214 914 573 434 463 451 318 330 289 821 6.94 318 6.54 434
ATP 100 (1.80) 2.76 12.20 4.26 6.27 0.17 242 752 1078 226 443 551 1203 1.92 543 075 535 8.02 142 226 4.26
GDP 96 (1.73) 3.17 439 3.98 1144 296 174 317 827 143 194 827 19.100.31 460 1.63 817 1052 - 194 296
GLC 86 (1.55) 3.95 9.5 6.58 12.94 022 6.14 746 3.07 746 241 110 263 219 746 088 175 154 1140 10.53 0.66
NDP 76 (1.37) 6.19 9.32 4.66 3.83 118 230 285 932 285 529 585 578 264 132 285 10.44835 174 738 585
SAH 67 (1.20) 5.07 297 3.21 1051 185 210 445 11.50 235 507 816 198 445 791 297 6.06 383 420 729 4.08
ANP 61 (1.10) 490 7.48 6.62 7.23 = 343 404 10.54 184 637 478 956 221 453 184 551 797 098 429 588
COA 54(097) 885 751 3.35 295 080 429 094 724 429 456 845 8.98 4.29 6.84 255 643 416 188 536 6.30
NAG 45(0.81) 234 6.54 19.16 935 374 421 374 421 140 280 421 234 187 327 140 234 561 1449 467 234
CIT 44 (0.79) 3.04 16.22 7.77 4.73 034 203 3.04 676 11.15 473 372 642 203 270 338 7.77 473 203 574 1.69
AMP 43 (0.77) 448 10.70 2.74 5.72 174 373 597 697 597 597 498 597 149 672 174 597 771 100 647 398
NAI 42 (0.76) 7.79 3.89 6.17 7.38 0.13 228 255 872 215 9.40 899 483 268 188 349 738 631 067 430 899
MAN 40 (0.72) 591 - 18.72 1675 - 936 197 591 246 - 542 345 - 148 246 197 394 542 1232 246
SAM 37 (0.67) 5.20 4.98 3.62 11.09 045 385 6.11 882 543 520 724 271 226 792 407 498 385 204 7.01 317
GNP 36 (065 4.22 084 295 8.44 190 211 127 1266 084 127 8.02 18.78 0.42 549 3.16 886 1414 - 3.16 148
Ligand listed in decreasing fraction of 5562 binding sites. Most frequently interacting residue for each ligand is in bold. Due to rounding, rows may occasionally sum to a
value other than 100%.

doi:10.1371/journal.pcbi.1003321.t004
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SC Propensities With Top-20 Valid Ligands Left Out
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Figure 6. Propensities of SC interactions in valid sites, with and without the top-20 ligands by frequency. A) Propensities in valid sites.
B) Propensities in invalid sites. The error bars represent 95 percentile bounds based on leave-10%-out clustering within each set. Residues are

ordered alphabetically.
doi:10.1371/journal.pcbi.1003321.g006

performing broad statistical analysis of residue interactions.
Moreover, the large changes in propensities for the reduced set of
invalid binding sites are hard to interpret, since subsets of such small
size (352 structures remained) have large variation in the leave-
10%-out cross-validation. In the next section, we examine how
random subsets of such small size result in high standard deviations,
even if all ligands are allowed. High standard deviations can indicate
when an insufficient, small set of sites has been sampled. This
exposes a caveat of any frequency- or propensity-based protein
analysis with small sets of proteins: variation of binding-site
frequencies in small sets of structures can have large effects on
propensities (see below). Such comparison should only be done in

the context of overall residue frequencies and with the knowledge of
the uncertainty inherent to a small dataset.

Influence of the Size of the Datasets on the Statistical
Significance of the Propensities

To assess the statistical significance of the data, propensity
calculations for each set of binding sites were carried out 10,000
times, each time leaving out a random 10% of the proteins (i.e.,
retaining ~3000 structures at random). For each residue, the
median of the 10,000 propensity values is reported, and the 95™
percentile bounds are used for the error bars. To assess the
dependence upon the size of the dataset, a separate series of

Sampled Frequency and Propensity of Representative Surface Residues
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Figure 7. Examining the variation in the data, based on sample size. A) Protein surface, B) valid binding site, and C) invalid binding site
frequencies, and D) valid binding site propensities of six residues. Values for subsets of the protein structure set, from 1% to 99% of the full set are

shown, with 100 samples at each percent point.
doi:10.1371/journal.pcbi.1003321.g007
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calculations were conducted using the procedure above. Progres-
sively larger sets of proteins were randomly chosen from the set of
3295 structures, and propensities were calculated for that set
without additional leave-10%-out sampling. The set size was
incremented in intervals of 1% of the full structure set and 100
samples were taken at each percentage points, resulting in a total
of 10,000 values. Frequencies and propensities were calculated for
each sample (Figure 7). Additionally, propensity medians, standard
deviation, and 95 percentiles for six representative residues were
calculated from 10,000 random samples at four different set sizes:
100, 500, 1000, and 2000 structures (Table 6).

The variation in SC frequencies and propensities were thus
assessed by sampling random sets of varying numbers of structures
(Figure 7) 100 times each. For clarity we focused on 6
representative residues: Lys and Glu as the most frequent on
protein surface, Val and Asn as moderately frequent, and Cys and
Trp as the least frequent. The protein surface contains the most
residues by number, and the residue frequencies converge to
within £0.5% variation once ~500 or more structures are
sampled (Figure 7A). The binding sites are much smaller than the
protein surface, so a larger number of structures are needed to
achieve convergence of *£0.5% variation: ~1500 structures for
valid sites (Figure 7B) and ~2500 structures for invalid sites
(Figure 7C). The propensity values fluctuate in proportion to the
frequencies (Figure 7D) and converge around ~1000 structures in
a dataset. Standard deviations of propensities for Lys and Glu in
valid and invalid binding sites are below 0.1, even in subsets as
small as 500 structures (Table 6). The propensities of rare residues
do not converge to such small standard deviation until sets as large
as 2000 structures are sampled, especially in the case of
propensities for invalid sites. Convergence to mean values of the
underlying population is guaranteed as the sample set size
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Table 6. Median, standard deviation, and 95% confidence interval for the propensity of 6 representative residues.
Propensities 100 Structures 500 Structures 1000 Structures 2000 Structures
Residues with differing frequencies Valid Invalid Valid Invalid Valid Invalid Valid Invalid
Frequent Lys 975t percentile 0.82 138 0.71 1.09 0.68 1.03 0.66 0.97
Median (st dev) 0.64 (0.08) 0.90 (0.21) 0.64 (0.03) 0.91 (0.08) 0.64 (0.02) 0.91 (0.06) 0.64 (0.01) 0.91 (0.03)
2.5™ percentile 0.48 0.55 0.57 0.75 0.60 0.81 0.62 0.86
Glu 975" percentile 0.62 1.01 0.54 0.80 0.52 0.76 0.50 0.71
Median (st dev) 0.48 (0.07) 0.66 (0.16) 0.48 (0.03) 0.66 (0.07) 0.48 (0.02) 0.67 (0.04) 0.48 (0.01) 0.67 (0.02)
2.5™ percentile 0.34 0.38 0.42 0.54 0.44 0.58 0.46 0.62
Moderate Val 97.5™ percentile 1.30 1.19 1.12 0.88 1.08 0.81 1.05 0.75
Median (st dev) 1.01 (0.14) 0.66 (0.24) 1.01 (0.06) 0.68 (0.10) 1.01 (0.04) 0.68 (0.06) 1.01 (0.02) 0.68 (0.03)
2.5t percentile 0.75 0.26 0.90 0.49 0.94 0.55 0.97 0.61
Asn 975" percentile 1.22 1.57 1.05 1.22 1.01 1.13 0.98 1.06
Median (st dev) 0.94 (0.13) 0.96 (0.26) 0.95 (0.05) 0.99 (0.11) 0.95 (0.03) 0.99 (0.07) 0.95 (0.02) 1.00 (0.04)
2.5 percentile 0.71 0.52 0.85 0.79 0.88 0.86 0.91 0.92
Rare Cys 97.5™ percentile 3.00 4.52 2.29 2.71 2.15 2.29 2.01 1.97
Median (st dev) 1.87 (0.52) 1.46 (1.13) 1.86 (0.21) 1.62 (0.47) 1.88 (0.14) 1.64 (0.30) 1.88 (0.07) 1.67 (0.16)
2.5™ percentile 0.96 0.00 1.48 0.89 1.61 1.13 1.73 1.35
Trp 97.5™ percentile 3.13 4.06 2.60 298 2.49 2.72 2.38 2.52
Median (st dev) 2.25 (0.41) 2.20 (0.84) 2.28 (0.16) 2.29 (0.34) 2.27 (0.11) 2.29 (0.22) 2.27 (0.06) 2.28 (0.12)
2.5t percentile 1.53 0.77 1.96 1.64 2.07 1.87 2.16 2.06
The values are given to show the importance of using a large dataset and the variation possible when using small subsets of protein structures. All values based on
10,000 random samples from the full protein set. The confidence interval ranges from the 2.5 percentile to the 97.5 percentile of the distributions from those samples.
doi:10.1371/journal.pcbi.1003321.t006

approaches the size of the full set; however, the rate of this
convergence indicates whether relatively small subsets sufficiently
sample the full population means. When constructing a dataset for
computing propensities, a balance is required between eliminating
redundant or poor quality structures and maintaining a sufficient
set size. Based on our resulls, a set of at least 1000 structures is required lo
confidently measure general binding-site propensities for valid ligands and
2500 are required for invalid lLigands. Of course, these numbers are
based on a random and non-redundant protein set. Frequencies
and propensities for a set of related proteins (for example, those
from the same structural fold family) may show such convergence
with fewer structures. We recommend that any propensities
calculated on a limited set of structures should be assessed by
comparison to the best-available general propensities (such as ones
presented here) and by taking into account the variation in
random subsets of similar size.

As an example, we looked at the differences in propensities
between enzyme and non-enzyme, valid-ligand binding sites,
which have been previously shown to differ in their ligand
efficiencies [25]. Figure 8 shows the propensities along with red
lines indicating the 95™ percentile bounds of valid propensities
from random sets of structures sampled 10,000 times from the full
dataset (as presented in Table 6). For enzymes, sets of 2500
structures were sampled, while for the smaller non-enzyme set only
1000 structures were sampled. The leave-10%-out sampling used
during the propensity calculations provides a measure of stability
for the propensity values. In contrast, the sampling of random
structures provides a bound for propensity values that can be
expected by chance. Therefore, for enzyme or non-enzyme
propensities to be considered different from the general (randomly
observed) valid binding-site propensities, their 95™ percentile
range must be outside the 95™ percentile range of propensities
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SC Propensities in Valid Enzyme Sites Compared to Random Sets
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obtained from random structure sets of the same size. The asterisks
in Figure 8 mark residues that fulfill this criterion. This is the
strictest-possible criterion, because only minimal overlaps of the
median distributions can still be considered statistically significant.
The average values of random sampling will be enzyme-biased
because Binding MOAD and the PDB are themselves enzyme-
biased. Therefore, exceptional propensity trends for non-enzyme
may be more likely.

The set of enzyme structures makes up more than two-thirds of
the structure set used to compute propensities in this study.
Binding-site propensities computed on this number of structures
are very close to general propensity trends seen across all valid
binding sites. Accordingly, the variation of propensities in
corresponding random samples is very low. In enzyme binding
sites, Ile and Ser have median propensities higher than random,
and Leu and Trp lower ones. The set of non-enzymes has nine
residues that have propensities significantly different than those
seen at random. Leu, Lys, Phe, Trp, and Tyr have significantly
higher binding-site propensities than those seen in sets of random
structures, and Glu, Gly, Ile, and Ser have lower-than-random
propensities. In our recent study comparing residue composition of
enzyme and non-enzyme sites, Leu, Met, Trp and Tyr were found
to have much higher frequencies in binding sites of high-affinity,
non-enzyme proteins than in enzyme, high-affinity binding sites
[25]. Combined with our propensity observations, the presence of
Leu, Trp, and Tyr residues in binding sites without enzymatic
function may be a distinguishing trend for allosteric or regulatory
sites. Although Met propensity is higher in non-enzyme sites, it is
within random sampling error. Our previous study also observed
relatively low non-enzyme binding-site frequencies for Val, Ile,
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Asp, and Gly. Our propensities for Ile and Gly are consistent with
their findings, but Asp has no propensity trend among enzymes
versus non-enzymes, aside from its low propensity for binding sites
in general. The elevated propensity of Lys and Phe and lower
propensities for Glu and Ser for non-enzyme sites are unique
trends observed in the current study.

As smaller sets of structures are used for calculating propensity
values, there is a greater chance of seeing values that deviate from
general binding-site propensity trends. However, the 95" percen-
tile margins of error from randomly sampled sets of similar size
will also change, becoming wider, especially for less-frequent
residues. Therefore, it is important to conduct comparisons to
randomly-sampled propensity values as suggested herein, to
distinguish set-specific trends from the overall propensity trends
in the currently available data.

Conclusions

Our study highlights the differences in amino-acid interactions
with valid and invalid ligands and the frequency of residues
taking part in these interactions, in contrast to the surface
composition of the whole protein. Most importantly, the relative
propensity of valid versus invalid binding sites should help
improve methods for identifying binding sites in proteins of
unknown functions and improve other proteomic methods where
understanding of general composition of protein-ligand binding
sites is required.

Our data could have its greatest utility in scoring predicted sites.
Most scores are based on a weighed sum of the presence of each
amino acid. Typically, Trp is heavily weighted because of its high
propensity (2.27), but it is possible that the weight should be more
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modest because the ratio of valid to invalid propensities is near 1.
More importantly, His has a high propensity (1.69) which would
call for a high weight, but we find it is biased for invalid sites.
Given this, it is probably not appropriate to highly weight the
presence of His residues in a score. Conversely, Ala’s low
propensity (0.76) would usually result in some sort of penalty to
a score, but its 1.59 ratio of valid to invalid propensities shows that
it is more biased to valid sites and likely does not deserve to be a
penalty. Of course, the residues with high propensities and high
valid/invalid ratios should be the best indicators and given the
highest weights: Ile, Met, Phe, Cys. Better understanding of these
interactions, and how they differ across binding sites, can help
focus statistical analysis across broad sets of protein surfaces
toward the most biologically relevant ligand sites.

Looking at the variation of shapes, sizes, and composition of
protein-ligand binding sites and the ligands they bind, it is easy to
see why finding a general method for predicting their location and
binding partners is such a challenge. Recent studies of thousands
of human protein-ligand complexes found a complicated relation-
ship between the similarity of protein sequences and the similarity
of their pockets and bound ligands [1,12—14], making it difficult to
predict novel valid binding sites by sequences. Assessing the shape
and sequence-independent residue composition of a ligand site has
emerged as an orthogonal way to identify valid binding sites on
protein surfaces [12-14]. In a more direct illustration of the
complementarity of the propensity data with other prediction
approaches, a study by Soga et al. [14] examined pockets
identified by a geometry-based prediction tool and a rank-score
for binding sites based on a protein-ligand binding index. That
index was similar to residue propensity and showed some clear
success in finding known binding sites in a set of crystal structures.
Our study offers atomic contacts and propensity values based on a
higher quality, larger, and more diverse dataset to fuel similar
efforts.

This study also exposes the variation in residue frequencies on
the protein and binding-site surfaces, depending on the number of
proteins. Given how this variation can affect the interpretation of
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frequency- and propensity-based analysis of protein surfaces, we
recommend that at least 1000 diverse protein complexes are
needed for significant general conclusions for biologically relevant
valid binding sites. When calculating propensities for smaller sets
of structures, such as proteins of a functional family or similar
ligand-binding sites, it is important to compare them to those of
randomly sampled sets of structures. This can help determine how
significant the trends are with respect to the variety of protein-
ligand sites currently available in databases such as Binding
MOAD.
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