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A basal-like breast cancer-specific role for SRF–IL6
in YAP-induced cancer stemness
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The switch between stem/progenitor cell expansion and differentiation is critical for

organ homeostasis. The mammalian Hippo pathway effector and oncoprotein YAP expands

undifferentiated stem/progenitor cells in various tissues. However, the YAP-associated

transcription factors and downstream targets underlying this stemness-promoting activity

are poorly understood. Here we show that the SRF–IL6 axis is the critical mediator of

YAP-induced stemness in mammary epithelial cells and breast cancer. Specifically, serum

response factor (SRF)-mediated binding and recruitment of YAP to mammary stem cell

(MaSC) signature-gene promoters induce numerous MaSC signature genes, among which

the target interleukin (IL)-6 is critical for YAP-induced stemness. High SRF–YAP/TAZ

expression is correlated with IL6-enriched MaSC/basal-like breast cancer (BLBC). Finally, we

show that this high SRF expression enables YAP to more efficiently induce IL6 and stemness

in BLBC compared with luminal-type breast cancer. Collectively, our results establish the

importance of SRF–YAP–IL6 signalling in promoting MaSC-like properties in a BLBC-specific

manner.
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A
dult stem cell regulation has been the subject of intense
study in recent years. Adult stem cells have been detected
in various organs, including the intestine and mammary

gland1,2. These adult stem cells play a critical role in maintaining
organ homeostasis, enabling tissue regeneration after organ
injury. Adult stem cells also are important in cancer
development and progression, with a number of studies
demonstrating that tumour-initiating cells share many
molecular and cellular characteristics in common with adult
and embryonic stem cells3. This commonality places studies of
adult stem cells at the crossroads of understanding both tissue
regeneration and cancer mechanisms. Importantly, targeting
tumour-initiating cells is considered a promising anticancer
strategy; thus, understanding the regulation of adult stem cells
may ultimately bear successful therapy.

The transcriptional co-activator YAP (Yes-associated protein),
a downstream effector of the newly emerging Hippo pathway, has
recently come to the fore as a critical regulator of tissue
regeneration, cancer and adult stem cells. YAP is a putative
oncogene located in the 11q22 amplicon found in various types of
cancers4. Studies on YAP transgenic mice, YAP-knockout mice
and Hippo pathway-knockout mice have collectively revealed that
YAP is required for adult stem cell activation during tissue
damage, and shown that aberrant YAP activation expands
epithelial stem/progenitor cells in vivo5–8. These findings
suggest that understanding the mechanism underlying stemness
induction by YAP may shed light on the mechanism responsible
for the development of poorly differentiated cancers. It may also
suggest effective therapies against cancers overexpressing YAP,
which is correlated with poor prognosis9. However, mechanisms
downstream of YAP remain unclear.

A number of upstream cues that modulate YAP activity have
been reported10. YAP is mainly inhibited by phosphorylation by
LATS kinase, which in turn is regulated by various stimuli,
including the Hippo pathway, G-protein-coupled receptor
activation and actomyosin tension11–13. YAP is the critical
nuclear target that translates serum-borne mitogens and matrix-
stiffness signals into cell proliferation, invasion, epithelial–
mesenchymal transition (EMT) and stemness. Interestingly, the
regulation and function of YAP is similar to that of serum
response factor (SRF). SRF is activated by serum and is also
known to be activated by actin cytoskeleton assembly14. SRF is
also associated with an EMT-like phenotype in hepatocellular
carcinoma (HCC) and skin cancer15,16, and promotes cancer
metastasis17 and self-renewal of tumour-initiating breast cancer
cells18. These observations suggest that YAP and SRF may be
functionally related. In line with this, a recent study has shown
that SRF and YAP targets largely overlap19.

In this study, we find that YAP induces numerous mammary
stem cell (MaSC) signature genes. We also determine that SRF is
the transcription factor that is critical for YAP-induced
transcription of MaSC signature genes, and interleukin (IL)-6 is
a critical transcriptional target for the induction of MaSC-like
properties. SRF–YAP–IL6 signalling is enriched in MaSC/
progenitor cell-like basal-like breast cancer (BLBC) in patients’
samples and is required for generation of cancer stem cells (CSCs)
and cancer relapse specifically in BLBC. Taken together with the
previous discovery of the cytokine Unpaired as an effector of
yorkie in flies20, these findings identify IL6 as the first universal
transcriptional target of YAP involved in promoting stemness
that is conserved from flies to humans.

Results
YAP induces expression of MaSC signature genes. Microarray
analyses using cells/tissues that overexpress YAP have revealed

many transcriptional targets of YAP21,22. However, because YAP
induces transformation of noncancerous cells, it is likely that
many of the previously identified YAP targets are consequences
of the transforming property of YAP. To better define
downstream signalling events of YAP activation, we first
utilized immortalized mammary epithelial MCF-10A cells
expressing a tamoxifen-inducible, hyperactive (S127/381A; two
major LATS phosphorylation sites are mutated alanine) YAP
mutant (MCF-10A ERT2-YAP 2SA). Maximally active YAP 5SA
mutant (all five LATS phosphorylation sites are mutated to
alanine) was not used because it caused leaky transforming
activity without treatment of 4-hydroxytamoxifen. Treatment of
MCF-10A ERT2-YAP 2SA cells with 4-OHT activated YAP and
upregulated the YAP transcriptional target CTGF (connective
tissue growth factor) within 2 h (Fig. 1a). Notably, whereas ERT2-
YAP 2SA exhibited some leaky expression, it was functionally
inactive, probably owing to cytoplasmic sequestration by
heat-shock protein binding23. Our findings support this,
demonstrating that vehicle-treated MCF-10A ERT2-YAP 2SA
cells were unable to upregulate the YAP target gene CTGF, induce
serum- or anchorage-independent growth or promote expression
of the YAP signature transcriptome (Supplementary Fig. 1a–d).
Microarray analyses of RNAs from MCF-10A ERT2-YAP 2SA
and MCF-10A ERT2 cells at 2 and 6 h after treatment with 4-OHT
identified 226 out of 31,333 (0.7%) nonredundant genes in the
microarray as YAP-induced target genes (Fig. 1b and
Supplementary Data 1, see Methods for definition of YAP
target genes). Although this list of genes may contain indirect
consequences of YAP activation, it represents a set of more
stringent, early-responsive YAP targets. Notably, of the previously
documented YAP signature genes, 24% (16/68) were confirmed in
our list of transcriptional targets (Fig. 1b and Supplementary
Fig. 1g). A gene ontology analysis of genes exclusively enriched in
4-OHT-treated MCF-10A ERT2-YAP 2SA cells classified YAP
targets as genes involved in diverse cancers (Supplementary
Fig. 1h). Notably, many of the YAP targets included components
of the Hippo pathway and secreted oncogenic molecules, such as
IL6, IL8, CXCL1 (chemokine [C-X-C motif] ligand 1), CTGF
and CYR61 (cysteine-rich angiogenic inducer 61), suggesting
a possible negative feedback mechanism24 and non-cell-
autonomous role of YAP in tumorigenesis, respectively25,26

(Supplementary Fig. 1e,f).
We next questioned whether the transcriptome of

YAP-activated cells resembled that of undifferentiated cells.
Mammary epithelial cells can generally be classified into three
increasingly differentiated types: MaSCs, luminal progenitor cells
and mature luminal cells27. The YAP target gene set revealed by
our microarray analysis was searched for overlap between gene
sets enriched or depleted specifically in each cell type established
by Visvader and colleagues28. Strikingly, the set of identified
YAP targets significantly overlapped (6%, 31/489 genes,
P¼ 3.1� 10� 20, Fisher’s exact test), with the set of genes
enriched in MaSCs and depleted in mature luminal cells (Fig. 1c).
In contrast to the exclusive function of TAZ in luminal-basal cell
plasticity29, both YAP and TAZ activated transcription of MaSC
signature genes, suggesting that these factors are functionally
redundant in promoting MaSC-like properties (Supplementary
Fig. 2a). Consistent with this, YAP overexpression increased the
number of mammospheres (Fig. 1d). Non-hyperactive, wild-type
YAP was used in these experiments because hyperactive YAP
might promote anchorage-independent growth and confound
analysis of mammosphere assays.

We reasoned that IL6 could be responsible for YAP-induced
MaSC-like properties, partly because IL6 is enriched in MaSCs
and is essential for the maintenance of breast CSCs, but also
because the Drosophila homologue of YAP–IL6 (yorkie-unpaired)
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is important for intestinal stem cell activation20,28,30. We
confirmed that YAP induced IL6 at the mRNA level (Fig. 1e
and Supplementary Fig. 2b) and increased IL6 secretion (Fig. 1f).
Depletion of IL6 decreased the proportion of CD44Hi/CD24Lo

cells and decreased both the number and size of mammospheres

(Fig. 1g,h), while increasing CTGF at the post-transcriptional
level (Fig. 1e and Supplementary Fig. 3a). Notably, IL6 depletion
did not reverse EMT or alter cell proliferation or apoptosis
(Supplementary Fig. 3a–c), thus IL6, while not influencing other
transforming properties, is specifically involved in promoting
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Figure 1 | IL6 is required for YAP induction of MaSC-like properties. (a) Western blot and quantitative reverse transcriptase–PCR (qRT–PCR) analyses of

MCF-10A ERT2 and MCF-10A ERT2-YAP 2SA cells treated with 4-OHT for the indicated times. (b) Heatmap representation of a microarray analysis of

MCF-10A ERT2 and MCF-10A ERT2-YAP 2SA cells treated with 4-OHT. The top 41 genes whose expression in MCF-10A ERT2-YAP 2SA cells was

significantly changed by the 4-OHT treatment are shown. Refer to Supplementary Data 1 for list of YAP-induced genes. (c) Overlap of Venn diagrams of the

set of genes enriched by induction of YAP (YAPm) and gene sets enriched (m) or depleted (k) in MaSCs, luminal progenitor cells (Prog.) or differentiated

luminal cells (Diff.). P values were calculated using Fisher’s exact test. (d) Number of mammospheres formed by MCF-10A cells expressing indicated gene,

and a representative picture of a mammosphere (n¼ 3 experiments, scale bar, 200mm). (e–h) MCF-10A cells were infected with the indicated retroviruses.

shRNA against green fluorescent protein was used as a control, non-targeting shRNA. (e) Western blot and qRT–PCR analyses (n¼ 2 replicates). (f) ELISA

for secreted IL6 (n¼ 3 replicates). (g) Representative FACS plot and statistical analysis of CD44 and CD24 antigen expression (n¼ 3 experiments). (h)

Statistical analyses of the number and sizes of mammospheres formed by YAP-overexpressing cells treated with shRNA against IL6, neutralizing antibody

against IL6 (Ab-IL6) or 200 nM tofacitinib (JAK inhibitor). Bottom panel shows representative pictures of mammospheres formed from MCF-10A cells

infected with the indicated retroviruses (n¼ 3 experiments for number of mammosphere, n450 mammospheres for sizing). Scale bar, 200mm. Data are

presented as means±s.e.m. (*Po0.05, **Po0.01, ***Po0.001, Student’s t-test used in all analyses unless otherwise indicated).
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MaSC-like property. Depleting the YAP target CTGF failed
to attenuate MaSC-like properties (Supplementary Fig. 4).
Surprisingly, an IL6-neutralizing antibody and an inhibitor of
IL6 downstream JAK signalling increased mammosphere
frequency (Fig. 1h). Since IL6 intracellular signalling has been
demonstrated in the senescence-associated secretory phenotype31,
we hypothesized that intracellular IL6 may similarly be
responsible for YAP-induced MaSC-like properties. Indeed,
although MCF-10A cells expressing nonsecretable mutant IL6
lacking a signal peptide (IL6 DS) failed to activate JAK signalling,
it generated mammospheres at a frequency comparable to that
of MCF-10A cells expressing wild-type IL6 (Supplementary
Fig. 3d–f), suggesting the predominant role of intracellular IL6
in promoting MaSC-like property. Accordingly, treatment of
recombinant human IL6 failed to increase mammosphere in
untransformed MCF-10A cells (Supplementary Fig. 3g). This is
in sharp contrast with IL6-JAK signalling being the major
determinant of cancer stemness in transformed cells30 (Fig. 6g).
We are uncertain why inhibition of extracellular IL6 promotes
mammosphere formation; the balance between intra- and
extracellular IL6 signalling may determine MaSC-like property,
where extracellular IL6 signalling may possibly inhibit MaSC-like
property.

TEAD is dispensable for YAP-induced MaSC-like properties.
Next, we asked which transcription factors are responsible for
YAP-induced MaSC properties. Since the vast majority of
YAP’s physical associations with transcription factors depend on
TEAD-binding and WW domains32, we utilized mutant YAPs
that individually lacked each of these protein-interaction domains
and examined induction of MaSC properties and expression of
IL6 and CTGF as representative MaSC signature genes. Strikingly,
whereas YAP DWW was fully competent in promoting IL6 and

CTGF expression and generating CD44Hi cells, YAP S94A, the
TEAD-binding-deficient YAP, was completely unable to do so
(Fig. 2a,b). On overexpression of mutant YAPs lacking each of the
known protein-interaction motifs in MCF-10A cells, only cells
expressing YAP S94A failed to form mammospheres (Fig. 2c).
Since TEAD binding may enhance YAP nuclear retention33,
we were concerned that S94A mutants might not enter the
nucleus at all. However, even when YAP S94A was forced into the
nucleus by fusion of nuclear localization signal (Supplementary
Fig. 5), it failed to generate mammospheres (Fig. 2c).

We next assessed the role of TEAD transcription factors using
short hairpin RNA (shRNA)-mediated depletion of TEAD1,
-3 and -4, the major forms of TEAD in MCF-10A cells
(Supplementary Fig. 6a). Surprisingly, whereas TEAD knock-
down effectively downregulated the YAP transcriptional targets
CTGF, CYR61 and ANKRD1, it robustly upregulated IL6
expression (Fig. 2d and Supplementary Fig. 6b) and promoted
mammosphere formation (Fig. 2e and Supplementary Fig. 6c). To
further investigate these results, we performed rescue experiments
in which we re-introduced wild-type TEAD2 or one of two
inactive TEAD2 mutants—R95K (RK) and a C-terminal
deletion mutant (DC)—which fail to bind DNA and YAP,
respectively34,35, as naturally occurring shRNA-resistant TEADs.
Strikingly, all forms of TEAD2 efficiently downregulated IL6,
indicating that TEAD suppresses IL6 by a mechanism
independent of functional TEAD–YAP activity. However,
whereas wild-type TEAD2 efficiently rescued the mammosphere
frequency of TEAD1/3/4-knockdown cells, the TEAD2 RK and
DC mutants only partially decreased sphere-forming frequency
(Supplementary Fig. 6b,c). We speculated that TEAD may
interfere with YAP-induced MaSC-like properties through two
distinct mechanisms: one involving regulation of IL6 levels by a
mechanism independent of TEAD–YAP-mediated transcription
and another involving a functional TEAD–YAP transcriptional
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Figure 2 | TEAD transcription factor is dispensable for YAP induced MaSC formation. (a–c) The TEAD-binding domain of YAP is required for induction

of MaSC-like properties. (a) Western blot and qRT–PCR analyses of cells infected with the indicated YAP mutants (n¼ 2 replicates). (b) Representative

FACS plot and statistical analysis of CD44 and CD24 antigen expression. (c) Summary of results from mammosphere assays using MCF-10A cells infected

with the indicated YAP mutants. (d,e) MCF-10A cells expressing YAP were infected with lentivirus expressing TEAD1/3/4 shRNA. (d) Western blot and

qRT–PCR analyses (n¼ 2 replicates). (e) Statistical analyses of the number of mammospheres formed by MCF-10A cells expressing the indicated viruses
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complex possibly inducing transcription of target genes distinct
from SRF–YAP targets (that is, IL6) to suppress MaSC-like
property. To confirm this, we overexpressed IL6 that far exceeds
IL6 induced by YAP overexpression to prevent TEAD depletion
from significantly influencing IL6 levels (Supplementary Fig. 6d).
In this setting, TEAD depletion still increases in mammosphere
frequency that could only be rescued by expression of wild-type
TEAD, suggesting an IL6-independent, TEAD transcription
factor activity-dependent mode in the suppression of MaSC-like
properties (Supplementary Fig. 6e). These data suggest that an
alternative transcription factor that requires the N-terminal
TEAD-binding domain of YAP, but is distinct from TEAD,
may be responsible for YAP-induced promotion of MaSC
properties.

The SRF–YAP complex is required for MaSC-like properties.
As an unbiased approach for identifying candidate alternative
transcription factor(s) responsible for YAP-induced MaSC
properties, we applied a Gene Set Enrichment Analysis (GSEA) to
our microarray data for MaSC signature genes36. A number of
gene sets, including E12/E47 (TCF3), TCF4/LEF1-b-catenin and
SRF targets, were significantly enriched in MCF-10A ERT2-YAP
2SA cells (false discovery rate q-valueo0.25; Fig. 3a and
Supplementary Fig. 7a and Supplementary Data 2). Notably,
TEAD target enrichment failed to reach statistical significance
(false discovery rate¼ 0.28). We first examined whether
inactivation of these transcription factors influenced the
expression of MaSC genes by quantifying IL6 and CTGF
mRNA as representative MaSC genes. Strikingly, SRF was the
only factor whose depletion significantly decreased expression of
both genes (Fig. 3b and Supplementary Fig. 7b). Depletion of SRF
downregulated many YAP-induced MaSC signature genes,
including IL6, CTGF, THBS1 (thrombospondin 1), ETS1 and
DLL1 (delta-like 1; Fig. 3c). Expression of NEDD9, a target
of SRF–MRTF previously reported to promote breast cancer-
initiating cells18, was not affected by YAP overexpression
(Fig. 3c). Interestingly, SRF knockdown did not affect
expression of other YAP target genes that are not MaSC
signature genes, such as CYR61 and ANKRD1. This was in
sharp contrast with TEAD knockdown, which markedly
decreased many YAP target genes regardless of their MaSC
signature-gene status (Fig. 3d). Intriguingly, IL6 and DLL1 were
not downregulated by TEAD knockdown. This suggests that SRF
specifically regulates expression of MaSC signature genes, and
further that YAP target genes that are exclusively regulated by
SRF and not by TEAD may represent a gene subset critical
for YAP-induced MaSC-like properties. Importantly, SRF
knockdown attenuated the YAP-induced increase in the
CD44Hi/CD24Lo cell population and mammosphere formation
(Fig. 3e,f). SRF overexpression in MCF-10A cells caused cell
death, perhaps by a defence mechanism to control oncogenic
dose. However, in case of fully transformed, metastatic 4T1 cells,
we found that YAP was also required for SRF-induced MaSC-like
properties (Supplementary Fig. 7c); moreover, SRF and YAP
synergistically induced MaSC-like properties in 4T1 cells
(Supplementary Fig. 7d). Finally, SRF depletion eliminated
mammosphere formation in both MCF-10A and 4T1 cells
(Supplementary Fig. 7e). These data suggest that SRF is the
critical transcription factor responsible for YAP induction of
MaSC signature-gene expression and MaSC-like properties.

We reasoned that SRF, but not TEAD, forms a transcriptional
complex with YAP at MaSC signature-gene promoters.
Consistent with this interpretation, we found that coexpression
of SRF, but not TEAD, with YAP synergistically upregulated
IL6 and CTGF (Fig. 4a). Although synergistic CTGF induction

by SRF and YAP was reversed by TEAD depletion, SRF–YAP
could independently increase CTGF because it is already a
well-established target gene of SRF (Supplementary Fig. 7f).
Co-immunoprecipitation assays revealed that SRF associates
with YAP at exogenous and endogenous levels independent of
contaminating DNA (Fig. 4b–d and Supplementary Fig. 7g).
Domain mapping of YAP–SRF interactions revealed that
interactions with SRF are attenuated in the YAP S94A mutant
(Fig. 4e,f). This may explain why the YAP S94A mutant failed to
induce MaSC-like properties, whereas TEAD transcription factors
were dispensable for this. Next, we examined the recruitment of
YAP to SRF-binding DNA motif, the CArG boxes, in promoters
of MaSC signature genes, including IL6, CTGF, PCDH7, THBS1,
PPP2R2B, ETS1 and DLL1 (Supplementary Fig. 8a), using
chromatin immunoprecipitation (ChIP) assays. Intriguingly,
YAP was significantly enriched at CArG boxes within MaSC
gene promoters where SRF was also enriched (Fig. 5a). We
further confirmed that SRF and YAP synergized in activating the
CArG box-containing IL6 promoter using luciferase assays
(Fig. 5b) and detected a DNA–SRF–YAP complex that was
attenuated by YAP S94A mutation using electromobility shift
assay (EMSA; Fig. 5c). Consistently, SRF depletion also mitigated
YAP enrichment at promoters of the above-mentioned MaSC
signature genes (Fig. 5d). YAP was also enriched at CArG boxes
in YAP target genes whose expression was unaffected by SRF
depletion, such as CYR61 and ANKRD1, and this enrichment was
diminished by SRF depletion (Supplementary Fig. 8c,f). We
believe that, although these two genes can indeed be regulated by
SRF–YAP, the regulation by TEAD–YAP may be predominant.
Finally, in line with results of our YAP–SRF interaction domain
mapping, the YAP S94A mutant failed to localize not only to
TEAD-binding boxes in CTGF and CYR61 promoters, but also to
CArG boxes in IL6 and DLL1 promoters (Fig. 5e). It should be
noted that SRF and YAP interacted in vitro without detectable
TEAD4 protein (Fig. 4f), and exogenous TEAD4 failed to further
shift the DNA–SRF–YAP complex in EMSA assay (Fig. 5c,
compare lanes 7 and 12). These lines of evidence indicate that
the SRF–YAP complex may exist independent of TEAD.
Consistently, TEAD depletion had little effect on IL6 promoter
activity and YAP enrichment at MaSC signature-gene promoters
(Supplementary Fig. 8d,e). Collectively, these data suggest that
SRF is the critical transcription factor responsible for YAP
induction of MaSC signature-gene expression and MaSC
formation.

MRTF (myocardin-related transcription factor) family proteins
are well known as SRF co-activators. Thus, we examined the
possibility that MRTF was activated by cytoskeletal changes
induced by YAP. Notably, YAP overexpression did not change
MRTF protein localization, previously known SRF–MRTF target
genes, or F-actin/G-actin ratio, which regulates MRTF activity
(Supplementary Fig. 9a–c). YAP enrichment was not detected at
known SRF–MRTF-binding sites (Supplementary Fig. 8b),
and TEAD depletion did not change SRF–MRTF-responsive
reporter- or IL6 promoter–reporter activities (Supplementary
Figs 8d and 9d). Finally, MRTF depletion had little effect on
YAP-induced MaSC signature-gene expression or mammosphere
frequency (Supplementary Fig. 9e–g). This suggests that
SRF–YAP-induced MaSC signature-gene expression is indepen-
dent of SRF–MRTF activity.

SRF–YAP/TAZ–IL6 promotes Ras-induced CSC formation.
Our demonstration that SRF–YAP–IL6 signalling is important for
induction of MaSC-like properties suggests that this pathway is
required for CSC formation. To test this, we used H-RasG12V-
transformed MCF-10A cells, which have high IL6 levels for CSC
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maintenance (Supplementary Fig. 10a–c). Notably, CTGF
was dispensable for H-RasG12V-induced CSC formation
(Supplementary Fig. 10d,e). Strikingly, YAP/TAZ knockdown
reduced IL6 expression and decreased the CD44Hi/CD24Lo cell
population and tumoursphere-formation frequency in MCF-10A
H-RasG12V cells (Fig. 6a–c). We observed similar decreases in IL6
expression and subsequent tumoursphere frequency by YAP/TAZ

depletion in two other BLBC cell lines: MDA-MB-231 and
Hs578T (Supplementary Fig. 10f). SRF knockdown similarly
significantly decreased the IL6 expression level and tumour-
sphere-formation frequency in MCF-10A H-RasG12V cells
(Fig. 6d,e). Notably, TEAD knockdown had little effect on
tumoursphere-formation frequency in MCF-10A H-RasG12V

cells, indicating that TEADs are dispensable for CSC formation

IL6 CTGF
0

10

20
40
80

Vec.+shGFP
YAP+shGFP
YAP+shβCat

R
el

at
iv

e 
ex

pr
es

si
on

(v
ec

.=
1)

IL6 CTGF
0

10

20

30 Vec.+shGFP
YAP+shGFP
YAP+shSlug #1
YAP+shSlug #2

R
el

at
iv

e 
ex

pr
es

si
on

(v
ec

.=
1)

a
MCF-10A ERT2-YAP 2SA

MCF-10A ERT2

Gene set FDR q-val

GCANCTGNY_V$MYOD_Q6
V$SRF_Q5_01
V$SRF_Q6
V$SRF_Q4
V$CEBP_Q2_01
V$TCF4_Q5
CTTTAAR_UNKNOWN
CAGGTG_V$E12_Q6
RTAAACA_V$FREAC2_01
V$SRF_C

WGGAATGY_V$TEF1_Q6

GGATTA_V$PITX2_Q2
GTGGGTGK_UNKNOWN
AAAYWAACM_V$HFH4_01

0.087
0.089
0.092
0.093
0.094
0.094
0.096
0.098
0.098
0.099

0.281

0.352
0.481
0.598

Gene set FDR q-val

c

e

f

CD44

C
D

24

HA-YAP
shSRF

– + +
– –

*** ***

0

10

20

30

%
 C

D
44

H
i

0.0

0.5

1.0

1.5

%
 C

D
44

H
i C

D
24

Lo

+
#1 #2

HA-YAP
shSRF

– + +
– –

+
#1 #2

*** **

0
100
200
300
400

M
am

m
os

ph
er

e
pe

r 
10

4  c
el

ls

HA-YAP
shSRF

– + +
– –

+
#1 #2

* *

Vec. +shNTC YAP +shNTC

YAP +shSRF #1 YAP +shSRF #2

b

d

MaSC signature Non-MaSC signature MaSC signature
Non-MaSC
 signature

IL
6

DLL
1

THBS1

CTGF
ETS1

ANKRD1

CYR61

EDN1

IT
GB2

SGK1

NEDD9
0

2

4

6

8

YAP+shSRF #2

Vec.
YAP+shNTC
YAP+shSRF #1

R
el

at
iv

e 
ex

pr
es

si
on

(Y
A

P
=

1)

*

P=0.07
P=0.05

*

***
*

IL
6

DLL
1

THBS1

CTGF
ETS1

CYR61

ANKRD1
0

1

2

3
Vec.
YAP+shNTC
YAP+shTEAD1/3/4

R
el

at
iv

e 
ex

pr
es

si
on

(Y
A

P
=

1)

***

*

*

* **

**

IL6 CTGF
0

5

10

15

20

25
Vec.+shGFP
YAP+shGFP
YAP+shTCF3

R
el

at
iv

e 
ex

pr
es

si
on

(v
ec

.=
1)

IL6 CTGF
0
2
4
6
8

10

Vec.
YAP
LIP
YAP+LIP

R
el

at
iv

e 
ex

pr
es

si
on

(v
ec

.=
1) *

IL6 CTGF
0

5

10

15

Vec.+ shGFP
YAP+shGFP
YAP+shSRF #1
YAP+shSRF #2

R
el

at
iv

e 
ex

pr
es

si
on

(v
ec

.=
1)

**

*
*

0.48

0.01 0.89

28.06

0.300.37

8.75 7.64
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(Supplementary Fig. 10g). Furthermore, restoration of IL6
expression or treatment with recombinant IL6 in YAP/TAZ- or
SRF-depleted MCF-10A H-RasG12V was sufficient to restore the
frequency of tumoursphere formation, confirming that IL6 is the
critical factor for SRF–YAP/TAZ-induced CSC formation
(Fig. 6f,g). Using a limiting dilution xenograft assay, we also
found that IL6 overexpression partially rescued the decrease in
tumour-initiating activity of MCF-10A H-RasG12V cells induced
by YAP/TAZ or SRF knockdown (Fig. 6h).

Since IL6 cytokine is also expressed in immune cells, xenografts
from immune-deficient mice may not faithfully reflect the in vivo
significance of SRF–YAP–IL6 signalling in tumour initiation.
To address this, we used a 4T1 syngeneic tumour graft model
in immune-competent BALB/c mice. Immunohistochemical
analyses of serial tumour sections revealed that, whereas
IL6-expressing regions largely overlapped with those for
cytokeratin 6, a 4T1 cancer cell marker, they did not significantly
overlap with those for CD45, an immune cell marker (Fig. 7a).
Taken together with our evidence that IL6 intracellular signalling
may induce MaSC-like properties, these findings suggest that
tumour cell-derived IL6 is a major mediator of CSC properties.
We further examined the significance of the SRF–YAP–IL6
signalling axis in vivo using the 4T1 breast cancer cell line
syngeneic graft model. YAP increased IL6 in an SRF-dependent
manner in 4T1 cells, and depletion of either SRF or IL6 decreased

tumoursphere frequency (Fig. 7b,c). YAP was also recruited to
CArG boxes in MaSC gene promoters in an SRF-dependent
manner (Fig. 7d). Syngeneic graft assays again showed that YAP
overexpression increased tumour-initiating cell frequency, and
SRF or IL6 depletion decreased it (Fig. 7e,f). These results confirm
that IL6 is a critical factor in SRF- and YAP/TAZ-dependent
induction of CSC formation in vivo.

SRF–YAP/TAZ–IL6 is enriched in undifferentiated BLBC.
To extend our findings to human breast cancer, we examined
expression levels of SRF, YAP/TAZ and IL6 in human breast
cancer patients by analysing microarray data from various breast
cancer study cohorts. SRF, YAP, TAZ (WWTR1) and IL6 are
consistently upregulated in BLBC, normal-like breast cancer and
claudin-low subtypes (Fig. 8a,b). Although the claudin-low
subtype is known to exhibit the highest similarity to MaSC and
thus is expected to have the highest activity of YAP/TAZ, this
subtype did not have higher YAP/TAZ mRNA levels compared
with BLBC, which is known to be derived from luminal
progenitor cells37. The claudin-low subtype might have higher
post-transcriptional YAP/TAZ activity owing to nuclear
localization downstream of EMT9. We again confirmed the
importance of SRF and YAP/TAZ in breast cancer stemness using
tissue arrays. SRF expression and nuclear YAP/TAZ were clearly
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associated with triple-negative BLBC and ALDH1A1 (aldehyde
dehydrogenase 1A1)-positive breast CSCs38 (Fig. 8c,d).

Next, for each patient studied in microarrays, we determined
signature scores for four cell types—MaSCs, luminal progenitor
cells, mature luminal cells and stromal cells—as defined by
Visvader and colleagues37, and examined their correlation with
SRF and YAP/TAZ expression levels. Strikingly, both SRF and
YAP/TAZ expression levels were positively correlated with MaSC,
luminal progenitor cell and stromal cell signatures, and negatively
correlated with the mature luminal cell signature (Fig. 8e).
Finally, we found a significant positive correlation between
YAP/TAZ and SRF expression and the levels of IL6, implying that
IL6 is induced by SRF and YAP/TAZ in vivo (Fig. 8f). All of the
foregoing observations were similarly demonstrated in other
independent breast cancer cohorts (Supplementary Fig. 13a–d).
These data suggest that upregulation of SRF–YAP–IL6 signalling
is associated with poorly differentiated BLBC with MaSC-like
properties, further highlighting the importance of these genes in
breast cancer.

Notably, MRTF family genes exhibited a contrasting pattern of
expression. MRTFA was enriched in BLBC and was positively
correlated with MaSC/progenitor cell signature and IL6
expression, whereas MRTFB was enriched in luminal-type breast
cancer and was negatively correlated with MaSC/progenitor cell
signature and IL6 expression (Supplementary Fig. 11). Although

MRTFA, rather than MRTFB, may specifically be involved in
MaSC-like property, our finding that MRTFA depletion did not
attenuate MaSC-like property (Supplementary Fig. 9e–g) suggests
that MRTFA enrichment in BLBC may not reflect the causal
relationship with MaSC-like property. Future studies should
reveal the cause of distinct correlation of MRTF gene expressions.

YAP selectively induces cancer stemness in BLBC. Intrigued by
our finding that SRF, which is essential for YAP-induced MaSC-
like properties, is highly expressed in BLBC but not in luminal-
type breast cancer, we investigated the possibility that YAP might
activate IL6 expression and MaSC-like properties specifically in
BLBC. Indeed, an expression analysis of various breast cancer cell
lines revealed that SRF, YAP/TAZ and IL6 are all upregulated in
BLBC cell lines compared with other types of breast cancer
(Fig. 9a). Basal B-type cancer cell lines with a mesenchymal
phenotype showed the highest expression of the YAP targets, IL6
and CTGF. This reflects the hyperactivity and nuclear localization
of YAP (Supplementary Fig. 12) in these cell lines, possibly
because of EMT9. Consistent with our hypothesis, YAP
overexpression in basal cells or BLBCs, such as MCF-10A,
MCF-10A H-RasG12V and 4T1, increased IL6 expression, the
percentage of cells with a CD44HiCD24Lo surface antigen profile
and mammosphere frequency, whereas it failed to increase IL6
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and MaSC-like properties in luminal-type cancer cells, such
as MCF-7 and ZR-75-1 (Fig. 9b,c,e). Coexpression of SRF and
YAP/TAZ in many of the luminal-type cancer cell lines was,
nevertheless, insufficient to induce MaSC-like properties,
suggesting that SRF–YAP is necessary, but not sufficient,
for manifestation of MaSC-like properties (Supplementary
Fig. 10h,i). Consistent with our cell line study, IL6 expression
was significantly correlated with YAP/TAZ expression in BLBC,
but not in luminal-type breast cancer, indicating that IL6 could be
a BLBC-specific transcriptional target of YAP (Fig. 9d and
Supplementary Fig. 13e). This pattern is in sharp contrast with
that of CTGF, a well-known universal target of YAP, whose
expression was positively correlated with YAP/TAZ expression
regardless of breast cancer subtype.

CSCs are thought to be the cell of origin for cancer relapse after
chemotherapy. Therefore, we hypothesized that specific induction
of stemness in BLBC by YAP promotes cancer relapse. To this

end, we examined the correlation between YAP/TAZ expression
levels and patient outcome in different breast cancer subtypes.
Strikingly, we found that, whereas YAP/TAZ expression had little
correlation with patient prognosis in other subtypes of breast
cancer, it was significantly correlated with shorter relapse-free
survival time for BLBC patients (Fig. 9f and Supplementary
Fig. 13f). Collectively, these findings indicate that the high
expression of SRF in BLBC provides a signalling environment
in which YAP can more efficiently induce MaSC signature
genes and MaSC-like properties. Therefore, YAP could be a
BLBC-specific promoter of cancer relapse (Fig. 9g).

Discussion
YAP has the interesting property of promoting cancer and
expanding undifferentiated stem/progenitor cells. Our study
provides the first demonstration that YAP promotes the
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transcription of a subset of genes enriched in MaSCs specifically
in BLBC and further identifies a novel SRF–YAP–IL6 signalling
pathway in the promotion of MaSC-like features in basal cells and
BLBC.

Kupperwasser and colleagues reported that TAZ induces
luminal cells to adopt basal cell characteristics39. Our study has
shown that YAP or TAZ can induce MaSC signature-gene
expression and MaSC-like properties in MCF-10A and 4T1 cells,
which are already basal cells. Therefore, while TAZ may be
specifically involved in luminal-basal cell plasticity, YAP and TAZ
may redundantly be involved in promoting MaSC-like properties
in basal cells. Thus, our data and those of others suggest that YAP
and TAZ are broadly involved in mammary gland differentiation
from MaSCs to luminal cells. Consistently, a recent report by
Pan and colleagues demonstrated that hyperactivation of
YAP in mouse mammary glands causes defects in terminal
differentiation40.

Although we have shown that SRF and YAP are necessary for
induction of MaSC-like properties in mammary epithelial cells
and breast cancer cell lines, it should be noted that high
expression of these two proteins is not sufficient to fully induce
MaSC-like properties. For example, our data showed that SRF
and YAP co-overexpression is not sufficient to induce MaSC-like
properties in luminal-type cancer cell lines. We believe that, in
addition to simple coexpression of SRF and YAP, other activation
cues may be required for full-fledged MaSC-like properties. One
such example could be EMT-mediated activation of YAP. In fact,

we showed greater YAP nuclear localization in more MaSC-like
basal B-type breast cancers (Supplementary Fig. 12). This might
explain why the claudin-low breast cancer subtype, which is the
most MaSC-like, did not have highest YAP/TAZ mRNA levels.
The mesenchymal phenotype of claudin-low subtype cancer may
achieve its MaSC-like properties through post-transcriptionally
activated YAP. It will thus be important to elucidate the
mechanisms by which these cellular contexts cooperate with
SRF–YAP to induce MaSC-like properties.

A notable finding is that the well-characterized oncogenic
pathway downstream of YAP involving TEAD and CTGF are
dispensable for YAP induction of MaSC-like properties. We
suggest that both TEAD and SRF are required for YAP’s
transforming activity; however, the various cellular phenotypes
conferred by YAP can be mechanistically separable. For example,
TEAD is mainly involved in YAP-induced EMT and cell
proliferation, and SRF is mainly involved in the induction of
stemness properties in mammary epithelial cells. A genome-wide
study designed to classify YAP transcriptional targets according
to their dependence on certain transcription factors could shed
light on the role of various transcription factor partners in the
oncogenic function of YAP. We found that TEAD interferes with
YAP induction of MaSC-like properties rather than supporting it.
We believe that TEAD is unlikely to be directly involved in IL6
expression for three reasons. One is that TEAD deficient in
binding YAP was still able to suppress IL6 expression as
efficiently as wild-type TEAD. Second, we also demonstrated
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YAP and SRF interaction without presence of TEAD. Lastly, the
EMSA assay showed that presence of exogenous TEAD does not
alter DNA mobility shift caused by SRF and YAP. All these lines
of evidence point to the notion that TEAD is unlikely to have a
functional role as a part of the SRF–YAP complex. Future studies
should reveal the exact mechanism by which TEAD suppresses
stemness in mammary epithelial cells. Finally, verteporfin, a
chemical inhibitor of YAP-TEAD interaction41, has been shown
to be a candidate therapeutic agent for YAP-overexpressing
cancers. However, our results indicate that inactivating TEAD
tended to increase MaSC-like properties instead of decreasing
them and was largely ineffective in reducing stemness in

Ras-transformed cancer cells. Therefore, caution needs to be
warranted in the use of verteporfin for YAP-activated cancers in
certain contexts.

YAP is a critical downstream effector molecule for the
Hippo tumour-suppressor pathway10. Accordingly, loss of the
Hippo pathway mimics the phenotype of YAP overexpression,
manifesting as expansion of stem/progenitor cells in various
organs. We have previously demonstrated that YAP is involved in
oval cell-specific proliferation in the liver6. Our current finding
that YAP confers stemness to epithelial cells in the basal layer but
not to those in luminal layers suggests that YAP preferentially
confers stemness in specific tissue compartments. Our finding
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raises the intriguing possibility that deregulation of IL6 by
hyperactive YAP may be responsible for expansion of
stem/progenitor cells in Hippo pathway-knockout mice. Mice
with conditional knockout of the Hippo pathway might shed light
on the importance of SRF and IL6 in the expansion of
stem/progenitor cells in various organs such as mammary
gland, liver and intestine, where Hippo pathway-dependent
restriction of adult stem/progenitor cells is found. These future
studies will clarify the specific role of the Hippo-YAP pathway
and downstream signals involving IL6 and SRF in progenitor cells
in vivo. The concept of a SRF–IL6 as a critical signalling module
for YAP’s stemness-promoting activity can similarly be applied to
cancer. In fact, IL6-knockout mice show resistance to various
tumorigenic insults to the liver, skin and intestine42–44. Moreover,
SRF may be involved in cancer metastasis17. In light of a recent
report that Unpaired is a critical non-cell-autonomous regulator
of cancer invasion45, future studies of SRF–IL6 in tumours
generated by deficiencies in the Hippo signalling pathway should
delineate the universally conserved mechanisms downstream of
Hippo signalling in tissue homeostasis.

SRF and YAP exhibit shared activation mechanisms, with both
proteins being activated by common mechanical and chemical
cues. We speculate that the SRF–YAP complex may be
responsible for responding to extracellular cues for changes in
cellular physiology such as stemness and invasiveness. Notably,
signals that activate SRF–YAP are engaged virtually immediately
on tissue injury, such as in dextran sulfate-mediated colitis46.
Therefore, these upstream signals might activate SRF and YAP
during tissue injury under normal, homeostatic conditions,
thereby inducing regenerative responses. Deregulation of SRF
and YAP could cause constitutively injured, hyper-regenerative
responses with excessive cell proliferation, invasion and
expansion of stem/progenitor cells. Additional studies will be
necessary to establish whether upstream signals that regulate SRF
and YAP act in parallel or exhibit crosstalk.

Methods
Cell culture. 293T and MDA-MB-231, MCF-7 cells were cultured in DMEM
supplemented with 10% fetal bovine serum (FBS). Other breast cancer cell lines
(HCC1954, MDA-MB361, SKBR3, MDA-MB453, T47D, ZR-75-1, BT-20, HCC38
and Hs578T) were cultured in RPMI-1640 medium supplemented with 10% FBS.
293T, MCF-7 and MDA-MB-231 cells are obtained from American Type Culture
Collection, and other breast cancer cell lines were obtained from Korea Research
Institute of Bioscience and Biotechnology. MCF-10A cells were cultured as
described in ref. 47. Cell lines were validated by DNA fingerprinting at TPOX,
TH01, vWA and D5S818 loci. Cells were routinely tested for presence of
mycoplasma with 4,6-diamidino-2-phenylindole staining.

Flow cytometry. Cells were seeded in six-well plates at 105 cells per well. On the
next day, cells were trypsinized and stained with anti-CD44-PerCP-Cy5.5
(eBioScience, 1:100) and anti-CD24-biotin (eBioScience, 1:100) antibodies, and
then subsequently stained with fluorescein isothiocyanate-conjugated streptavidin
(BD Biosciences, 1:200). Stained cells were analysed using a FACSCalibur flow
cytometry system (BD Biosciences), and fluorescence-activated cell sorting (FACS)
plots were analysed with the FlowJo software (Tree Star Inc.).

Mammosphere assay. Cells were trypsinized, and 104 cells per well in 2.5 ml of
DMEM/F12 supplemented with B-27 (Gibco), 20 ng ml� 1 human epidermal
growth factor (Peprotech), 20 ng ml� 1 basic fibroblast growth factor (KOMA
Biotech) and 4 mg ml� 1 heparin (Sigma) were seeded in six-well plates pre-coated
with poly-HEMA (Sigma). Mammospheres were counted 5–10 days later.

Microarray analysis. RNA was collected and analysed using a Human HT-12v4
expression chip (Illumina). All expression values (in log2) were normalized and
statistically analysed to identify genes whose average expression at 2 and 6 h after
the 4-OHT treatment was significantly upregulated (Po0.001) in MCF-10A
ERT2-YAP 2SA cells without being significantly changed (P40.01) in control
MCF-10A ERT2 cells. Heatmaps for gene sets of interest were generated using
Multi-experiment Viewer. The raw data from microarray analyses are available
in Gene Expression Omnibus (GEO, GSE60579).

ChIP assay. DNA in cells from two confluent 100-mm culture dishes (B2� 107

cells total) was pretreated with 1.5 mM ethylene glycol bis(succinimidylsuccinate)
(Sigma) for 30 min at room temperature to capture proteins indirectly bound to
DNA, and then crosslinked by incubating with 1% formaldehyde for 15 min. After
DNA crosslinking, cells were sonicated by Bioruptor (BMS Co.) in SDS lysis buffer
(50 mM Tris-Cl pH 8.0, 1% SDS and 10 mM EDTA) and diluted 10-fold with
dilution buffer (16.7 mM Tris-Cl pH 8.0, 167 mM NaCl, 1.1% Triton X-100 and
1.2 mM EDTA) and processed for ChIP assays using 2 mg of anti-YAP antibody
(H-125, Santa Cruz Biotechnology), anti-TEAD4 antibody (Abcam) or anti-SRF
antibody (Cell Signaling) and Protein A/G agarose (GenDEPOT). YAP 5SA is used
for maximal efficiency in YAP binding to the chromatin. See Supplementary
Table 1 for primers used.

GEO microarray analysis. Microarray data for independent sets of breast cancer
cohorts were downloaded from NCBI GEO. Microarray data were normalized and
analysed using geWorkbench. The microarray cohorts used for this study are
GSE1456 (ref. 48), GSE3494 (ref. 49), GSE21653 (ref. 50) and GSE31448 (ref. 51).

Tissue array analysis. Tissue arrays and corresponding information, including
tumour subtypes and grade, were obtained from patients with informed consent in
Yonsei Severance Hospital. Immunohistochemistry was performed using the
following antibodies: anti-YAP (Cell Signaling, 1:200), anti-TAZ (V386; Cell
Signaling, 1:200), anti-SRF (Cell Signaling, 1:200) and anti-ALDH1A (ab52492;
Abcam, 1:200). The degree of antigen staining was evaluated on a scale of 1–4, with
1 and 2 designated as low, and 3 and 4 designated as high. This study was approved
by the Institutional Review Board of Yonsei University Severance Hospital.

In vivo mouse experiments. Mouse experiments were performed in accordance
with procedures approved by the Korea Advanced Institute of Science and
Technology-Animal Care and Use Committee.

Xenograft assay. A 1:1 mixture of Matrigel and PBS containing 106 or 4� 106

cells in a total volume of 100ml was injected subcutaneously into 6–8-week-old
female nude mice. The presence of palpable tumours was examined 4 weeks after
xenograft. The number of tumour-initiating cells was quantified using the ELDA
(Extreme Limiting Dilution Analysis) software52.

Syngeneic graft assay. For 4T1 tumour immunohistochemistry, 105 cells in
100 ml of a 1:1 mixture of Matrigel and PBS were injected into the fourth inguinal
mammary fat pad of 5–6-week-old female BALB/c mice. Tumours were grown for
15 days and excised for immunohistochemical analysis. For limiting dilution
assays, 10 or 50 4T1 cells were injected as described for immunohistochemical
analyses and analysed similarly to xenograft assays 15 days after injection. The
number of tumour-initiating cells was quantified using the ELDA software.

Co-immunoprecipitation. Cells were washed twice with PBS and then treated with
the crosslinking agent dithiobis(succinimidyl propionate) (1 mM; Pierce) for 2 h at
4�C. Cells were then lysed in binding buffer (20 mM Tris-Cl pH 8.0, 100 mM NaCl,
1mM MgCl2, 0.5% NP-40). Cleared lysate was incubated with protein S agarose
(Novagen) for 1 h to immunoprecipitate S-tagged proteins, and with anti-Flag or
anti-SRF antibody (Cell Signaling) overnight and protein A/G agarose (Genedepot
Inc.) for 1 h to immunoprecipitate Flag-tagged proteins and endogenous SRF,
respectively. One hundred units of benzonase (Enzynomics) were added to remove
contaminating DNA in cell extracts. Lysates were washed five times with binding
buffer, boiled in Laemmli sample buffer and subjected to SDS–PAGE. Uncropped,
original images of the western blot analyses are shown in Supplementary Fig. 14.

In vitro pulldown assay. Glutathione S-transferase (GST)-tagged YAP (51–394)
protein was purified from Escherichia coli. One milligram of 293T extract
expressing S-tag-Flag-SRF was first incubated with protein S agarose (Novagen) for
1 h and washed five times with binding buffer supplemented with 500 mM LiCl to
maximally eliminate binding proteins. Then, the bead with S-tag-Flag-SRF was
resuspended with binding buffer and incubated with 50 mg of GST protein and 100
units of benzonase overnight at 4 �C. Then, the bead was washed with binding
buffer five times, boiled in Laemmli sample buffer and subjected to SDS–PAGE.
Uncropped, original image of the western blot analyses are in Supplementary
Fig. 14.

EMSA. PCR products generated using ChIP assay primers targeting the IL6
promoter CArG locus were labelled with T4 polynucleotide kinase. Labelled probe
(10 fmol) was incubated for 2 h at 4 �C with 2 mg of MDA-MB-231 nuclear extract
and 1 mg of GST-tagged YAP (51–394) protein (used for in vitro pulldown assays)
in EMSA buffer (15 mM HEPES-KOH pH 7.9, 42 mM NaCl, 2 mM MgCl2,
0.1 mg ml� 1 bovine serum albumin (BSA), 0.5 mM dithiothreitol, 5% glycerol,
1 mM EDTA and 50 mg ml� 1 poly[I:C]). Unlabelled competitor oligonucleotide
designed to encompass 20 base pairs that include the IL6 promoter CArG box
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(50-AGCTTCCTTACAAGGAAAAC-30) or its mutant derivative (50-AGCTTAA
TTACAAGGAAAAC-30) was added at 1,000-fold molar excess (10 pmol) to the
labelled probe. Supershift was performed by adding 1 mg of control, nonspecific IgG
or haemagglutinin (HA) antibody. The DNA–protein complex was then resolved
on a 5% polyacrylamide gel in TBE and, after drying, was analysed using
autoradiography. Uncropped, original image of the autoradiography is in
Supplementary Fig. 14.

F/G-actin fractionation. F/G-actin fractionation was performed as described in
ref. 53. Briefly, cells were lysed with G-actin extraction buffer (1% Triton X-100,
10 mM Tris-Cl pH 7.5, 1 mM EGTA, 50 mM NaCl and 15% glycerol) at room
temperature; 5% of the lysate was kept as total actin. After ultracentrifugation at
150,000g for 1 h at room temperature, 5% of the supernatant was kept as the
G-actin fraction. The pellet was then lysed with F-actin extraction buffer (4 M urea,
1% SDS, 0.5% Triton X-100, 5 mM Tris-Cl pH 7.5, 0.5 mM EGTA, 25 mM NaCl,
15% glycerol and 50 mM dithiothreitol) with rigorous vortexing; 20% of the
supernatant was kept as the F-actin fraction. All fractions were then boiled in
Laemmli sample buffer and subjected to SDS–PAGE. Uncropped, original image of
the western blot analyses are in Supplementary Fig. 14.

Immunofluorescence. Cells seeded on gelatin-coated coverslips were fixed with
4% paraformaldehyde, permeabilized with 0.1% Triton X-100 in PBS and blocked
with 1% BSA in PBS. Cells were then incubated with primary antibody overnight at
4 �C. After washing with PBS, cells were incubated with secondary antibody for 1 h
at 37 �C, and then washed with PBS and mounted with Vectashield (Vector
Laboratories).

Antibodies. The following antibodies were used (dilutions are for western blot
applications unless otherwise indicated): anti-Flag (Wako; 1:1,000), anti-HA
(Covance; 1:10,000), anti-YAP (raised against the C-terminal human YAP antigen;
1:2,000), TAZ (Cell Signaling (V386); 1:1,000 for western blotting, 1:200 for
immunohistochemistry), anti-b-actin (Sigma; 1:10,000), anti-SRF (Cell Signaling
(D71A9); 1:1,000 for western blotting, 1:200 for immunohistochemistry),
anti-CTGF (Santa Cruz; 1:250), anti-E-cadherin (BD Biosciences; 1:2,000), anti-
N-cadherin (BD Biosciences; 1:500), anti-ALDH1A1 (Abcam (EP1933Y); 1:100 for
immunohistochemistry), anti-IL6 (Abcam; 1:500 for immunohistochemistry) and
anti-MRTFB (Bethyl Laboratories; 1:100 for immunofluorescence).

shRNA. shRNA target sequences used for this study are as follows: shYAP,
50-CAGGTGATACTATCAACCAAA-30 ; shTAZ, 50-AGGTACTTCCTCAATC
ACA-30 ; shSRF #1, 50-CGATGTTTGCCATGAGTATTA-30 ; shSRF #2, 50-GTG
AGACAGGCCATGTGTATA-30 ; shIL6 #1, 50-GAACTTATGTTGTTCTCTA-30 ;
shIL6 #2, 50-AGAACGAATTGACAAACAA-30 ; shCTGF #1, 50-AAATCTCCAA
GCCTATCAAGT-30 ; shCTGF #2, 50-CTGCACCAGCATGAAGACATA-30 ;
shTCF3, 50-CCCAGCAGCCTCTCTTCATCC-30 ; shSlug #1, 50-CCCATTCTGAT
GTAAAGAAAT-30 ; shSlug #2, 50-GAGTGACGCAATCAATGTTTA-30 ;
shMRTFA, 50-GACTATCTCAAACGGAAGATT-30 ; shMRTFB, 50-GCAGACACT
TTCACCGAGATT-30 shSrf (mouse), 50-GCCAGCATTCACAGTCACCAA-30 ;
shIl6 (mouse), 50-CAATGGCAATTCTGATTGTA-30.

RT–PCR. Cells were lysed in Ribo-Ex (GeneAll Inc.) solution, and RNA was
purified according to the manufacturer’s instructions. cDNA was synthesized from
total RNA using MMLV reverse transcriptase (Enzynomics) by incubating for
2 h at 37 �C. All gene expression levels were normalized to those of hypoxanthine
phosphoribosyltransferase 1 in the case of human cells, and to that of
glyceraldehyde-3-phosphate dehydrogenase in the case of mouse cells. See
Supplementary Table 1 for primers used.

Statistics and data processing. All statistical analyses, including two-tailed t-tests
and log-rank tests for survival analyses, were performed using Graphpad Prism
software. Analyses were performed with two-tailed t-tests, unless otherwise
indicated. Sample exclusion was never carried out and appropriate sample size was
defined to reveal significant difference we observed. No randomization or blinding
was performed.
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