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A B S T R A C T

Objective: Brain dynamics underlie flexible cognition and behavior, yet little is known regarding this relationship
in autism spectrum disorder (ASD). We examined time-varying changes in functional co-activation patterns
(CAPs) across rest and task-evoked brain states to characterize differences between children with ASD and
typically developing (TD) children and identify relationships with severity of social behaviors and restricted and
repetitive behaviors.
Method: 17 children with ASD and 27 TD children ages 7–12 completed a resting-state fMRI scan and four runs
of a non-cued attention switching task. Metrics indexing brain dynamics were generated from dynamic CAPs
computed across three major large-scale brain networks: midcingulo-insular (M-CIN), medial frontoparietal (M-
FPN), and lateral frontoparietal (L-FPN).
Results: Five time-varying CAPs representing dynamic co-activations among network nodes were identified
across rest and task fMRI datasets. Significant Diagnosis × Condition interactions were observed for the dwell
time of CAP 3, representing co-activation between nodes of the M-CIN and L-FPN, and the frequency of CAP 1,
representing co-activation between nodes of the L-FPN. A significant brain-behavior association between dwell
time of CAP 5, representing co-activation between nodes of the M-FPN, and social abilities was also observed
across both groups of children.
Conclusion: Analysis of brain co-activation patterns reveals altered dynamics among three core networks in
children with ASD, particularly evident during later stages of an attention task. Dimensional analyses demon-
strating relationships between M-FPN dwell time and social abilities suggest that metrics of brain dynamics may
index individual differences in social cognition and behavior.

1. Introduction

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental
condition characterized by deficits in social communication and re-
stricted and repetitive behaviors (American Psychiatric Association,
2013) (RRBs), and associated with atypical brain connectivity (Chen
et al., 2017, 2018; Di Martino et al., 2011; Fishman et al., 2018; Keown
et al., 2013; Müller and Fishman, 2018; Supekar et al., 2013; Mash
et al., 2019). Despite decades of neuroimaging research exploring brain
connectivity in ASD, a clear picture linking specific patterns of atypical

connectivity to cognitive and behavioral profiles in ASD has yet to
emerge (Kana et al., 2014; Falahpour et al., 2016; Rane et al., 2015;
Vissers et al., 2012). To date, brain functional connectivity (FC) and co-
activation patterns among brain regions as measured with fMRI has
primarily been studied using “static” measures (Falahpour et al., 2016;
White and Calhoun, 2019). Static FC methods average the entire time
series across an fMRI scan, missing the opportunity to characterize
moment-to-moment changes in coupling between brain regions (Allen
et al., 2014; Calhoun et al., 2014). Recent FC research has used time-
varying dynamic approaches that examine how brain function may
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change over time (Chang and Glover, 2010) thereby better capturing
flexible aspects of brain systems (Allen et al., 2014).

Various methods exist to study dynamic, time-varying changes in
the brain, including dynamic functional connectivity (dFC) and time-
varying co-activation pattern analysis (CAP) (see Uddin & Karlsgodt
(Uddin and Karlsgodt, 2018) and Uddin (Uddin, 2020) for a review).
Dynamic FC most commonly capitalizes on the ‘sliding window’ ap-
proach (Chang and Glover, 2010). Despite its increasing use (Lurie
et al., 2020), a limitation of this approach is the examination of FC over
a fixed window length over which connectivity may fluctuate (Lurie
et al., 2020; Preti et al., 2017). Rather than relying on sliding windows,
CAP methods identify critical co-activating patterns that recur over
time (Liu and Duyn, 2013). CAP methods seek to identify co-activation
patterns by averaging time points with similar spatial distributions of
brain activity by using a k-means clustering algorithm applied either at
the whole-brain or region-of-interest (ROI) level (Liu et al., 2018).

Application of time-varying dynamic analyses to resting-state and
task-based fMRI has revealed brain states, or recurring patterns of ac-
tivity or connectivity (Allen et al., 2014; Liu et al., 2018), that can be
quantified using metrics such as dwell time, frequency of occurrence,
and number of transitions between states. Emerging evidence suggests
that flexible resting-state dynamics underlies behavioral adaptation,
enhancing the ability of the brain to dynamically reconfigure (Allen
et al., 2014; Bassett et al., 2011; Jia et al., 2014). Similarly, the degree
of brain network reconfiguration during a cognitive task has been de-
monstrated to relate to cognitive flexibility, or the ability to selectively
switch between mental processes and respond behaviourally (Braun
et al., 2015; Dajani and Uddin, 2015). Additional work comparing rest
and task-based fMRI data has led to discoveries of network common-
alities between the two, but also task-specific network changes (Bolt
et al., 2017; Cole et al., 2014).

Multiple studies indicate that dynamic brain states may be im-
portant for uncovering novel insights into various psychiatric disorders,
including ASD (Buckley et al., 2015; Uddin et al., 2015; Barttfeld et al.,
2012). State-specific changes across resting and task fMRI paradigms
may provide a more precise characterization of brain connectivity ab-
normalities in ASD, yet little research to date has concurrently ex-
amined both task and resting-state fMRI dynamics in ASD (Uddin et al.,
2015). For example, Barttfeld et al. (Barttfeld et al., 2012) found that
changes in the pattern of functional connectivity between individuals
with ASD and neurotypical individuals were state-dependent (inter-
oceptive and exteroceptive states). Additionally, the classification of
static FC using a support vector machine algorithm based on the dif-
ference between states outperformed classification using connectivity
of a single state (Barttfeld et al., 2012). The few resting-state fMRI
studies of brain dynamics have found atypicalities in individuals with
ASD using whole brain dFC. You et al. (You et al., 2013) found children
with ASD had transitions between unconstrained resting states to sus-
tained attention states characterized by widespread functional con-
nectivity among frontal and parietal regions in addition to atypical
modulation of distant connectivity during sustained attention relative
to rest. Hypervariant dynamic connections have been identified in
youth with ASD (Chen et al., 2017, 2018; Mash et al., 2019; Falahpour
et al., 2016), with associations to symptom severity in the domains of
both RRBs and social functioning (Chen et al., 2017, 2018; He et al.,
2018). Decreased state transitions and longer dwell times have also
been reported in children with ASD (de Lacy et al., 2017; Yao et al.,
2016; Rashid et al., 2018). Crucially, higher levels of ASD symptoms are
associated with longer dwell times and fewer transitions in globally
disconnected states (Rashid et al., 2018; Watanabe and Rees, 2017).
These results suggest that infrequent brain state switching and hyper-
variant dynamic connections might underlie the behavioral difficulties
seen in ASD (Falahpour et al., 2016; Harlalka et al., 2019).

Previous work has focused on whole-brain time-varying changes,
yet recent work has highlighted the importance of understanding
transient patterns within specific large-scale brain networks (Ciric

et al., 2017). Specific brain areas have been identified in subserving
flexible behavior, including the midcingulo-insular network (M-CIN or
salience network), which mediates switches between the lateral fron-
toparietal network (L-FPN or central executive network) and the medial
frontoparietal network (M-FPN, or default mode network) (Uddin et al.,
2015, 2019). In ASD, it has been demonstrated that weak modulation of
brain states among these networks is associated with the severity of
RRBs (Uddin et al., 2015). Using time-varying approaches, atypical
dynamic interactions among these regions have additionally been re-
lated to social deficits (He et al., 2018). Further work has demonstrated
that decreased switching between brain states among the M-FPN and L-
FPN occurs within ASD populations and may be related to behavioral
inflexibility (de Lacy et al., 2017). Despite emerging evidence that M-
FPN, M-CIN, and L-FPN regions are critically involved in ASD pa-
thology, no studies have directly compared task-related (evoked) and
resting-state (intrinsic) time-varying relationships in ASD among these
three core neurocognitive networks.

Here we examine co-activation patterns among six key nodes of the
M-CIN, M-FPN, and L-FPN in children with and without ASD during
both task and resting states for the first time. We hypothesized that
children with ASD and typically developing (TD)/neurotypical children
would exhibit differences in dynamic brain state metrics such as fre-
quency of occurrence and dwell time across rest and task conditions.
We further expected to find relationships between metrics of brain
dynamics and parent-report measures of RRBs and social behaviors.

2. Methods

2.1. Participants

Participant enrollment included 35 children with ASD and 36 TD
children recruited from the University of Miami and the University of
Miami Center for Autism and Related Disabilities (CARD, http://
www.umcard.org/). Exclusionary criteria included 1) less than 10 min
of resting-state fMRI data 2) less than 4 usable task-fMRI runs 3) in-
cidental findings. Subjects were additionally excluded if they had>1
mm mean framewise displacement (FD) or failed a visual Quality
Control inspection indicating that they had one or more visually iden-
tifiable artifacts including but not limited to: excessive motion, ringing,
blurring, ghosting, wrapping, signal loss, and head coverage. This re-
sulted in a final sample of 17 children with ASD (M= 9.95, SD= 1.51)
and 27 TD children (M = 9.79, SD = 1.88) that did not differ sig-
nificantly in gender, age, full scale IQ, and mean FD (p’s > 0.05)
(Table 1) (Power et al., 2014).

All participants underwent an initial phone screening followed by 1)
neuropsychological assessment at the University of Miami Autism
Spectrum Assessment Clinic (ASAC, http://www.umasac.org/) within
CARD, and a 2) mock MRI scanner training followed by functional and
structural brain imaging and completion of questionnaire forms. ASD
participants were also administered the Autism Diagnostic Observation
Schedule, Second Edition (ADOS-2) (Lord et al., 2012) by research-re-
liable examiners at the University of Miami ASAC. All participants were
MRI compatible, able to perform the task, had a full-scale IQ > 65 as
measured by the Wechsler Abbreviated Scale of Intelligence-Second
Edition (WASI-II) (Wechsler, 2011), and were right-handed. Inclusion
criteria for ASD participants included a previous diagnosis of ASD based
on the DSM-5 criteria (American Psychiatric Association, 2013) by a
community neurologist, psychologist, or other medical/mental health
professional and meeting the cut-off for autism or autism spectrum on
the ADOS-2, Module 3. See Table 1 for participant information. This
study was approved by the Institutional Review Board at the University
of Miami and conducted in compliance with the Declaration of Helsinki.
All participants provided written informed consent and received fi-
nancial compensation for their participation.
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2.2. Neuropsychological measures and assessments

The first session included a visit to the ASAC, where the WASI-II, a
standardized measure of intelligence that provides three measures of
IQ: Verbal, Performance, and Full (Wechsler, 2011), and ADOS-2, a
standardized measure of communication, social interaction, play, and
RRBs (Lord et al., 2012), were administered. These assessments were
administered by licensed clinical psychologists who had previously
achieved research-reliability on the ADOS-2.

Parents or caregivers completed the SRS-2 (Constantino and Gruber,
2012) and RBS-R (Lam and Aman, 2007), used to assess social abilities
and RRBs continuously and quantitatively. The SRS-2 is a 65-item
parent report measure that yields a total T-score indicating overall so-
cial ability. The RBS-R is a 44-item parent report measure that yields a
total T-score indicating overall repetitive behaviors. The SRS-2 and
RBS-R total raw scores were converted to age equivalent T-scores, with
higher scores indicating more severe impairment (Constantino and
Gruber, 2012; Lam and Aman, 2007).

2.3. fMRI data acquisition parameters

Children initially participated in a mock scan to adjust to the
scanning environment and to practice the fMRI task. MRI data were
acquired using a 3 T GE scanner with a 32-channel head coil. Functional
images were collected using a gradient echo sequence (TR/TE/flip
angle/FOV = 2 s/30 ms/75°/220 mm; orientation: 42 axial slices an-
gled along the AC-PC; slice thickness: 3.4 mm no inter-slice skip, in-
terleaved acquisition order and anterior-posterior encoding). At the
beginning of the scanning session, participants completed a 10-min
resting-state run consisting of 295 volumes. They were instructed to lie
still with their eyes closed while remaining awake. The resting-state run
was followed by four 122- vol task runs. The first 5 volumes of each run
were discarded to account for gradient stabilization.

2.4. Non-cued attention switching task

Participants completed four runs of a task examining the ability to
shift attention between stimulus dimensions (Casey et al., 2004; Britton
et al., 2010). While in the scanner, participants viewed a display with
three stimuli presented on a black background. One of the three objects
differed from the other two in either shape (S), (e.g., square or circle) or
color (C), (e.g., gray or white) (Fig. 1). Participants were instructed to
identify the differing object by pressing a button corresponding to the
unique object. They were not explicitly told how the objects differed (S
or C). (See Supplement 1 for further details).

On each trial, three objects were presented for 1000 ms with a
1500 ms interstimulus interval (ISI). One object had a unique attribute,
either shape (square or circle) or color (gray or white). Participants
indicated the location of the unique object via a button press. The sti-
muli were presented in a blocked design with 12 trials per shape/color
and 24 trials per mixed block. Each run lasted 4 min and 16 s (see Dirks
et al. (Dirks et al., 2020) for further details).

Table 1
Participant Demographics.

Diagnostic Group

N = 44 TD (n = 27) ASD (n = 17)

Mean (SD) Mean (SD) p value

Sex 18 M/9F 14 M/3F 0.343
Age 9.79 (1.88) 9.95 (1.56) 0.489
range [7.08–12.92] [8.17–12.67] –

Race a 0, 1, 1, 18, 4, 3 0, 1, 1, 13, 1, 1 0.843
Ethnicity, Hispanic/Latino 17 11 0.041
FSIQ b 107.88 (10.77) 106.9 (16.48) 0.836
range [90–133] [74–132] –

Motion c

Rest FD 0.146 (0.118) 0.148 (0.086) 0.958
Task 1 FD 0.145 (0.096) 0.110 (0.039) 0.160
Task 2 FD 0.151 (0.122) 0.143 (0.076) 0.813
Task 3 FD 0.195 (0.091) 0.227 (0.176) 0.420
Task 4 FD 0.197 (0.124) 0.221 (0.195) 0.618

SRS-2, T score 45.08 (4.57) 69.24 (12.34) < 0.001
RBS-R, T score 2.148 (2.957) 15.941 (11.882) < 0.001
ADOS-2
Social Affect – 8.56 (3.35) –
Restricted and Repetitive
Behaviors

– 2.00 (1.10) –

Comparison Score – 6.31 (1.54) –

Note: FSIQ: Full Scale Intelligence Quotient; SRS-2: Social Responsiveness Scale,
Second Edition; RBS-R: Repetitive Behaviors Scale-Revised; ADOS-2: Autism
Diagnostic Observation Schedule-Second Edition

1. Numbers for each of the following racial categories presented in the fol-
lowing order: African American, Asian, Biracial, Caucasian, Other, Not
Reported.

2. FSIQ: WASI-II full-scale IQ, 4 participants did not have WASI-II because
WISC-V was administered within a year and had IQ > 65.

3. Power framewise displacement for raw rs-fMRI data calculated in dpabi.

Fig. 1. Task Paradigm.
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3. Data analysis

3.1. Behavioral data

Total accuracy was computed across all trials in each block and
reported as the proportion of correct trials relative to the total number
of trials the subject completed. Reaction time (RT) was calculated for
each subject for correct trials only and computed as a total mean RT
across all correct trials in each block (see supplementary Table S1).
Accuracy and RT were analyzed using a 2 Diagnosis (ASD, TD) × 4
Condition (task run 1, task run 2, task run 3, task run 4) mixed-model
ANOVA.

3.2. fMRI data preprocessing and region-of-interest (ROI) selection

The resting-state run and four task runs were preprocessed sepa-
rately using the Data Processing and Analysis for Brain Imaging
(DPABI) version 3.1 toolbox (http://rfmri.org/dpabi) (Yan et al., 2016).
The following steps were completed in the same order for all task and
rest datasets: despiking (AFNI’s 3dDespike), slice timing correction
(Parker and Razlighi, 2019), realignment, brain extraction, segmenta-
tion, normalization to a standard SPM EPI template (3 × 3 × 3 mm),
and smoothing (FWHM = 6 mm). Despiking identifies voxelwise TR
outliers> 2.5 standard deviations of the time series and replaces them
with an adjusted value based on the mathematical formula: s’ =
c1+(c2-c1)*tanh((s-c1/(c2-c1)) where c1 = 2.5, c2 = 4, s = original
TR value, s’ = replaced TR value. Despiking was chosen over other
censoring methods to preserve temporal continuity in the rest and task
data.

Six ROIs were selected, including the right fronto-insular cortex
(rFIC) and anterior cingulate cortex (ACC) of the M-CIN; right dorso-
lateral prefrontal cortex (rDLPFC) and right posterior parietal cortex
(rPPC) of the L-FPN; and the ventromedial prefrontal cortex (VMPFC)
and posterior cingulate cortex (PCC) of the M-FPN. Coordinates deli-
neating these ROIs in a previous study were used (Table S2) (Uddin
et al., 2011).

3.3. Independent component analysis (ICA) denoising

Each subject’s rest and task fMRI datasets were individually de-
noised by hand-classifying ICA components after running FSL’s Melodic
ICA algorithm with automatic dimensionality estimation. Components
identified as noise (e.g. those containing artifacts such as white matter,
cerebrospinal fluid, head motion, or proportionally large amounts of
high-frequency information) were regressed out of the data prior to
subsequent post-processing using the fsl_regfilt command (Griffanti
et al., 2017; Jenkinson et al., 2012).

3.4. Post-ICA processing and analysis

After ICA denoising, the average time series were extracted from 6-
mm radius spheres of six ROIs in key nodes of the M-CIN, M-FPN, and L-
FPN. Time courses were then linearly detrended, low pass filtered
(0.01–0.1 Hz), and subjected to regression of the Friston 24 head mo-
tion parameters (6 motion parameters of each volume, the preceding
volume, and the 12 corresponding squared items) (Friston et al., 1996),
white matter, and CSF, as calculated in the DBAPI toolbox (Yan et al.,
2016).

3.5. Co-activation pattern (CAP) analysis

Time series extracted from the six ROIs during task and resting-state
runs were converted to z statistics and then concatenated into a single
group matrix (787 TR × 44 subjects) following previous studies
(Hutchison and Morton, 2015; Denkova et al., 2019). The concatenated
matrix was subjected to k-means clustering. Testing values of k= 2–20,

the optimal value of k= 5 was determined using the elbow criterion by
applying a least-squares fit line to the cluster validity index, defined as
the ratio of within-cluster to between-cluster differences (Figure S1)
(Allen et al., 2014; Damaraju et al., 2014). A CAP analysis was con-
ducted using k-means clustering (squared Euclidean distance) using the
optimal k of 5 on the group concatenated time series of the 6 ROIs
across all subjects (Liu et al., 2013). CAP metrics were then calculated
separately for each of the five conditions (rest run, task run 1, task run
2, task run 3, task run 4) and for all task runs combined (task all = task
runs 1–4). The CAP metrics computed included a) dwell time (DT),
calculated as the average number of TRs that a participant stayed in a
given brain state in each condition b) frequency of occurrence of brain
states, calculated as a percent over time that the brain state occurred
throughout the duration of each condition, and c) the number of
transitions, calculated as the number of switches between brain states.

3.6. Statistical analysis

DT and frequency of occurrences were subjected to a 2 Diagnosis
(ASD, TD) × 5 Condition (rest run, task run 1, task run 2, task run 3,
task run 4) mixed model ANOVA. DT and frequency of occurrences
were additionally subjected to a 2 Diagnosis (ASD, TD) × 2 Condition
(rest run, task all) mixed model ANOVA. Post-hoc two-tailed t-tests
were conducted to identify differences in the means for each of the
runs. Number of transitions during rest were subjected to a t-test, and
task run transitions were analyzed using a 2 Diagnosis (ASD, TD) × 4
Condition (task run 1, task run 2, task run 3, task run 4) mixed model
ANOVA. (See Supplement 1 for details regarding analyses of con-
founding variables).

3.7. Brain-behavior analysis

The relationship between brain state metrics and social and re-
petitive behaviors were assessed by calculating Pearson correlations
between the CAP metrics (DT, frequency of occurrences, and transi-
tions) and SRS-2 and the RBS-R T-scores in dimensional analyses across
all subjects. We additionally calculated partial Pearson correlations
between DT and SRS-2 while controlling for age.

4. Results

4.1. Time-varying resting-state and task fMRI

CAP analyses revealed five brain states that dynamically occurred
during rest and task runs (Fig. 2). CAP 1 was characterized by co-ac-
tivation among the nodes of the L-FPN. CAP 2 was characterized by co-
activation among the nodes of the M-CIN. CAP 3 was characterized by
co-activation among the nodes of the M-CIN and the nodes of the L-
FPN. CAP 4 was characterized by co-activation among the nodes of the
M-FPN, the L-FPN, and M-CIN. CAP 5 was characterized by co-activa-
tion among the nodes of the M-FPN.

4.2. Behavioral

For RT, a mixed model ANOVA revealed there was a significant
linear effect of Condition (F(1,34) = 13.580, p = 0.001). Pairwise
comparisons between runs showed that the RTs for task run 1 were
significantly higher (slower) than both task run 3 and 4 (p’s < 0.05).
There were no significant differences between RTs of task runs 1 and 2,
2 and 3, and 2 and 4 (p’s > 0.05). There were no significant interac-
tions for RT, and RT did not significantly differ by diagnostic group
(p’s > 0.05) (Fig. 3A).

Mean accuracy was greater than 90% for each run in both ASD and
TD groups (See supplementary Table S1). A mixed model ANOVA re-
vealed that there were no significant main effects or interactions for
accuracy (p’s > 0.05) (Fig. 3B).
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4.3. CAP frequency of occurrence

A mixed model ANOVA revealed a significant linear interaction for
the frequency of occurrence of CAP 1, the state with co-activation
among nodes of the L-FPN, [F(1,42) = 6.512, p = 0.014], (Fig. 3C).
Thus, the occurrences of CAP 1 were similar between groups during

rest, and children with ASD initially had fewer occurrences of CAP 1
during the first two task runs but then showed more occurrences of CAP
1 in the last two task runs compared with TD children. Post-hoc t-tests
were conducted on each run, revealing a significant difference between
diagnostic groups within task run 4 (p = 0.021). No other run com-
parisons were significant (p’s > 0.05), (Figure S3). A post-hoc

Fig. 2. Time series from 6 regions of interest (ROIs) were extracted across rest and task runs for both children with ASD and TD children, and z-scored and
concatenated into a single matrix. The matrix was subjected to k-means clustering and CAP analysis using a k of 5. The intensity of colors in the CAP matrix indicate
the z-scored activation value of the ROIs within each centroid.
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regression model comparing frequency of occurrences between ASD
and TD for task run 4 while controlling for head motion during task run
4 was significant (p = 0.035). Thus, head motion did not influence the
group differences observed in task run 4. A post-hoc mixed model
ANOVA was conducted excluding four high motion subjects, and a
significant linear interaction was still observed, [F(1,38) = 6.526,
p = 0.015].

There was a significant cubic main effect of Condition for the fre-
quency of occurrences of CAP 3, [F(1, 42) = 6.25, p= 0.016], however
there was no significant main effect of Diagnosis [F(1, 42) = 0.001,
p = 0.976]. There was a significant quadratic main effect of Condition
for the frequency of occurrences of CAP 5, [F(1, 42) = 6.346,
p = 0.016], however there was no significant main effect of Diagnosis
[F(1, 42) = 0.324, p = 0.572]. There were no significant main effects
or interactions for CAP 2 and CAP 4 (p’s > 0.05).

Additionally, there were no significant main effects or interactions
for the 2 Diagnosis (ASD, TD) × 2 Condition (rest run, task all) mixed
model ANOVAs for CAPs 1–5 (p’s > 0.05).

4.4. CAP dwell time

A mixed model ANOVA revealed a significant quadratic main effect
of Condition for DT of CAP 1, [F(1,42) = 22.316, p < 0.001], however
there was no significant main effect of Diagnosis [F(1, 42) = 0.574,
p = 0.453]. There was a significant quadratic main effect of Condition
for the DT of CAP 2, [F(1, 42) = 11.368, p = 0.002], however there
was no significant main effect of Diagnosis [F(1, 42) = 0.875,
p= 0.355]. There was a significant quadratic interaction for DT of CAP
3, where the M-CIN is coupled with the L-FPN [F(1, 42) = 12.785,
p = 0.001] (Fig. 3D). These results demonstrate that the DT of CAP 3
was similar between groups during rest, and children with ASD initially
spend more time in CAP 3 for task runs 1–3, then spend less time in CAP
3 for task run 4 compared with TD children. Post-hoc t-tests were

conducted on each condition to compare diagnostic groups and re-
vealed a significant difference in task run 4 (p= 0.034) (Figure S4). No
other condition comparison was significant (p’s > 0.05). A post-hoc
regression model comparing DT between ASD and TD for task run 4
while controlling for head motion was significant (p = 0.029). A post-
hoc mixed model ANOVA was conducted excluding four high motion
subjects, and a significant quadratic interaction was still observed [F
(1,38) = 8.625, p = 0.006]. There were no significant main effects or
interactions for CAP 4 and CAP 5 (p’s > 0.05).

2 Diagnosis (ASD, TD) × 2 Condition (rest run, task all) mixed
model ANOVAs for CAPs 1–5 revealed main effects of Condition for
CAP 1, [F(1, 42) = 22.366, p= <0.001], CAP 2, [F(1, 42) = 29.003,
p= <0.001], and CAP 4, [F(1, 42) = 7.745, p= 0.008] and CAP 5, [F
(1, 42) = 9.387, p = 0.004]. CAP 3 did not exhibit a significant main
effect (p = 0.389). There were no main effects of Diagnosis for any of
the CAPs (p’s > 0.05).

4.5. CAP transitions

A mixed model ANOVA revealed a significant cubic interaction for
the number of transitions [F(1, 42) = 4.124, p= 0.049], indicating TD
children have more transitions in task run 1, but have fewer in task run
2, then more in task run 3 and again fewer in task run 4 compared to
children with ASD (Fig. 3E). However, there was no significant main
effect of Diagnosis [F(1, 42) = 0.008, p = 0.930]. A post-hoc mixed
model ANOVA using a low motion sample (N = 40) revealed the in-
teraction was no longer significant [F(1, 38) = 3.360, p = 0.075]. We
conducted t-tests comparing ASD and TD groups on the resting-state run
(Fig. 3F), on each task run separately, and on the task runs combined,
and found no significant differences between the diagnostic groups
(p’s > 0.05) (Table S6).

Fig. 3. Behavioral data and CAP frequency, dwell time, and transitions during rest and task states. A) Box plot of RT in children with ASD and TD children. There
were no significant differences between groups in RT (p’s > 0.05). B) Box plot of Accuracy in children with ASD and TD children. There were no significant
differences between groups in accuracy (p’s > 0.05). C) Frequency of occurrence of CAP 1, characterized by co-activation of L-FPN nodes, was greater in Task Run 4
for children with ASD than TD children. D) Dwell time of CAP 3, characterized by co-activation of M-CIN and L-FPN nodes, was shorter in Task Run 4 for children
with ASD than TD children. E) Transitions between CAPs during rest were not significantly different between groups. F) Transitions between CAPs during task
performance were not significantly different between groups when high motion subjects were removed. Results from mixed model ANOVA are shown inside graphs
with significant interactions (C and D). * = p < 0.05 from post-hoc t-test.
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4.6. Brain-behavior results

Pearson correlations between SRS-2 and RBS-R total T-scores with
each CAP metric revealed a significant correlation between SRS-2 and
DT during CAP 5 in the rest condition (r = −0.337, p = 0.027) (un-
corrected) (Fig. 4). No other significant correlations were observed
between SRS-2, RBS-R, and any other CAP metrics for CAP 5, nor any
metrics for CAPSs 1–4 (p’s > 0.05). Partial Pearson correlations be-
tween SRS-2 and DT while controlling for age revealed that the corre-
lation between SRS-2 and DT during CAP 5 in the rest condition was
still significant (r = −0.341, p = 0.027). We additionally found a
significant correlation between SRS-2 and DT during CAP 3 in the task 4
condition (r = −0.472, p = 0.002) (uncorrected). No other correla-
tions were significant (p’s > 0.05).

5. Discussion

Here, we investigate brain dynamics among three neurocognitive
networks ubiquitously present in the functional neuroimaging literature
(Uddin, 2015). The M-CIN, comprising the anterior insula and anterior
cingulate cortices, is thought to enable dynamic switching between the
M-FPN (comprising medial prefrontal and posterior cingulate cortices
and involved in internally oriented cognition) and the L-FPN (com-
prising lateral prefrontal and posterior parietal cortices and involved in
goal-directed behaviors) (Goulden et al., 2014; Fox et al., 2006). A large
literature supports the role of the M-CIN as a mediator of incoming
stimuli, guiding appropriate behavioral responses (Uddin, 2015;
Goulden et al., 2014; Menon and Uddin, 2010; Uddin and Menon,
2009). Specific regions of the M-CIN such as the ACC have also been
shown to have varying modulatory interactions with brain regions
during rest and task conditions (Di et al., 2020). While atypical patterns
of brain activation and connectivity of these networks have previously
been documented in ASD (Uddin et al., 2013), very few studies have
examined network configurations as they change between rest and task
states (Uddin et al., 2015). Characterizing dynamic changes in the brain
lends insight into these alterations, but most studies to date have fo-
cused on whole-brain dynamics using sliding window dynamic func-
tional connectivity approaches that have limitations including the use
of an arbitrary window length (Allen et al., 2014; Uddin, 2020). In-
flexibility among these networks has been shown to underlie core
symptoms of ASD (Uddin et al., 2015), yet no previous studies have
examined time-varying patterns of co-activation among these networks
during intrinsic and evoked states in children with the disorder. Here

we used CAP, a method that relies on fewer model assumptions than the
sliding window approach, for the first time to characterize brain dy-
namics among the M-CIN, L-FPN, and M-FPN during a resting-state scan
and four runs of an attention task in children with ASD and TD children.

Using CAP, we found evidence for five recurring brain states in-
volving dynamic patterns among M-CIN, M-FPN, and L-FPN nodes
during task and resting states. CAP 1 and CAP 2 states exhibited co-
activation patterns within L-FPN and within M-CIN, respectively. CAP 3
was characterized by a co-activation among both the M-CIN and L-FPN,
a state commonly associated with cognitive task performance (Corbetta
and Shulman, 2002) and sometimes referred to as “task-positive” net-
works (Di and Biswal, n.d.). Together, these results suggest the M-CIN
and L-FPN may function independently or simultaneously as needed in
the service of task demands or during resting conditions. CAP 4 was
characterized by co-activation among all three networks, a brain state
which is consistent with evidence from prior studies (Marshall et al.,
2020). CAP 5 was a state in which strong M-FPN node co-activation was
observed. M-FPN, typically referred to as the “task-negative” network,
recently has been revealed to play a role in specific task conditions
(Krieger-Redwood et al., 2016; Mars et al., 2012; Spreng et al., 2014;
Vatansever et al., 2015) potentially during minimally demanding cog-
nitive tasks (Vatansever et al., 2015). Taken together, these five CAPs
display patterns that are consistent with the role of the M-CIN in
mediating both the L-FPN and M-FPN, and suggests dynamic interac-
tions among the networks during both task and resting-states (Goulden
et al., 2014).

For CAPs 1 and 3, distinct group differences were identified in dy-
namic metrics of frequency of occurrences and dwell time.
Interestingly, in the last two task runs children with ASD exhibited
more frequent occurrences of CAP 1 and spent less time in CAP 3 during
task run 4 compared to TD children. Greater frequency of occurrences
of the L-FPN and less dwell time of simultaneous M-CIN and L-FPN co-
activation during the last task runs in children with ASD suggests they
rely more on the L-FPN when needing to exert greater effort to reach
the same behavioral outcomes as children with TD. Previous work has
shown that high functioning individuals with ASD may perform a task
at an above-average level, as shown here, but may require more de-
tailed-focused processing (Happé and Frith, 2006). This type of beha-
vior has been previously associated with overly stable brain dynamics
in adults with ASD (Watanabe and Rees, 2017). The lack of behavioral
differences found in this study suggests that children with ASD per-
formed at a high level across all four task runs, and this behavior is
supported by altered changes in dynamic fluctuations across the net-
works from the early to the later phases of the task.

The observed disruption in the coordination of the L-FPN and M-CIN
nodes, evident in the last task runs, is consistent with emerging evi-
dence using dynamic methods of disruptions in between-network con-
nectivity in children with ASD (de Lacy et al., 2017). Similarly, co-
ordination among all three neurocognitive networks has been
previously shown to dynamically occur less frequently during intrinsic
states in children with ASD compared to TD children, indicating a re-
duced co-activation of the M-CIN with nodes of the M-FPN and L-FPN
(Marshall et al., 2020). Although our finding is across evoked states, our
results are consistent with the prior study suggesting the nodes of the
M-CIN have reduced coordination with the nodes of the L-FPN, pri-
marily during the last task runs. A disruption in the coordination of
networks may underlie cognitive and behavioral inflexibility seen in
children with ASD (Uddin et al., 2015; Barttfeld et al., 2012). Ad-
ditionally, dynamics assessed during evoked states may reveal unique
network re-configurations under varying task demands, and differential
employment of cognitive effort in ASD (Cheng et al., 2018). Dynamic
analyses can track differential brain responses in ASD across changing
task demands over time. The current findings imply that CAP metrics
computed across multiple task runs can be more revealing of neural
profiles in autism than differences between task and rest contexts,
which have been the focus of previous similar works (Uddin et al.,

Fig. 4. Pearson correlation between resting-state CAP 5, the M-FPN CAP, and
symptom severity indexed by the Social Responsiveness Scale (SRS-2)
(Constantino and Gruber, 2012).

L. Kupis, et al. NeuroImage: Clinical 28 (2020) 102396

7



2015). However, further studies are needed to support this interpreta-
tion. There were no group differences in transitions observed, primarily
after removing subjects with excessive motion. This is contradictory to
a growing dynamic functional connectivity literature suggesting that
transitions between states are altered in ASD (Uddin, 2020; de Lacy
et al., 2017; Watanabe and Rees, 2017). Our results may be influenced
by our limited sample size and the relatively short duration of our task
and rest scans; future studies including larger sample sizes and longer
scan times are needed to further explore this issue. Additionally, our
lack of significant findings for transitions may be attributed to our
analysis of three neurocognitive networks rather than whole-brain
analyses, as conducted in previous studies (Uddin, 2020; de Lacy et al.,
2017; Watanabe and Rees, 2017).

The only significant relationship between the brain dynamic metrics
and behavior was identified in the M-FPN. Greater dwell time in the M-
FPN was associated with better social abilities as indexed by the SRS-2.
This is in line with previous research linking the M-FPN with social
ability in ASD (He et al., 2018; Padmanabhan et al., 2017) and in the
general population (Mars et al., 2012; Li et al., 2014). The dynamic
analyses presented here provide new insight into the relationship be-
tween the M-FPN and social behaviors. Our findings indicate that
children who exhibit greater M-FPN engagement during resting states
are those who are higher functioning in the social domain. This is in
line with a large literature implicating the M-FPN in thinking about
others (Uddin et al., 2007).

During task performance, we observed no behavioral differences in
reaction time and accuracy between children with ASD and TD chil-
dren. In both groups, accuracy remained elevated across the four task
runs (Accuracy > 90%), indicating there was not an underlying be-
havioral change across the four task runs to account for the brain dy-
namic changes we observed. As previously reported, high accuracy and
a lack of behavioral differences between groups indicate that this task
was relatively easy for both children with ASD and TD children to
complete (Dirks et al., 2020). Nevertheless, children with ASD recruited
brain regions involved in executive control to a greater extent than TD
children by task run 4, indicating that they exerted greater cognitive
effort to reach the same level of performance as TD children. This
suggests that children with ASD may neurally compensate to reach the
same level of behavioral performance as TD children across the dura-
tion of a task (Livingston and Happé, 2017).

5.1. Limitations

There are a few limitations important to note in the present study.
Our sample size was limited as we maintained strict requirements in-
cluding a visual Quality Control inspection, a full 10 min of resting-
state fMRI, and completion of all four task runs. While these require-
ments increased power related to our study aims, they reduced our
sample size, as several children were excluded due to our strict criteria.
Future work with larger sample sizes is needed to confirm and extend
the results presented here. Lastly, other large-scale networks including
the dorsal attention network (DAN)/dorsal frontoparietal network (D-
FPN) have also been shown to interact with the three networks in-
vestigated here, depending on context (Dixon et al., 2018). Future
studies should further expand on the current work by investigating the
D-FPN and its dynamic relationship to the L-FPN, M-CIN and M-FPN in
children with ASD.

5.2. Conclusions

This study investigated brain dynamic metrics concurrently during
rest and an attention task in children with ASD and TD children. Group
differences between children with ASD and TD children were evident in
brain states consisting of the L-FPN and M-CIN specifically during the
fourth task run, suggesting atypical between-network coordination in
children with ASD during prolonged periods of task engagement.

Atypical between-network coordination may underlie neural compen-
sation in children with ASD, enabling comparable behavioral perfor-
mance as TD children. Finally, greater M-FPN dwell time was associated
with stronger social abilities, indicating that the dynamics of this net-
work may be important in our understanding of social dysfunction in
both ASD and the general population.
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