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Abstract

The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand
binding, and understanding general composition of these sites is of great importance if we are to gain insight into the
functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for
improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD
database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data
for establishing general trends of residue composition from currently available protein structures. We present an analysis of
3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding
regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant ‘‘valid’’ ligands
from ‘‘invalid’’ small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no
known biological function. Contacts are found to differ between these classes of ligands, indicating that residue
composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from
surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a
rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent
in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general
trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future
studies of binding-site composition.
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Introduction

Understanding general properties of protein-ligand binding sites

is of great importance to gain insight into the functional diversity

of the proteome. One of the most fundamental properties of the

receptor surface is the set of amino acids available for interactions

with ligands. In many protein families, this set is well known and

structurally conserved due to the functional role of the residues,

and several insightful studies have summarized catalytic residue

content in sets of enzymes [1–3]. These provided insightful

heuristics for predicting enzymatic sites, but the studies did not

provide as much detail on non-catalytic interactions. Non-catalytic

contacts cannot be ignored because they are an important

component of a valid binding site, helping the ligand maintain

the correct binding mode and often dictating binding specificity.

Overall, the more general trend of amino-acid distribution within

binding sites across a variety of protein and ligand types is less

understood; previous studies have explored limited sets of proteins

[4] or interactions of specific interest [5]. With ever-increasing

numbers of protein structures available and numerous databases

dedicated to protein-ligand analysis [6–10], a wider view of the

residue composition of binding sites is now possible and necessary.

Establishing general trends of binding-site composition can help

develop valuable tools for identifying a protein functional site

without prior information about the protein’s structural homology.

Such tools can be invaluable for the characterization of proteins

emerging from current structural genomics projects [11]. The

recent use of binding-site composition to bolster methods for de

novo prediction of binding sites [12–15] is an encouraging example

of the utility of the general binding-site composition trends.

To study the composition of ligand binding sites across the

broadest set of available protein structures, we analyzed the

propensity of residues in all the binding sites present in the Binding

MOAD database - one of the largest sets of curated protein-ligand

complexes [8]. Of course, the diversity of the database is limited to

the diversity in the PDB, so there is a heavy bias toward enzyme

structures and against membrane-bound systems. Also, the poor

resolution of very large complexes excludes most of them from this

study. Our analysis summarizes surface composition of binding

sites of biologically relevant ligands, such as substrates, products,

drugs, and co-factors. We also show how composition of binding-

site surfaces varies with number of structures analyzed; this

measure of statistical significance is not presented to this extent in

other studies to date. Another unique aspect of this study is our

examination of the binding of spurious co-crystals, such as

crystallization buffers, solvents, and stray ions, which exhibits

some markedly different trends than the binding of functional

ligands.
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Methods

Large, Non-redundant Data Set of Binding Sites
We began by assembling a non-redundant set of 3295 protein-

ligand structures, each representing a closely related protein family

from the 2009 release of Binding MOAD. The non-redundant set

of Binding MOAD is composed of families grouped by 90%

sequence identity; the 3295 complexes embody the variation of the

full set of 14,720 complexes with 41,721 binding sites. A binding

site was defined as the set of protein residues which have at least

one non-hydrogen atom within 4.0 Å of a ligand’s non-hydrogen

atom. These residue interactions were then labeled as side chain

(SC) or backbone-only (BB-only) depending upon which atoms

participated in the interaction. A residue classified with a BB-only

interaction did not have any side-chain atoms within the

interaction distance. Residues were classified as SC if the

interaction was solely through the side chain or through both its

side chain and backbone atoms. Glycine residues are considered a

special case, and interactions with glycine’s Ca are always

classified as SC regardless of the absence of a side chain. A single

protein residue could have interactions with more than one ligand,

in which case the residue interactions were considered indepen-

dent, and the residue was included in each ligand’s binding site

provided it was within 4.0 Å. Since a ligand-based definition of the

binding site was used, smaller ligands may not make contacts with

all possible residues in a large binding site. Only the residues in

contact with the ligand are part of the calculation of a site’s

solvent-accessible surface area (SASA).

In accordance with Binding MOAD annotation, each binding

event is classified as ‘‘valid’’ or ‘‘invalid’’ depending on the

biological relevance of the ligand [8]. Since all structures in

Binding MOAD must contain a valid ligand, the likelihood of an

invalid ligand occupying a biologically relevant site is greatly

reduced. While it is still possible, the rate of such occurrence is

much less than using all the structures in the Protein Data Bank

(PDB) [16]. For each protein structure, multiple sites of a unique

ligand were analyzed for redundancy by comparing the counts of

each residue. Binding MOAD uses biounit structures, which can

contain multimeric proteins; in fact, 1958 of the 3295 complexes

involved multimeric proteins. Biounits are the entire biologically

relevant structure. Each multimeric structure was treated as ‘‘one

entire protein’’ when identifying surface residues, and no buried

residues in the interface were accidentally counted as exposed. Of

course, some interface residues are solvent exposed, and any

binding sites located between monomers were properly defined as

being composed of exposed residues from both monomers during

the surface area calculation. To avoid over-representing ligand

sites of multimeric proteins, only one site was retained when

multiple sites with an identical ligand and identical binding-site

residues existed in the same structure. In multimers where the

same ligand exhibited different contacts in symmetry-related

pockets, one example of each case was included to represent the

inherent variability of the binding. There were 2571 valid ligands

(,68% of the data set) represented by only one unique binding site

in its respective protein biounit, while the other 1225 had more

than one representation. For 923 ligands (,24% of the data set),

there were 2 non-redundant representations of the binding event.

Among the remaining 8% of ligands in biounits, 171 (4.5%) had 3

unique binding sites, 80 (2.1%) had 4, and 1.4% had 5–14 unique

representations. The valid ligands with more than 2 representa-

tions tended to be sugar molecules bound to sugar-processing

enzymes. For invalid ligands, 717 out of 1485 ligands in biounits

(,49% of the data set) had a single representation in the respective

biounit, 364 had 2, and the remaining 27% had 3 or more unique

representations in a biounit. Dataset S1 in the supporting

information lists the number of unique sites for each ligand in

each biounit.

Definition of Surface Residues
Solvent accessibility of residues was calculated using the

NACCESS program [17]. NACCESS rolls a probe with the

diameter of a water molecule across the entire van der Waals (vdw)

surface of the protein and uses the path traced by the probe’s

center to calculate the SASA of each residue. It is important to

note that this is different from the molecular surface area (MSA),

which is the path traced by the probe’s contact surface. Known

ligands were removed from the structure before the SASA

calculation. The default probe size was used, and any waters,

hydrogens, or remaining HET groups were ignored (also default

behavior). The NACCESS value of abs_side was used to define

surface residues for the SC set and abs_main to define surface

residues for the BB-only set. These report the absolute areas (in Å2)

of the residue side chain, and backbone, respectively (calculated

using default NACCESS atom types and vdw radii). Since

NACCESS treats the Gly Ca as a side chain, the largest of the

abs_main or abs_side values was used for that residue. SASA was

calculated for all residues in a protein, which included any

binding-site residues. We compared two definitions of ‘‘surface’’

residues: $5 Å2 SASA and $0.5 Å2 SASA.

Residue Propensity Calculation
In accordance with previous studies, we used residue propensity

as a measure of residue over-representation to explore the binding-

site composition [1,2,4,14]. The cumulative propensity Pi for each

amino acid i = Ala, Arg, Cys …etc. was calculated by taking the ratio

of the frequency of the amino acid in binding sites Fi
BS and its

frequency on the protein surface Fi
PS. The binding-sites frequency

was obtained by summing across the surfaces of all binding sites

j = 1…J in a binding-site class (SC or BB-only). The protein

frequency Fi
PS was obtained by summing up the occurrence of the

amino acid across the surfaces of all proteins p = 1…P, where

P = 3295 in our case.

Equation 1: Propensity calculation. Pi~
FBS

i

FPS
i

where

FBS
i ~

P

j

NBS
ij

P

j

P

i

NBS
ij

and FPS
i ~

P

p

NPS
ip

P

p

P

i

NPS
ip

The propensities were calculated separately for valid versus

invalid binding sites, and SC versus BB-only sets. Propensities

greater than 1.0 show over-representation of a residue in the

Author Summary

Describing the general structure of protein binding sites is
fundamentally important for guiding drug design and
better understanding structure-function relationships.
Here, we analyze small molecules bound to proteins
within our large database, Binding MOAD (Mother of All
Databases, pronounced like ‘‘mode’’ as a pun referring to
ligand-binding modes). We focus on different contacts
across the residues in the binding sites, and we normalize
the data relative to the protein’s entire surface. A key
feature of this study is the use of a ‘‘control’’ where we
compare real, functional binding sites to the random
contacts seen for crystallographic additives against the
protein surface. Controls are required in experimental
biology, but they are ill-defined in many computational
approaches. This allows us to describe how true binding
sites are unique on the protein surface and distinct from
random patches that attract common, small molecules.
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binding sites, relative to the entire protein surface, and values less

than 1.0 show under-representation. Since propensity is a ratio of

ratios and unit changes in its value represent fold changes in

frequency, we present the propensity values on log-scaled axes.

Note that the residue counts were summed across the set of

structures or binding sites before division. This is necessary

because calculating a propensity value for a single protein may

result in division-by-zero errors when rare residues, such as

cysteine, are absent on the protein surface. Per-protein propen-

sities for rare residues can also result in extremely large propensity

values due to division by a small protein surface frequency, making

summary results harder to interpret. Moreover, most binding sites

do not contain all 20 common residues, which leads to many zero

per-protein propensities. In calculations of propensities for a set of

binding sites, only proteins that contained at least one site of that

type (SC or BB-only, valid or invalid) were included in the

calculations.

Hydrogen Bonding and van der Waals Contacts. As

noted above, all interactions between the ligands and the residues

were noted by their type (SC or BB-only, valid or invalid). The

interactions were also noted at the atomic level to describe

hydrogen-bonding and vdw interactions. All distances between

ligands and the protein were calculated, and distances of 4.0 Å or

less were tabulated. All interactions with distances greater than

3.5 Å and within 4.0 Å were counted as vdw interactions. Any

distance of 3.5 Å or less were counted as vdw if they involved a

carbon on either the protein or ligand. Distances between non-

carbon atoms (N, O, S, P…) of the protein and ligand were

counted as hydrogen bonds if they were within 3.5 Å. For

tractability on this scale, angle criterion and more specific atom

typing were not used to determine hydrogen bonding.

Results/Discussion

Roughly a third the 3295 structures had invalid binding sites in

addition to one or more valid site. The set yielded 7712 valid

binding sites and 4909 invalid binding sites (Table 1), which

together represent a comprehensive set of protein-ligand variety

present in the PDB. However, it means that the number of

binding-site residues available for frequency and propensity

calculations is different between valid and invalid sites. After

taking into account site redundancy and eliminating incredibly

small binding sites (those that could not accommodate a solvent

probe atom and thus did not have any ‘‘exposed’’ residues), there

were 5562 valid and 3552 invalid sites. Again, Dataset S1 in the

supporting information lists the number of unique sites for each

valid and invalid ligand in each biounit.

‘‘Raw’’ Contacts between the Proteins and Ligands
We first examined the raw contacts between all ligands and

their binding sites, defined as all amino acids with at least one

heavy atom (HA) within 4.0 Å of the ligand’s HA. On average, the

binding sites of valid ligands have 17.7 residues that provide 11.6

hydrogen bonds and 108 vdw contacts, but the binding sites of

invalid ligands have only 5.2 residues that provide 10.4 hydrogen

bonds and 80 vdw contacts. This is expected because valid ligands

in our set tend to be larger and more buried than invalid ones. It is

appropriate that the ratio of hydrogen bonds to vdw contacts is

larger for invalids, which is consistent with the more hydrophilic

set of molecules found in the invalid set.

The total raw contacts for all residues interacting with valids are

shown in Figure 1. The average number of interactions for each

atom in each residue is denoted with increasing radii and hotter

colors to represent more contacts. Clearly, the greatest interactions
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are to Gly and hydrogen-bonding side chains. Table 2 delineates

the total raw contacts for both valid and invalid ligands, and

Dataset S2 in the supporting information gives the contacts to the

atomic detail seen in Figure 1. Almost all residues have more

contacts to valid residues (an additional 0.7 contacts/residue for

Asn up to an additional 2.81 for Tyr), but His shows no significant

difference. Only Cys has more contacts to invalids (+1.4 contacts/

residues). Residues have 4–9 contacts to valid ligands, with Ala,

Val, Leu, and Pro having less than 4.5 contacts/residues and Tyr,

Arg, and Trp having 7.5 or more contacts/residues. Obviously,

the largest residues are capable of providing many more contacts

than the smallest. To correct for the size difference, we also

compared the contacts per HA of the residues, which ranged 0.53–

1.32. Leu, Ile, Val, Phe, and Pro had the fewest contacts per HA

(#0.62), and Cys, Ala, Thr, Asp, Ser, and Gly had the most with

$0.78 contacts/HA.

Ligand Contacts with Protein Surface Residues
Of course, the raw contact information is interesting for

understanding the molecular recognition of the ligands, but the

raw contacts do not correct for the different frequencies of the

amino acids in protein sequences. After all, more contacts with a

particular residue is not significant if that residue is overwhelmingly

present in the protein; random chance will result in increased

contacts to that residue. Furthermore, we were concerned that

many of the contacts were from residues that were not exposed on

the protein surface. Typically, analyses of this sort concentrate on

the exposed residues because correcting for the different frequencies

of the amino acids is most appropriately done by comparing the

surface of the binding site to the surface of the entire protein, which

is discussed further below.

We chose to use the common standard of $5 Å2 SASA as the

definition of a ‘‘surface’’ residue [18,19]. However, we were

concerned that this definition included only 84% of SC binding-

site residues, so we also examined the effect of lowering the

minimum SASA cutoff to 0.5 Å2 to ensure we were not omitting

significant parts of the binding site. Lowering the cutoff for the

surface definition increased the total number of binding-site

residues so that 98% of the residues within interaction distance of

the ligand were considered ‘‘surface’’. However, the respective

increase in total binding-site SASA was only 0.2%, a contribution

so small that it can be misleading to count those residues.

Furthermore, the 0.5-Å2 definition led to inappropriate frequen-

cies for amino acids on the surface of the protein (Figure 2).

Specifically, more hydrophilic residues such as Arg, Asp, Lys, and

Glu have the highest surface frequencies with the 5-Å2 cutoff

(.7%), which is in line with other studies [20]. Although the

relatively hydrophobic Leu had high frequencies with both

definitions, it is not appropriate that counting many small-SASA

contributions (at 0.5-Å2 cutoff) should make Leu more frequent

(7.8%) than Arg (6.1%) or Lys (7%). Including the minimal

Figure 1. Bigger, hotter atoms have more ‘‘raw’’ contacts with ligands, on average. Each amino acid is shown with its total number of raw
contacts represented by vdw radii and color. The average contacts per atom range 0.16 to 2.42, which has been offset and scaled to 1.0–3.0 vdw radii.
The hotter colors indicate more contacts per atom: deep blue #0.30, cyan = 0.70, green = 1.00, yellow = 1.55, orange = 2.00, and red $2.30.
doi:10.1371/journal.pcbi.1003321.g001
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contributions of small-SASA residues simply leads to erroneous

conclusions when counting residue frequencies and propensities.

When examining the sites based on their exposed residues

(5 Å2-SASA definition), valid binding sites were ,5 times larger in

terms of the number of residues and ,2 times larger by surface

area than invalid ones. The smaller number of contacts for invalids

is consistent with the data in Table 1 that shows invalid sites have

smaller SASA and fewer residues. Table 2 shows that the average

number of contacts per residue increases for both valids and

invalids when focusing on the surface residues, though the trend is

smaller in the invalids. The increase in the average number of

contacts is the result of excluding buried amino acids with few,

weak vdw contacts to the ligands. For invalids, the contacts/

residue are only 2.9–8.3 and the contacts/HA are 0.36–1.3.

However, the valids have more complementarity in their sites as

demonstrated by contacts/residue ranging 4.7–10.8 and the

number of contacts/HA ranging 0.6–1.6. Many of the general

patterns seen in the raw contacts to valid ligands are still seen

when focusing on the surface residues, which increases confidence

that the findings are robust. The amino acids with the lowest

Table 2. Comparison of ‘‘raw’’ ligand contacts to ‘‘surface’’ ligand contacts.

All Contacts to Residues within 4 Å All Contacts to Residues within 4 Å and with $5 Å2 SASA

Valids Invalids Diff (V – I) Valids Invalids Diff (V – I)

Contacts per Contacts per Contacts per Contacts per Contacts per Contacts per

Res %Site Res Atoma %Site Res Atoma Res Atoma %Site Res Atoma %Site Res Atoma Res Atoma

Gly 11.1 5.3 1.3 8.1 4.0 1.0 1.3 0.32 6.8 6.5 1.6 5.0 4.1 1.0 2.4 0.60

Ser 6.6 5.8 0.96 6.0 4.5 0.74 1.3 0.22 5.0 6.8 1.1 5.3 4.7 0.78 2.1 0.35

Asp 5.7 7.1 0.88 5.1 4.7 0.58 2.4 0.30 5.6 7.4 0.93 5.6 4.7 0.58 2.8 0.35

Thr 6.3 5.8 0.82 5.6 4.6 0.66 1.1 0.16 5.5 6.6 0.94 5.1 4.7 0.67 1.9 0.27

Ala 6.1 4.1 0.82 4.9 3.1 0.62 1.0 0.20 4.0 5.1 1.0 3.4 3.3 0.65 1.8 0.36

Cys 1.7 4.7 0.78 1.6 6.1 1.0 21.4 20.23 1.0 6.5 1.1 1.3 7.9 1.3 21.5 20.24

Asn 4.7 6.2 0.77 5.3 5.5 0.68 0.7 0.09 4.4 7.1 0.88 5.9 6.2 0.77 0.9 0.11

Arg 6.7 8.4 0.77 11.2 6.1 0.55 2.3 0.21 10.1 9.0 0.81 14.6 6.2 0.56 2.8 0.25

Lys 4.5 6.7 0.75 6.1 4.6 0.51 2.2 0.24 5.8 6.8 0.75 7.9 4.4 0.49 2.4 0.26

Gln 2.8 6.3 0.70 3.4 4.4 0.49 1.9 0.21 3.1 7.1 0.78 4.0 4.5 0.50 2.5 0.28

Glu 4.3 6.3 0.70 5.5 4.5 0.50 1.8 0.20 4.0 6.3 0.70 6.2 4.5 0.50 1.8 0.20

His 4.5 6.9 0.69 6.0 7.2 0.72 20.3 20.03 4.8 8.5 0.85 6.5 8.3 0.83 0.2 0.02

Trp 2.4 9.1 0.65 2.3 6.9 0.49 2.2 0.16 3.3 10.8 0.77 2.6 8.0 0.57 2.8 0.20

Tyr 5.7 7.6 0.64 5.2 4.8 0.40 2.8 0.23 7.2 9.0 0.75 5.4 5.1 0.43 3.9 0.32

Met 2.4 5.1 0.63 1.7 3.6 0.45 1.4 0.18 2.8 5.9 0.74 1.9 4.0 0.50 1.9 0.24

Pro 2.8 4.4 0.62 3.8 3.1 0.44 1.3 0.18 3.2 4.7 0.67 4.2 3.2 0.45 1.5 0.22

Phe 5.0 6.7 0.61 4.5 4.2 0.38 2.5 0.23 6.3 8.2 0.75 3.9 5.0 0.45 3.3 0.30

Val 5.2 4.3 0.61 4.1 2.9 0.42 1.3 0.19 4.7 4.8 0.68 2.7 2.9 0.41 1.9 0.27

Ile 5.0 4.7 0.58 3.8 3.0 0.38 1.6 0.20 5.3 5.6 0.70 3.1 3.2 0.40 2.3 0.29

Leu 6.4 4.3 0.53 5.9 2.9 0.36 1.4 0.17 7.1 4.8 0.60 5.4 2.9 0.36 1.9 0.24

Average contacts for valid and invalid ligands are compared across all residue types. The values and differences are given in both contacts/amino acid and contacts per
non-hydrogen atom. The maximum and minimum values in each column are noted with bold; values for invalid ligands are noted in italics. Due to rounding, columns
may occasionally sum to a value other than 100%.
aNumber of non-Hydrogen atoms in each residue.
doi:10.1371/journal.pcbi.1003321.t002

Figure 2. Frequencies of solvent-accessible SC with a cutoff of SASA $5 Å2 and SASA $0.5 Å2. Residues are sorted by decreasing
hydrophobicity. With the smaller cutoff, the pattern shifts to more hydrophobic residues because poorly exposed, interior residues are able to meet
the criteria with only a small patch of exposed surface.
doi:10.1371/journal.pcbi.1003321.g002
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contacts/residue are still Pro, Val, Leu, and Ala (,5.5 contacts/

residue), and Arg, Tyr, and Trp are still the residues with the most

($9 contacts/residue). For the contacts per HA, the top residues

are still Asp, Thr, Ala, Cys, Ser, and Gly (.0.9 contacts/HA), and

four of the five lowest are the same. Leu, Pro, Val, Ile, and Glu

have #0.7 contacts/HA. Glu replaces Pro in the bottom-5.

Table 3 details the hydrogen-bonding contacts of the surface

residues to the valid and invalid ligands. Half of the residues have

little difference in their hydrogen bonding to valids vs invalids. Cys

has significantly more hydrogen bonds to valid ligands. The only

residues that showed more hydrogen bonds to invalid ligands were

Arg and Thr. Their most similar counterparts, Lys and Ser,

showed no significant difference between hydrogen bonds to valids

or invalids.

Residue Frequencies and Propensities
The BB-only interactions are relatively rare (Table 1) and are

dominated by Gly (Figures 3 and 4). Gly provides over twice as

many backbone interactions as any other amino acid; this is true

for valids and invalids, raw and surface-residue contacts. Most

residues with BB-only contacts to the ligand point their side chains

away from the ligand, otherwise a side-chain atom would likely be

within the interaction distance, and the residue would be classified

as having SC contacts. Additionally, since BB-only contacts

represent equivalent atom types from residue to residue, they are

not expected to provide diverse interaction environments based on

residue type. For all these reasons, we focus our discussion on

residues in the SC category, which includes all Gly and residues

with SC-only and SC+BB interactions.

Most proteins from the PDB exist in aqueous environments.

Therefore, it is generally accepted that the solvated outer surface of

the protein is composed of amino acids that tend to be hydrophilic

in nature. Conversely, the core of the protein is more hydrophobic,

a factor that contributes to the proper folding and stability of

proteins [21,22]. The opposite can be true for membrane bound

domains, but soluble proteins have hydrophobic residues that tend

to bury larger areas of their side chains upon protein folding than

hydrophilic ones [23]. However, the composition of the solvent-

exposed protein surface is not uniformly hydrophilic in nature, and

the correlation between residue hydrophobicity and solvent-

exposure is limited [20,23]. Since binding sites are a part of a

protein’s surface, the comparative analysis of binding-site compo-

sition must be performed with respect to the composition of the

entire protein surface.

In our analysis, charged and polar residues make up the largest

portion of protein surfaces (black bars in Figure 5A), but

surprisingly, Ala is more prevalent than the more hydrophilic

Thr and similarily, Leu is more prevalent than and Ser. All four of

these residues are frequent in sequence. Less-frequent hydropho-

bic residues such as Met, Phe, Trp, and Cys have low surface

frequencies. If we relax the surface definition to include less-

solvent-accessible residues, (Figure 2) very hydrophobic amino

acids like Ile, Val, and Leu increase in their relative surface

frequency. However, as discussed previously, their contribution in

Table 3. Comparison of the average number of hydrogen-bonding contacts to surface residues.

Ave Hydrogen Bonds to VALIDS (Res within 3.5 Å and $5 Å2 SASA) Ave Hydrogen Bonds to INVALIDS (Res within 3.5 Å and $5 Å2 SASA)

Backbone Side Chains Sum H Bonds Backbone Side Chains Sum H Bonds

Res N HB O HB Atom HB Atom HB Atom HB All All/Atoma N HB O HB Atom HB Atom HB Atom HB All All/Atoma

Cys 0.18 0.08 SG 0.80 1.07 0.36 0.13 0.03 SG 0.35 0.51 0.17

Gly 0.39 0.28 0.68 0.34 0.41 0.22 0.62 0.31

Ser 0.22 0.11 OG 0.50 0.83 0.28 0.22 0.12 OG 0.41 0.75 0.25

Asn 0.14 0.11 OD1 0.37 ND2 0.45 1.08 0.27 0.11 0.11 OD1 0.28 ND2 0.36 0.85 0.21

His 0.07 0.09 ND1 0.29 NE2 0.47 0.90 0.23 0.07 0.06 ND1 0.30 NE2 0.32 0.74 0.19

Arg 0.07 0.05 NE 0.23 NH1 0.33 NH2 0.44 1.13 0.23 0.07 0.04 NE 0.29 NH1 0.46 NH2 0.61 1.47 0.29

Thr 0.12 0.11 OG1 0.42 0.66 0.22 0.23 0.11 OG1 0.46 0.79 0.26

Asp 0.10 0.12 OD1 0.33 OD2 0.30 0.84 0.21 0.14 0.13 OD1 0.20 OD2 0.20 0.66 0.17

Gln 0.10 0.10 OE1 0.30 NE2 0.31 0.81 0.20 0.14 0.08 OE1 0.18 NE2 0.30 0.71 0.18

Tyr 0.07 0.07 OH 0.42 0.56 0.19 0.05 0.07 OH 0.26 0.37 0.12

Ala 0.19 0.18 0.37 0.19 0.14 0.12 0.26 0.13

Lys 0.14 0.06 NZ 0.35 0.56 0.19 0.12 0.06 NZ 0.39 0.57 0.19

Glu 0.07 0.11 OE1 0.26 OE2 0.29 0.72 0.18 0.14 0.10 OE1 0.18 OE2 0.24 0.67 0.17

Met 0.09 0.09 SD 0.34 0.53 0.18 0.19 0.08 SD 0.11 0.38 0.13

Trp 0.05 0.07 NE1 0.26 0.38 0.13 0.04 0.05 NE1 0.31 0.40 0.13

Pro 0.10 0.12 0.23 0.11 0.08 0.11 0.19 0.09

Val 0.09 0.11 0.21 0.10 0.04 0.09 0.13 0.06

Leu 0.10 0.09 0.19 0.10 0.10 0.10 0.20 0.10

Ile 0.08 0.09 0.17 0.09 0.07 0.09 0.16 0.08

Phe 0.08 0.08 0.16 0.08 0.09 0.07 0.16 0.08

Hydrogen bonding of all valid and invalid ligands are compared across all residues that meet the surface definition. Both backbone and side-chain atoms are listed. The
values and differences are given in both hydrogen bonds per residue and contacts per hydrogen-bonding atom. Due to rounding, columns may occasionally sum to a
value other than 100%.
aSum of all hydrogen bonds per number of hydrogen-bonding atoms.
doi:10.1371/journal.pcbi.1003321.t003
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terms of fraction of overall surface area would be miniscule. Gly,

which is common in protein sequences and unusual in its number

of backbone interactions with ligands, has a surface frequency

comparable to Asn and Pro.

Residue propensities in Figures 5B and 5C present the bias for

residues to appear in protein surface regions involved in ligand

binding. Pro, Glu, Gln, Lys, and Ala disfavor binding sites

(propensities of 0.46–0.76). Arg, Thr, Val, Leu, Ser, and Asn have

propensities within 60.2 of 1.0, showing that these are relatively

unbiased in their contributions to binding sites versus the rest of

the protein surface (Figure 5B). Though Arg, Leu, and Asp have

the first, third, and fourth largest contributions to binding sites

(Figure 5A) their relative propensities are ,1 because of their

equally high prevalence on the entire protein surface. Larger

propensities for binding sites occur when a residue is frequently

observed in binding sites, but is rare on the general surface. Cys,

Trp, Met, His, Phe, Ile, and Tyr all have low protein surface

frequencies (left side of Figure 5A), and show propensities of $1.4

(left side of Figure 5B). Tyr and Phe are excellent examples. They

are the second and seventh most common resides in binding sites,

respectively, and they are rare on the protein surface. These

residues are bulky and aromatic, so their exposure to solvent is

rather unfavorable. It is reasonable that evolution is judicious in

their use, placing them where they are most needed for a

functional role, such as conservation in binding sites [2,5,20]. Trp

also has a high propensity for binding sites, and similar physical

properties, but its exceptional propensity actually reflects its rarity

on the protein surface (,2% of all SC contacts). The same pattern

is seen for Cys, which is even more rare on the surface (,1% of

SC contacts). Gly is notable because backbones are uncommon on

protein surfaces (about 17% of the total protein surface area), but

when they are present, they are overwhelmingly Gly. Gly alone

accounts for 13% of all backbone protein surface area (data not

shown), and they tend to provide a large percentage of amino acids

in binding sites. Gly backbones account for ,50% of BB-only

interactions in valid binding sites. However, when normalized

relative to the whole protein surface, Gly shows a more modest

propensity for binding-site regions (center of Figure 5B). Overall,

our propensities for valid binding sites agree well with previously

published propensities from a set of ,35,000 redundant ligand-

binding sites (R2 = 0.81 and Spearman r= 0.91 in comparison to

Davis and Sali [24]), and those from a smaller set of 41 drug-

binding sites (R2 = 0.79 and Spearman r= 0.79 in comparison to

Soga et al. [14]). Propensities for invalid sites were less well

correlated with these data (R2 = 0.27 and R2 = 0.61, respectively).

Comparison of Frequencies and Propensities in Valid
versus Invalid Sites

A unique aspect of this study is our ability to compare the

binding-site interaction patterns for valid ligands to those in sites of

spurious additives. This provides a type of ‘‘experimental control’’

which is usually not possible in analyses of binding-site databases.

The issue at hand is not necessarily the recognition of additives

themselves, but instead, with how valid and invalid binding differs.

Figure 5C demonstrates the propensities for valid and invalid

binding sites, ordered by the ratio between of the two. This data

emphasizes our caution in over-interpreting the high propensities

of Cys and Trp. They do not show any significant bias for valid

ligands over invalids. One could argue that Trp, Cys, or any other

residue may be inherently ‘‘sticky’’ for all small molecules, so of

Figure 3. Relative frequency of SC-only, BB-only or both (SC+BB) interactions per residue. The residues with ‘‘SC’’ interactions in our
analysis combine the SC-only and ‘‘SC+BB’’ contacts (blue+yellow). Residues are ordered by increasing BB-only frequency. Here, all Gly interactions are
shown as BB-only to show its overall contribution to BB-only contacts. Due to rounding, columns may occasionally sum to a value other than 100%.
doi:10.1371/journal.pcbi.1003321.g003

Figure 4. Frequencies of BB-only contacts in binding sites, sorted by increasing frequency on the protein surface. Surface residues
with 5 Å2 or greater backbone SASA are shown. Gly interactions are shown as BB-only to stress that it constitutes the vast majority of such contacts.
Due to rounding, rows may occasionally sum to a value other than 100%.
doi:10.1371/journal.pcbi.1003321.g004

Composition of Protein-Ligand Binding Sites

PLOS Computational Biology | www.ploscompbiol.org 7 November 2013 | Volume 9 | Issue 11 | e1003321



course, they will attract both valids and invalids. Who cares if there

is a bias when these residues denote small-molecule binding sites?

On the contrary, we find that there are residues which show a

significant bias between the classes. This significance was

confirmed by randomly shuffling valid and invalid ‘‘labels’’ 1000

times (maintaining their relative proportion) and re-calculating the

propensities and ratios each time. All residues had an average ratio

of 1 across the shuffled sets. The maximum and minimum of the

shuffled ratios was 1.2 and 0.8 respectively, both for Cys, with all

other residues having considerably narrower minimum and

maximum values (data not shown). We therefore consider

propensity ratios .1.2 and ,0.8 as significant trends.

Ala, Ile, Met, and Val are the most biased toward biologically

relevant binding sites over indiscriminant associations (ratio .1.4),

Figure 5. Frequencies and propensities of surface residues. A) Frequencies of solvent-accessible side chains on the protein surface and in
binding sites with SASA cutoff $5 Å2. Due to rounding, rows in A) may occasionally sum to a value other than 100%. B) Median propensity of
residues in ligand binding sites of valid and invalid ligands, analyzed across all proteins. Residues in A and B are ordered by increasing frequency on
surface. C) Ratio of residue propensity for valid versus invalid binding sites. Residues ordered by decreasing ratio. Error bars in B and C indicate 95th

percentiles of 10,000 leave-10%-out samples.
doi:10.1371/journal.pcbi.1003321.g005
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followed by a second tier of Phe, Cys, Leu, Gly, and Thr (ratio

.1.2). Conversely, His, Pro, Gln, Glu, Lys, and Arg show a bias

towards invalid binding sites (ratio ,0.8), although all but His and

Arg have propensity for the surface rather than binding sites.

Considering Arg has among the highest catalytic propensities [1],

it should be present in many valid binding sites, but we do not see

strong correlations between binding-site propensity (valid or

invalid) and catalytic propensity (data not shown) or large

differences in propensity values when enzymes are considered

separately from non-enzymes (discussed further below). Instead,

looking at the distribution of Arg interactions in binding sites

(Tables 4 and 5) demonstrates that they make up most SC

interactions in 11 of the top-20 ligand sites and are present at high

rates (.15% of SC interactions) in sites of small, charged

molecules, such as sulfate (ligand name of SO4 in the PDB),

phosphate (PO4), acetate (ACY), and chloride (CL) ions. They are

also especially frequent in citrate (CIT) sites, which appear on both

valid and invalid lists, depending on the function of the bound

protein. Of the residues that show valid to invalid ratios of .1.2,

only Ile, Met, Phe, and Cys show a propensity for binding sites

versus the protein surface.

In solution, all charged side chains may be expected to attract

small, polar ligands classified as invalid in our dataset. However,

we see higher frequencies for positively charged residues (Arg, Lys)

than for negatively charged ones (Glu, Asp) in invalid binding sites.

It is unusual that Glu and Asp are under-represented in invalid

binding sites because positively charged ions are present in buffers

just like negative ions. Asp and Glu are indeed frequent in Mg+2

sites, where they comprise 22 of 30 residues across 18 sites.

However, the binding of positive ions is not observed often in our

dataset; Mg+2, Na+, and Ca+2, and are 20th and 23rd and 26th

highest occurring invalid ligands by frequency, and together, they

represent less than 0.8% of all invalid binding sites. This is in

contrast to Cl2, I2, and Br2, which all make the top-20 list, and

comprise ,8% of invalid sites (Table 5). The higher desolvation

cost of a positive ion – particularly a divalent one – might make

such binding interactions less frequent and thus less likely to

appear in protein crystal structures (outside of functional active

sites, where they frequently appear as co-factors).

Assessment of Ligand Bias on Propensity Values
There is a significant bias in the PDB among the valid ligands

(abundance of nucleosides) and invalid ones (common buffer

molecules). To measure the bias introduced by preponderance of

such ligands, we recalculated propensities while leaving out any

binding sites containing the most frequent 20 ligands given in

Tables 4 and 5. Omission of the most frequent valid ligands

(,32% of the set) slightly raised propensities of Trp, Phe, His,

Met, and Glu and lowered those of Ser, Ala, and Pro (Figure 6A).

However, the omission had little effect overall. In contrast,

propensities for invalid binding sites were significantly affected by

the removal of the 20 most frequent invalids, which account for

about 82% of invalid sites (Figure 6B). The propensities for Trp,

Phe, Met, and Tyr rose sharply while propensities for Arg and Lys

fell, indicating a respective increase and decrease in frequencies of

these residues in the remaining binding sites (protein surface

frequencies remained basically unchanged, data not shown).

These changes highlight the dependence of the propensities upon

the size of the dataset and the variety of ligands it contains. While

the propensities calculated for valid binding sites represent a broad

array of ligands, invalid propensities are dominated by interactions

that are made to the most frequent ligands, namely – sulfate,

glycerol, ethylene glycol, and phosphate. This bias is inherent in

protein crystallographic data and should be kept in mind when

Table 4. Composition of binding sites for the top-20 valid ligands.

HET #Lig (%) Ala% Arg% Asn% Asp% Cys% Gln% Glu% Gly% His% Ile% Leu% Lys% Met% Phe% Pro% Ser% Thr% Trp% Tyr% Val%

NAD 250 (4.49) 5.90 4.75 6.12 7.01 1.56 2.14 3.43 7.49 3.60 8.33 6.82 4.01 1.87 4.58 4.51 5.98 7.94 1.44 4.80 7.73

FAD 217 (3.90) 6.77 7.09 4.02 4.47 1.91 3.51 4.28 7.33 4.72 6.79 6.21 3.98 1.42 4.65 4.00 6.91 7.79 3.42 6.28 4.44

ADP 172 (3.09) 4.48 10.46 5.43 5.37 0.50 2.35 3.36 11.42 2.80 4.98 5.20 9.96 1.85 4.14 2.74 5.76 8.67 0.78 5.04 4.70

NAP 165 (2.97) 6.37 8.97 5.68 4.02 0.59 2.25 2.01 9.93 3.01 6.78 5.99 5.64 2.01 2.25 4.12 8.76 8.65 0.97 5.78 6.23

FMN 130 (2.34) 5.09 10.99 7.17 2.43 1.39 3.88 2.14 9.14 5.73 4.34 4.63 4.51 3.18 3.30 2.89 8.21 6.94 3.18 6.54 4.34

ATP 100 (1.80) 2.76 12.20 4.26 6.27 0.17 2.42 7.52 10.78 2.26 4.43 5.51 12.03 1.92 5.43 0.75 5.35 8.02 1.42 2.26 4.26

GDP 96 (1.73) 3.17 4.39 3.98 11.44 2.96 1.74 3.17 8.27 1.43 1.94 8.27 19.10 0.31 4.60 1.63 8.17 10.52 – 1.94 2.96

GLC 86 (1.55) 3.95 9.65 6.58 12.94 0.22 6.14 7.46 3.07 7.46 2.41 1.10 2.63 2.19 7.46 0.88 1.75 1.54 11.40 10.53 0.66

NDP 76 (1.37) 6.19 9.32 4.66 3.83 1.18 2.30 2.85 9.32 2.85 5.29 5.85 5.78 2.64 1.32 2.85 10.44 8.35 1.74 7.38 5.85

SAH 67 (1.20) 5.07 2.97 3.21 10.51 1.85 2.10 4.45 11.50 2.35 5.07 8.16 1.98 4.45 7.91 2.97 6.06 3.83 4.20 7.29 4.08

ANP 61 (1.10) 4.90 7.48 6.62 7.23 – 3.43 4.04 10.54 1.84 6.37 4.78 9.56 2.21 4.53 1.84 5.51 7.97 0.98 4.29 5.88

COA 54 (0.97) 8.85 7.51 3.35 2.95 0.80 4.29 0.94 7.24 4.29 4.56 8.45 8.98 4.29 6.84 2.55 6.43 4.16 1.88 5.36 6.30

NAG 45 (0.81) 2.34 6.54 19.16 9.35 3.74 4.21 3.74 4.21 1.40 2.80 4.21 2.34 1.87 3.27 1.40 2.34 5.61 14.49 4.67 2.34

CIT 44 (0.79) 3.04 16.22 7.77 4.73 0.34 2.03 3.04 6.76 11.15 4.73 3.72 6.42 2.03 2.70 3.38 7.77 4.73 2.03 5.74 1.69

AMP 43 (0.77) 4.48 10.70 2.74 5.72 1.74 3.73 5.97 6.97 5.97 5.97 4.98 5.97 1.49 6.72 1.74 5.97 7.71 1.00 6.47 3.98

NAI 42 (0.76) 7.79 3.89 6.17 7.38 0.13 2.28 2.55 8.72 2.15 9.40 8.99 4.83 2.68 1.88 3.49 7.38 6.31 0.67 4.30 8.99

MAN 40 (0.72) 5.91 – 18.72 16.75 – 9.36 1.97 5.91 2.46 – 5.42 3.45 – 1.48 2.46 1.97 3.94 5.42 12.32 2.46

SAM 37 (0.67) 5.20 4.98 3.62 11.09 0.45 3.85 6.11 8.82 5.43 5.20 7.24 2.71 2.26 7.92 4.07 4.98 3.85 2.04 7.01 3.17

GNP 36 (0.65) 4.22 0.84 2.95 8.44 1.90 2.11 1.27 12.66 0.84 1.27 8.02 18.78 0.42 5.49 3.16 8.86 14.14 – 3.16 1.48

Ligand listed in decreasing fraction of 5562 binding sites. Most frequently interacting residue for each ligand is in bold. Due to rounding, rows may occasionally sum to a
value other than 100%.
doi:10.1371/journal.pcbi.1003321.t004
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performing broad statistical analysis of residue interactions.

Moreover, the large changes in propensities for the reduced set of

invalid binding sites are hard to interpret, since subsets of such small

size (352 structures remained) have large variation in the leave-

10%-out cross-validation. In the next section, we examine how

random subsets of such small size result in high standard deviations,

even if all ligands are allowed. High standard deviations can indicate

when an insufficient, small set of sites has been sampled. This

exposes a caveat of any frequency- or propensity-based protein

analysis with small sets of proteins: variation of binding-site

frequencies in small sets of structures can have large effects on

propensities (see below). Such comparison should only be done in

the context of overall residue frequencies and with the knowledge of

the uncertainty inherent to a small dataset.

Influence of the Size of the Datasets on the Statistical
Significance of the Propensities

To assess the statistical significance of the data, propensity

calculations for each set of binding sites were carried out 10,000

times, each time leaving out a random 10% of the proteins (i.e.,

retaining ,3000 structures at random). For each residue, the

median of the 10,000 propensity values is reported, and the 95th

percentile bounds are used for the error bars. To assess the

dependence upon the size of the dataset, a separate series of

Figure 7. Examining the variation in the data, based on sample size. A) Protein surface, B) valid binding site, and C) invalid binding site
frequencies, and D) valid binding site propensities of six residues. Values for subsets of the protein structure set, from 1% to 99% of the full set are
shown, with 100 samples at each percent point.
doi:10.1371/journal.pcbi.1003321.g007

Figure 6. Propensities of SC interactions in valid sites, with and without the top-20 ligands by frequency. A) Propensities in valid sites.
B) Propensities in invalid sites. The error bars represent 95th percentile bounds based on leave-10%-out clustering within each set. Residues are
ordered alphabetically.
doi:10.1371/journal.pcbi.1003321.g006
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calculations were conducted using the procedure above. Progres-

sively larger sets of proteins were randomly chosen from the set of

3295 structures, and propensities were calculated for that set

without additional leave-10%-out sampling. The set size was

incremented in intervals of 1% of the full structure set and 100

samples were taken at each percentage points, resulting in a total

of 10,000 values. Frequencies and propensities were calculated for

each sample (Figure 7). Additionally, propensity medians, standard

deviation, and 95th percentiles for six representative residues were

calculated from 10,000 random samples at four different set sizes:

100, 500, 1000, and 2000 structures (Table 6).

The variation in SC frequencies and propensities were thus

assessed by sampling random sets of varying numbers of structures

(Figure 7) 100 times each. For clarity we focused on 6

representative residues: Lys and Glu as the most frequent on

protein surface, Val and Asn as moderately frequent, and Cys and

Trp as the least frequent. The protein surface contains the most

residues by number, and the residue frequencies converge to

within 60.5% variation once ,500 or more structures are

sampled (Figure 7A). The binding sites are much smaller than the

protein surface, so a larger number of structures are needed to

achieve convergence of 60.5% variation: ,1500 structures for

valid sites (Figure 7B) and ,2500 structures for invalid sites

(Figure 7C). The propensity values fluctuate in proportion to the

frequencies (Figure 7D) and converge around ,1000 structures in

a dataset. Standard deviations of propensities for Lys and Glu in

valid and invalid binding sites are below 0.1, even in subsets as

small as 500 structures (Table 6). The propensities of rare residues

do not converge to such small standard deviation until sets as large

as 2000 structures are sampled, especially in the case of

propensities for invalid sites. Convergence to mean values of the

underlying population is guaranteed as the sample set size

approaches the size of the full set; however, the rate of this

convergence indicates whether relatively small subsets sufficiently

sample the full population means. When constructing a dataset for

computing propensities, a balance is required between eliminating

redundant or poor quality structures and maintaining a sufficient

set size. Based on our results, a set of at least 1000 structures is required to

confidently measure general binding-site propensities for valid ligands and

2500 are required for invalid ligands. Of course, these numbers are

based on a random and non-redundant protein set. Frequencies

and propensities for a set of related proteins (for example, those

from the same structural fold family) may show such convergence

with fewer structures. We recommend that any propensities

calculated on a limited set of structures should be assessed by

comparison to the best-available general propensities (such as ones

presented here) and by taking into account the variation in

random subsets of similar size.

As an example, we looked at the differences in propensities

between enzyme and non-enzyme, valid-ligand binding sites,

which have been previously shown to differ in their ligand

efficiencies [25]. Figure 8 shows the propensities along with red

lines indicating the 95th percentile bounds of valid propensities

from random sets of structures sampled 10,000 times from the full

dataset (as presented in Table 6). For enzymes, sets of 2500

structures were sampled, while for the smaller non-enzyme set only

1000 structures were sampled. The leave-10%-out sampling used

during the propensity calculations provides a measure of stability

for the propensity values. In contrast, the sampling of random

structures provides a bound for propensity values that can be

expected by chance. Therefore, for enzyme or non-enzyme

propensities to be considered different from the general (randomly

observed) valid binding-site propensities, their 95th percentile

range must be outside the 95th percentile range of propensities

Table 6. Median, standard deviation, and 95% confidence interval for the propensity of 6 representative residues.

Propensities 100 Structures 500 Structures 1000 Structures 2000 Structures

Residues with differing frequencies Valid Invalid Valid Invalid Valid Invalid Valid Invalid

Frequent Lys 97.5th percentile 0.82 1.38 0.71 1.09 0.68 1.03 0.66 0.97

Median (st dev) 0.64 (0.08) 0.90 (0.21) 0.64 (0.03) 0.91 (0.08) 0.64 (0.02) 0.91 (0.06) 0.64 (0.01) 0.91 (0.03)

2.5th percentile 0.48 0.55 0.57 0.75 0.60 0.81 0.62 0.86

Glu 97.5th percentile 0.62 1.01 0.54 0.80 0.52 0.76 0.50 0.71

Median (st dev) 0.48 (0.07) 0.66 (0.16) 0.48 (0.03) 0.66 (0.07) 0.48 (0.02) 0.67 (0.04) 0.48 (0.01) 0.67 (0.02)

2.5th percentile 0.34 0.38 0.42 0.54 0.44 0.58 0.46 0.62

Moderate Val 97.5th percentile 1.30 1.19 1.12 0.88 1.08 0.81 1.05 0.75

Median (st dev) 1.01 (0.14) 0.66 (0.24) 1.01 (0.06) 0.68 (0.10) 1.01 (0.04) 0.68 (0.06) 1.01 (0.02) 0.68 (0.03)

2.5th percentile 0.75 0.26 0.90 0.49 0.94 0.55 0.97 0.61

Asn 97.5th percentile 1.22 1.57 1.05 1.22 1.01 1.13 0.98 1.06

Median (st dev) 0.94 (0.13) 0.96 (0.26) 0.95 (0.05) 0.99 (0.11) 0.95 (0.03) 0.99 (0.07) 0.95 (0.02) 1.00 (0.04)

2.5th percentile 0.71 0.52 0.85 0.79 0.88 0.86 0.91 0.92

Rare Cys 97.5th percentile 3.00 4.52 2.29 2.71 2.15 2.29 2.01 1.97

Median (st dev) 1.87 (0.52) 1.46 (1.13) 1.86 (0.21) 1.62 (0.47) 1.88 (0.14) 1.64 (0.30) 1.88 (0.07) 1.67 (0.16)

2.5th percentile 0.96 0.00 1.48 0.89 1.61 1.13 1.73 1.35

Trp 97.5th percentile 3.13 4.06 2.60 2.98 2.49 2.72 2.38 2.52

Median (st dev) 2.25 (0.41) 2.20 (0.84) 2.28 (0.16) 2.29 (0.34) 2.27 (0.11) 2.29 (0.22) 2.27 (0.06) 2.28 (0.12)

2.5th percentile 1.53 0.77 1.96 1.64 2.07 1.87 2.16 2.06

The values are given to show the importance of using a large dataset and the variation possible when using small subsets of protein structures. All values based on
10,000 random samples from the full protein set. The confidence interval ranges from the 2.5 percentile to the 97.5 percentile of the distributions from those samples.
doi:10.1371/journal.pcbi.1003321.t006
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obtained from random structure sets of the same size. The asterisks

in Figure 8 mark residues that fulfill this criterion. This is the

strictest-possible criterion, because only minimal overlaps of the

median distributions can still be considered statistically significant.

The average values of random sampling will be enzyme-biased

because Binding MOAD and the PDB are themselves enzyme-

biased. Therefore, exceptional propensity trends for non-enzyme

may be more likely.

The set of enzyme structures makes up more than two-thirds of

the structure set used to compute propensities in this study.

Binding-site propensities computed on this number of structures

are very close to general propensity trends seen across all valid

binding sites. Accordingly, the variation of propensities in

corresponding random samples is very low. In enzyme binding

sites, Ile and Ser have median propensities higher than random,

and Leu and Trp lower ones. The set of non-enzymes has nine

residues that have propensities significantly different than those

seen at random. Leu, Lys, Phe, Trp, and Tyr have significantly

higher binding-site propensities than those seen in sets of random

structures, and Glu, Gly, Ile, and Ser have lower-than-random

propensities. In our recent study comparing residue composition of

enzyme and non-enzyme sites, Leu, Met, Trp and Tyr were found

to have much higher frequencies in binding sites of high-affinity,

non-enzyme proteins than in enzyme, high-affinity binding sites

[25]. Combined with our propensity observations, the presence of

Leu, Trp, and Tyr residues in binding sites without enzymatic

function may be a distinguishing trend for allosteric or regulatory

sites. Although Met propensity is higher in non-enzyme sites, it is

within random sampling error. Our previous study also observed

relatively low non-enzyme binding-site frequencies for Val, Ile,

Asp, and Gly. Our propensities for Ile and Gly are consistent with

their findings, but Asp has no propensity trend among enzymes

versus non-enzymes, aside from its low propensity for binding sites

in general. The elevated propensity of Lys and Phe and lower

propensities for Glu and Ser for non-enzyme sites are unique

trends observed in the current study.

As smaller sets of structures are used for calculating propensity

values, there is a greater chance of seeing values that deviate from

general binding-site propensity trends. However, the 95th percen-

tile margins of error from randomly sampled sets of similar size

will also change, becoming wider, especially for less-frequent

residues. Therefore, it is important to conduct comparisons to

randomly-sampled propensity values as suggested herein, to

distinguish set-specific trends from the overall propensity trends

in the currently available data.

Conclusions
Our study highlights the differences in amino-acid interactions

with valid and invalid ligands and the frequency of residues

taking part in these interactions, in contrast to the surface

composition of the whole protein. Most importantly, the relative

propensity of valid versus invalid binding sites should help

improve methods for identifying binding sites in proteins of

unknown functions and improve other proteomic methods where

understanding of general composition of protein-ligand binding

sites is required.

Our data could have its greatest utility in scoring predicted sites.

Most scores are based on a weighed sum of the presence of each

amino acid. Typically, Trp is heavily weighted because of its high

propensity (2.27), but it is possible that the weight should be more

Figure 8. Propensities in valid binding sites. Propensities are broken down into A) enzyme and B) non-enzyme proteins. The black error bars
represent 95th percentile bounds based on leave-10%-out clustering. For context, red lines represent 95th percentile bounds of propensities from
10,000 random samples of A) 2500 random, diverse proteins and B) 1000 random, diverse proteins (as seen in Table 4). Stars indicate residues whose
median propensity value (leave-10%-out 95th percentile error) falls outside of the 95th percentiles of the randomly-sampled propensities.
doi:10.1371/journal.pcbi.1003321.g008
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modest because the ratio of valid to invalid propensities is near 1.

More importantly, His has a high propensity (1.69) which would

call for a high weight, but we find it is biased for invalid sites.

Given this, it is probably not appropriate to highly weight the

presence of His residues in a score. Conversely, Ala’s low

propensity (0.76) would usually result in some sort of penalty to

a score, but its 1.59 ratio of valid to invalid propensities shows that

it is more biased to valid sites and likely does not deserve to be a

penalty. Of course, the residues with high propensities and high

valid/invalid ratios should be the best indicators and given the

highest weights: Ile, Met, Phe, Cys. Better understanding of these

interactions, and how they differ across binding sites, can help

focus statistical analysis across broad sets of protein surfaces

toward the most biologically relevant ligand sites.

Looking at the variation of shapes, sizes, and composition of

protein-ligand binding sites and the ligands they bind, it is easy to

see why finding a general method for predicting their location and

binding partners is such a challenge. Recent studies of thousands

of human protein-ligand complexes found a complicated relation-

ship between the similarity of protein sequences and the similarity

of their pockets and bound ligands [1,12–14], making it difficult to

predict novel valid binding sites by sequences. Assessing the shape

and sequence-independent residue composition of a ligand site has

emerged as an orthogonal way to identify valid binding sites on

protein surfaces [12–14]. In a more direct illustration of the

complementarity of the propensity data with other prediction

approaches, a study by Soga et al. [14] examined pockets

identified by a geometry-based prediction tool and a rank-score

for binding sites based on a protein-ligand binding index. That

index was similar to residue propensity and showed some clear

success in finding known binding sites in a set of crystal structures.

Our study offers atomic contacts and propensity values based on a

higher quality, larger, and more diverse dataset to fuel similar

efforts.

This study also exposes the variation in residue frequencies on

the protein and binding-site surfaces, depending on the number of

proteins. Given how this variation can affect the interpretation of

frequency- and propensity-based analysis of protein surfaces, we

recommend that at least 1000 diverse protein complexes are

needed for significant general conclusions for biologically relevant

valid binding sites. When calculating propensities for smaller sets

of structures, such as proteins of a functional family or similar

ligand-binding sites, it is important to compare them to those of

randomly sampled sets of structures. This can help determine how

significant the trends are with respect to the variety of protein-

ligand sites currently available in databases such as Binding

MOAD.

Supporting Information

Dataset S1 The number of unique binding events is
given for every PDB file in the ‘‘count’’ column. All ligands

are named for each biounit file from the PDB. The valid ligands

are listed on one page, and the invalid ligands are described on the

other page.

(XLSX)

Dataset S2 Average contacts between the ligands and
the proteins. Total count, hydrogen-bonding, and vdw contacts

are detailed for both valid and invalid ligands. ‘‘Raw’’ contacts are

given on one page, and contacts to surface residues (5 Å2-SASA

definition) is given on the other page.

(XLSX)
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