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Background: Near-falls such as a trip, slip, stumble, or misstep involve a loss of balance

(LOB) that does not result in a fall, occur more frequently than actual falls, and are

associated with an increased fall risk. To date, studies have largely involved detection of

simulated laboratory LOBs using wearable devices in young adults. Data on the detection

of and kinematics of naturally occurring LOBs in people at high risk of falling are lacking.

This may provide a new way to identify older adults at high risk for falls. We aimed to

explore key body kinematics underlying real-world trips in at-fall risk community dwelling

older adults wearing inertial measurement units (IMU).

Methods: Five community-dwelling older adults with a history of falls who reported trips

during the study period participated. They wore a voice recorder and 4 IMUs mounted

on feet, lower back and wrist for two consecutive weeks to provide a record of the

context and timing of LOB events. Sensor data prior to time-stamped voice recording of

a trip were processed in order to visually identify unusual foot trajectories and lower back

and arm orientations. Then, data of feet, lower back and wrist position and orientation

were combined to create a three-dimensional animation representing the estimated body

motion during the noted time segments in order to corroborate the occurrence of a trip.

Events reported as a trip by the participant and identified as a trip by a researcher, blinded

to voice recordings description, were included in the final analysis.

Results: A total of 18 trips obtained from five participants were analyzed. Twelve trips

occurred at home, three outside and for three the location was not reported. Trips were

identified in the sensor data by observing (1) additional peaks to the typical foot velocity

signal during swing phase; (2) increased velocity of the contralateral foot and (3) sharp

changes in lower back pitch angles.

Conclusions: Our approach demonstrates the feasibility of identifying and studying the

mechanisms and context underlying trip-related LOBs in at-fall risk older adults during

real world activities.
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BACKGROUND

Falls are a serious problem in older adults, as the leading
cause of accidental death as well as hospital admission for
injury (1, 2). The ascertainment of risk for falls often relies on
patient recall and thus may underestimate the true incidence
of falls (3). Moreover, because falls may be precipitated by
everyday activities in a specific environmental context, one-time
laboratory or clinical assessment of balance and mobility in a
highly controlled non-real-world setting may capture important
measures of postural control but may not optimally capture real-
world fall risk (4, 5). Monitoring real world daily activities using
fixed body sensors might therefore enhance fall risk assessment.

Given that falls are relatively rare events requiring very long
periods of observation, near falls during daily life activities might
then be used to inform fall risk (6). More specifically relevant to
the present study are missteps, defined as trips, slips, stumbles
and other losses of balance (LOBs) that do not result in a fall
because of corrective actions taken to recover balance (7). Self-
reported LOBs are more frequent than falls and are linked to
fall risk (7–10). In a retrospective observational study of older
adults with hip osteoarthritis (n= 106, mean age 74.4± 6.2) 45%
reported at least one fall and 80% reported frequent (i.e., at least
once per week) or occasional (i.e., <1 per week but more than
a couple times) LOBs over a period of 1 year (8). Nevertheless,
using only self-report is limited: it is subjective, relies on memory
(and thus may be unreliable in the cognitively impaired) and is
subject to reporting fatigue. Using wearable sensor data might
provide information when the participant cannot. Moreover, it
may provide additional data such as LOB kinematics that cannot
be obtained from self-report. Thus, using wearable sensors to
identify and quantify LOB kinematics during daily activities
might serve as a sensitive measure associated with fall risk (6)
but equally important help to characterize the context of the LOB
and the strategies used to recover from the LOB.

In controlled settings, wearable sensors can detect artificially
induced LOBs with high accuracy (6, 11–15). However, it is
thought that LOB responses in controlled settings (such as
a laboratory) differ from naturally occurring real world LOB
responses (16). Recently, adapting responses from laboratory-
induced perturbations, an algorithm was developed to identify
real-world missteps (i.e., defined as a loss of balance that would
result in a fall if sufficient recovery mechanisms were not
activated) (16, 17) in persons with Parkinson’s Disease who
wore a single inertial measurement unit (IMU) for 3 days (16).
Participants with identified fall risk (two falls or more in the 6
months prior to the study) were significantly more likely to have
a detected misstep compared with non-fallers. However, without
additional corroborative information, these missteps could only
be determined as “suspected.” It is thus not yet clear whether
wearable devices can accurately detect LOBs in older adults or
other high-risk populations while at home or other community
settings (15).

We illustrated the methodology to corroborate the occurrence
of real-world LOBs in participants wearing an array of IMUs;

Abbreviations: LOB, loss of balance; IMU, inertial measurement unit.

participants also donned a wearable voice recorder on which
they could provide time-stamped descriptions, i.e., the context,
of their LOBs (18). In the present paper, we advance the
methodology to focus on a specific LOB type in at fall risk older
adults. The focus of the current study is on the LOBs that aremost
clearly identified from the IMU record and corroborated using
the voice record: those described as “trips.” Unlike other types
of LOBs such as “misstep” and “stumble,” a trip is an identifiable
concept in common language representing a unique type of LOBs
where the mechanism is clear (i.e., swing leg strikes an obstacle).
Yet, unlike laboratory settings, real world trips are unanticipated
and may vary in the environment and context where they occur.
Whereas, the laboratory-based protocols provide controlled trip
perturbations which may result in more stereotypical responses,
real world trips may have more variable etiology (i.e., context
dependent) and the LOB responses may be equally more variable
and less stereotypical. More importantly, better understanding of
real world trips would be useful in determining the outcomes of
increasingly common reactive balance training protocols (19).

Accordingly, the current study investigates real-world trip
responses in at-fall risk community dwelling older adults using
wearable IMUs and concurrent participant reporting of the
occurrence of a trip. This new methodology may provide insight
into trip responses and recovery in at-fall risk older adults and
may then be applied to customize an intervention program to
reduce fall risk in this population.

METHODS

Participants
We collected data from 10 community dwelling older adults, all
of whom reported LOBs over the study period. Based on this
sample we extracted only LOBs that the description obtained
from the participant clearly indicated a trip in the recordings
(either the participant used the word trip or the described
circumstances were consistent with a “trip” e.g., “caught foot on,”
“stubbed foot”) resulting in five participants that were included
in the analyses reported here. Study inclusion criteria included
the ability to ambulate independently in the community and
either a history of ≥2 falls in the past 6 months, a history
of an injurious fall in the past 6 months, or self-reported
balance difficulties. Exclusion criteria included walker use and
cognitive deficits (Montreal Cognitive Assessment score <24/30)
(20). All participants provided written informed consent before
participating in the study. The study was approved by the
University of Michigan Institutional Review Board.

Protocol
LOB Monitoring
In order to capture real world trips, participants wore a wrist-
mounted voice recorder and 4 body-worn IMUs during waking
hours. They were instructed to report any LOB, defined as an
event where balance control was lost at least momentarily such
as a trip, slip, stumble or misstep, immediately after the event
occurred on the voice recording.
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FIGURE 1 | IMUs mounting location at feet, lower back and one wrist (dashed

yellow line) and a voice recorder worn on the other wrist (dashed red line).

Voice Recorder
The voice recorder was a watch-sized device worn on the
non-dominant wrist (Sansa Clip Zip 8GB MP3 player, with
modified open source RockBox firmware). The voice recorder
was programmed to record for 2min upon the press of a single
button and provide a time stamp for each recording. The recorder
clock was synchronized to the clock of IMUs. Participants were
asked to record a description of the LOB context (a description
of the task performed and any contribution of the environment
to the LOB), and how they recovered their balance as soon as
possible after the event.

Wearable IMUs
Participants wore four IMUs (Opal, APDM Inc., Portland, OR,
USA; synchronized 128Hz sampling, ±16/200G acceleration
±2000 degree/s angular rate) to capture three axes raw
acceleration and angular rate. The sensor bandwidth (128Hz)
is adequate for capturing human initiated motion given the
low dynamic conditions of our target population (21). The
accelerometer range is automatically selected by the data logger
as required by the experimental conditions. The IMUs are factory
calibrated and we did not perform any additional calibration
procedure. Our method does not require following any special
anatomical calibration since our method approximates the
correct location (see section Data analyses). The IMUs were
mounted on the feet using pouches attached to the tops of each
shoe, at the center of the lower back on a waist belt and on the
wrist (dominant hand) using a wrist strap (Figure 1). Each IMU
was marked with a specific location (left foot, right foot, lower
back, and wrist). Participants were provided a diagram showing
correct sensor insertion configuration. Participants were asked
to wear the sensors while they performed their daily normal
routine. Participants removed the sensors at the end of the day
for overnight charging and inter-IMU resynchronization to the
IMUs’ clock.

Participants attended two laboratory sessions: On the first
session they were instructed on the use of the voice recorder
and what to record when they had a loss of balance. They then
used the recorder at home for a week. At the second session their
recordings were briefly reviewed, and questions were answered.
They were instructed on how to wear and charge the IMUs and
were provided written instructions to use at home. They then
wore the recorder and sensors for two consecutive weeks. Data
was collected based on previous experience in which a substantial
number of LOBs were reported over a 2 week period.

Clinical Assessments
The following clinical measurements were conducted during
the first laboratory session: The Timed Up & Go (TUG) test
(22, 23) and the Activities-specific Balance Confidence (ABC)
scale (24). The TUG assesses mobility, balance and fall risk in
older adults. It measures the time that takes the subject to rise
from a chair, walk 3 meters at a comfortable pace, turn, walk
back to the chair and sit down. The cutoff score indicating risk
of falls in community dwelling adults is >13.5 s (23). The ABC
scale is a 16-item self-report measure in which participants rate
their balance confidence for performing activities (ranges 0–100;
score of zero represents no confidence, score of 100 represents
complete confidence). ABC scores above 80 are indicative of
highly functioning older adults (25).

Data Analyses
Voice Recordings
Voice recordings of LOBs were reviewed by author DS and events
described as trips were identified. Time stamps of LOB events
were used to focus the analyses of IMU data. A 10-min time
window of sensor data prior to the time-stamped event recording
was processed using custom developed algorithms written in
Matlab (Matworks, Natick MA) (i.e., IMU data were processed
only at a defined time window close to the event reported by
the participant).

IMU Kinematics
Raw IMU data (accelerometer and gyroscope) were processed to
estimate foot position and orientation. The IMUs measure three
components of linear acceleration and angular velocities in the
sensor frame. The angular velocities were integrated over time
to obtain the IMU orientation. The tilt components (roll and
pitch) of the orientation were referenced to gravity using the
accelerometermeasurements. Thismethodwas applied to all four
IMUs. For the IMUs attached to the feet, we proceed to resolve the
accelerations in the navigation frame using the IMU orientations.
The navigation frame referenced accelerations were integrated
twice to estimate velocity and position (26, 27). The velocity
and positioning estimations are affected by sensor drift, however
since the foot comes to a stop during the stance phase of gait
cycle, it is possible to use this information to correct the velocities
and positions errors using a method known as Zero velocity
UPdaTe (ZUPT) (28, 29). From the 10-min time window of IMU
data the observer visually identified gait segments using plots of
foot speed data (Figure 2). Then the observer sought to identify
deviations from the stereotypical pattern of foot trajectories
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FIGURE 2 | Data obtained from 3 participants, showing: (top) magnitude of foot velocity corresponding to right and left foot and lower back (middle) and wrist

(bottom) tilt angles. The dots indicate instances during the stance phase where the foot was stationary. The solid arrows indicate the trip location identified by a sharp

increase in velocity or several “peaks” indicating changes in foot velocity. The dashed arrows show the recovery response as a change in velocity of the contralateral

foot (B) or variations in lower back pitch angles (A–C). We could not identify trips based on data obtained from the wrist sensor. Participant’s self-report: (A) “Caught

left foot under carpet, stumbled” (B) “climbing steep hill, tripped over speed bump” (C) “Tripped on a piece of wood”.
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during normal gait (e.g., a sudden change in the rhythmic foot
speed during gait, ≥2 steps performed with the same leg, a
simultaneous non-zero velocity of both feet at once) that would
suggest that an LOB may have occurred. In addition, the lower
back and wrist orientations (i.e., roll, pitch, and yaw) were used
to identify sharp changes from the usual patterns observed in the
vicinity of the event, indicating a compensatory motion.

Corroborative Animation
After identifying these unusual patterns (i.e., potential trips), we
used the feet, lower back and wrist positions and orientations
to create an animation representing the estimated body motion
during the time segments. The animation was used for qualitative
analysis, rather than estimating the precise multi-segment
kinematics, in order to visually corroborate the occurrence of
a trip (18). When the animation supported the occurrence of a
trip, characteristics features of IMU signals were extracted. For
the animation, the lower back orientation was used as a proxy of
the trunk motion (30).

We converted the information derived from IMU
measurements, taken in the sensor reference frame, into a
common reference frame (world). Since the feet, trunk and wrist
are interconnected, in the long run they all must follow the
approximate same path as the person moves, we combined all
this information using a two-step approach. First, we aligned
all the position and orientation estimates to follow a common
reference coordinate frame. Second, we placed the different body
parts relative to the others using anatomical assumptions.

Position and orientation alignment
Our approach estimates and corrects the tilt angles (roll and
pitch) using gravity as the vertical reference. Because gravity
is an absolute reference we conveniently use it as the vertical
axis of our world reference frame. The heading angles (yaw)
are free to drift, and in the case of the foot-mounted IMUs,
the heading errors cause the feet to drift apart in space with
time. In order to minimize the effects of drift we implemented
transfer alignment techniques similar to the approach explained
in (31). This approach employs a Kalman filter framework in
which the inertial coordinate frame (world) as defined by a foot
mounted IMU, acts as the anchor for all the other IMU estimates
of orientation and position. This method guarantees that all the
IMU based estimates describe the approximate same trajectory
(of one foot), however it does not establish how the IMUs are
located with respect to each other.

Anatomical alignment
In order to determine the final spatial distribution of the
individual IMU based solutions, we use three anatomical
assumptions. First we assume a nominal separation between the
two feet that is enforced when they cross with respect to each
other in the gait cycle, and when the person is standing. The
actual correction is applied as part of the same Kalman filter
mechanization used to align the orientation and position of all
the IMUs as indicated in (31). The second assumption is that the
base of the torso is located at a certain distance directly above the
mean position of the two feet. The transfer-alignment corrected

TABLE 1 | Participants’ characteristics (n = 5).

Characteristics Values

Age, years 76.2 ± 5.4

Male (n) 4/5

Fall within the past 6 months (n) 5/5

Injurious fall within the past 6 months (n) 2/5

ABC score (0–100) 64.4 ± 14.0

Use of assistive walking device (n) 1/5 (cane)

TUG (s) 11.2 ± 2.1

ABC, activities-specific balance confidence scale; TUG, timed up & go.

orientation of the IMU attached to the lower back is used as
is to represent the trunk orientation. The third assumption is
that the wrist sensor is attached to a forearm connected to
a simulated arm at a roughly anatomical elbow location. The
transfer-alignment corrected orientation of the IMU attached to
the wrist determines the orientation of this simulated forearm.
The actual distances used to separate the feet, trunk and forearm
follow a similar approach as in (18), and as such are used to
provide a qualitative representation of the body motion that can
be used for interpretation by a human, rather than to estimate
precise multi-segment kinematics.

This process of identifying trips from IMU data was
conducted by a researcher (SH) blinded to the voice recordings
description of the event. The researcher was given the time
segment when the LOB occurred but did not know the type of
LOB that was reported. In this paper we report events in which
the participant used the word “trip” in his/her description, or
described circumstances consistent with a “trip” (e.g., “caught
foot on,” “stubbed foot”) AND a trip event was independently
identified in the IMU signal analyses. Requiring this agreement
between voice and IMU data was done in order to increase
certainty levels/face validity of our analysis.

RESULTS

Characteristics of the 5 participants are shown in Table 1. All
participants reported at least one fall within the last 6 months,
2 of them reported an injury as a consequence. Four of the five
participants reported ABC scores <80 (and 3 < 65), suggesting
significant concern in their confidence to maintain balance
during everyday activities. Yet, all TUG scores were <14 s,
suggesting a functionally mobile group. Thus, while they are at
fall risk and have balance concerns, they are nevertheless mobile
and likely doing activities that may place them at risk for future
trips and falls. Participants wore the IMUs for a mean of 13.2
± 1.1 days, 11.7 ± 1.7 hours per day. Eighteen events obtained
from all of the five participants were documented as tripping
from the voice recorder and from the IMUs analysis. From 10
to 15min were required to visually inspect the IMU data and
generate the corresponding 3D animations, depending on the
amount of active bouts in the time window being observed. There
were no missing data, however there were four trips reported by
two participants that were not evident in the IMU analyses (the
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TABLE 2 | Self-reported trip characteristics and sensor signal analysis.

Participant Description Location Identified trips were based on IMU signals of:

Tripped foot Contralateral foot Lower back

1 Carrying trash to curb, caught toe on curb, stumbled Outside, curb + + –

Walking to back door to let dog in, stepped on cane Home + + +

(see Figure 4)

Stubbed toe in middle of floor Home, kitchen + – –

Stepped on left foot, stumbled Home; TV room + + +

Scuffed foot on floor, toe wouldn’t slide Home, kitchen + + +

(see Figure 3B)

Stubbed toe on floor Home; kitchen + + –

Caught left foot under carpet, stumbled Home; hallway + – +

(see Figure 2A)

2 Climbing steep hill, tripped over speed bump Outside, road + + +

(see Figure 2B)

3 Walking, tripped, twisted ankle sideways Outside, on building construction site + – –

Stepped in hole, tripped Unknown + + +

(see Figure 3C)

Tripped on piece of wood Home; workshop + – +

(see Figure 2C)

Stepped in hole, tripped Unknown + + –

Stair descent caught heel Home, stairs + – +

Stepped on piece of wood, tripped Home, barn + + +

4 Tripped Unknown + – –

5 Tripped on carpet Home, kitchen + – –

Caught foot on dresser Home; bedroom + – –

Stumbled going upstairs, tripped Home, stairs + – +

(see Figure 3A)

observer did not identify an LOB during the 10min epoch in
these four cases). Of the 18 events, 12 trips occurred in the home
(two on stairs) and three outdoors. For three events the location
was not reported. Of these 18 trips, one resulted in a fall onto a
bed. Participant descriptions of trips (activity and location) are
presented in Table 2.

Sensor Signal Analysis
Trips were identified from feet velocity plots by observing
additional peaks in the typical foot velocity signal indicating
changes in velocity, particularly abrupt changes during the
swing phase, Figure 2. In some cases trips were followed
by increased step velocity of the contralateral foot (recovery
response) (Figure 2B) and accompanied by sharp changes in
lower back pitch angles (Figures 2A–C). Data regarding the
location of the sensor (feet and/or lower back) that were used
for trip identification are presented in Table 2. We could not
identify trips based on data obtained from the wrist mounted
sensor as it was difficult to differentiate trip-related changes in
signals or derived orientations from normal activity (Figure 2).
After identifying a “suspected” trip event from sensor signals, the
observer used the animation to corroborate the occurrence of a
trip. Representative examples of animations are presented in the
Supplementary Materials.

Figure 3 demonstrates signals indicating trips occurring at
different swing phases (early/late swing). Also, trips occurred
during varied segments of walking i.e., short segments with
only few steps prior to trip vs. long segments of walking
with many steps prior to trip. Right and left foot sensor raw
data for each trip is represented in the (Figure S1). Figure 4
demonstrates a trip that resulted in a fall onto a bed, i.e., a
fall onto a lower surface. In this case, the lower back extended
backwards to an inclination angle for a sustained period of
time suggesting that upright sitting was not maintained, and
given the foot orientations, that the participant was no longer
standing (Figure 4).

DISCUSSION

The present study is the first attempt to our knowledge at
identifying and characterizing kinematic parameters of “natural”
trips occurring at home and community environments in older
adults at risk for falls. We significantly add to previous studies by
demonstrating the feasibility of this approach in studying varied
real world trip contexts. To date, IMUs have been used to identify
LOBs mainly in controlled laboratory settings, however, it is
thought that responses in controlled settings differ from naturally
occurring real world LOBs. Thus, in order to automatically
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FIGURE 3 | Data demonstrating trips occurring at different times during the swing phase. Magnitude of foot velocity corresponding to right and left foot. The dots

indicate instances during the stance phase where the foot was stationary. (A) A sudden change in right foot’s velocity during mid swing (immediately after peak

velocity) while climbing stairs (stereotypical velocity profile of climbing stairs contains short periods of nearly constant velocity). (B) A sudden change in velocity of the

left foot during mid swing (i.e., the foot almost reached maximal velocity), then the foot landed on the ground (foot velocity equal to zero) and a fast, compensatory

step with the same foot was performed. (C) A sudden change in maximal velocity of the left foot during terminal swing. An increased velocity of the contralateral (right)

foot afterwards. Arrow indicates the trip location. Participant’s self-report: (A) “Stumbled going upstairs, tripped” (B) “scuffed foot on floor, toe wouldn’t slide” (C)

“stepped in hole, tripped”.

identify real world LOBs we first needed to examine whether
it was feasible to identify them and to establish a method of
LOB analytics that might lead to future algorithm development.
A major contribution is the use of a voice recorder concurrent
with IMU data to identify the context of the LOB and to increase
the certainty level of identification of LOBs in older adults. The
sensor-based approach supplemented with a voice recorder for
description and time stamping of the tripping event used in the
current study may considered to be “proof of concept,” that the
study of mechanisms and context underlying relevant real world
losses of balance is feasible.

In contrast to trips provoked in laboratory settings, where
conditions are more controlled and responses are more
stereotyped, real world trips are more unanticipated and occur
during walking or gait initiation, at different speeds and
accelerations, in different environments (e.g., outside, stairs, in
the dark) and often concurrent with other tasks (talking, carrying
etc.). This lack of homogeneous tripping patterns in the natural
setting makes identifying real world trips from IMU data alone,
without context information, particularly challenging. Moreover
the carryover of reactive balance training protocols into changing
real world trip occurrence and response is still unclear.

In the current study, real-life trips were identified from
processed IMU data representing feet kinematic information
during gait and characterized by additional peaks to the typical

foot velocity signal during swing phase (Figure 2). These peaks
indicate changes in velocity, particularly abrupt changes during
the swing phase. This is consistent with a recent study identifying
trips as deviations from a statistical model for normal walking
patterns (13). In some cases trip identification was supported by
data from the contralateral foot sensor (demonstrating increased
velocity of the step taken after the trip) and from the lower
back sensor demonstrating a sharp increase in lower back tilt
in the pitch axis. This is consistent with a previous study
suggesting that near falls may include compensatory mechanisms
such as unplanned movement of arms or/and legs, unplanned
change in stride velocity and trunk tilt (32). Also, in the current
study the timing of a collision with an obstacle during swing
phase (early vs. late swing) was identified (Figure 3). Previous
studies identified two trip recovery strategies according to the
timing of collision with the obstacle: (1) during early swing,
collision with an obstacle leads to an elevating strategy, in which
the swing leg is lifted over the obstacle and (2) during late
swing, collision with an obstacle leads to a lowering strategy,
in which the swing leg is rapidly lowered to the ground in
front of the obstacle and then the trailing leg is swung forward
clearing the obstacle and landing in front of the body (33,
34). Figure 3C shows a collision occurring during late swing,
followed by a rapid response (i.e., increased foot velocity) of the
contralateral leg.

Frontiers in Medicine | www.frontiersin.org 7 September 2020 | Volume 7 | Article 514

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Handelzalts et al. Detection of Real-World Trips

FIGURE 4 | Data showing a trip that resulted in a fall. (A) (top) Magnitude of foot velocity corresponding to right and left foot and (middle) lower back and wrist

(bottom) tilt angles. Numbers indicating: (1) the trip location (2) lower back moved backwards (increasing pitch angle) and rightwards (increasing roll angle) while the

participant fell onto the bed, (3) participant immediately rolled back to mid position (decreasing roll angle) and remained backwards (approximately constant pitch

angle). (B) (top) right and (bottom) left foot tilt angles. The participant recorded: “Walking to back door to let dog in, stepped on cane. Fell on a bed”.

Identifying kinematic characteristics of a trip is an important
step toward automated detection of real-life trips and other
naturally occurring LOBs. Previous studies used machine-
learning algorithms to automatically detect LOBs generated
by young adults acting out different scenarios (e.g., slip, trip,
misstep while walking) (11, 12). While the reported sensitivity
and specificity was higher than 99% in distinguishing near
falls from ADLs (11), the generalizability of these algorithms
to detect LOBs in real life situations and in at-fall risk older
adults is not clear (15). An algorithm to detect missteps
in persons with Parkinson’s disease was developed based on
laboratory data, however, when the algorithm was applied to
daily life conditions, events identified by the algorithm were
labeled as “suspected missteps” due to the lack of information
about context (16). We believe that the proposed approach
that incorporates a voice recorder for time stamping of the

tripping event with IMUs data (signals and animation) improves
the certainty level of identifying trips occurring in real life.
The current study is only the first step toward an algorithm
for automated trip detection. An automated detection of real
world data with greater variability in the trip etiology/context
and then subsequent response presents a major challenge. The
fact that all trips were identified from feet velocities during
swing phase and that we could visually identify them supports
the notion that it may be feasible. Future studies applying
similar methods are needed to acquire a sufficiently large
data set of real-world trips in older adults at risk for falls.
Then, an algorithm for automated trip detection using IMU
data might obviate the need of a voice recorder to provide a
time stamp.

Even as these algorithms are developed, voice recorder
information still adds valuable information regarding trip context
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(as is presented in Table 2). A previous study analyzing real-life
falls captured on video in long-term care facilities revealed that
25% of trips occurred due to the foot being caught on a chair
or table leg (i.e., causing a trip), thus suggesting the need for
improved staff awareness of this hazard, and improvements in
environmental planning and furniture design (35). The context of
the trip which includes the environment (home/outside), specific
location (curb, stairs etc.) the time (morning/night) in addition
to data regarding the amount of trips, the leg that tripped and the
timing of the trip during swing phase may be important clinically
for a personalized fall prevention intervention. For example,
home modifications may be important for a person who trips
at the same location in house. A targeted exercise program may
be useful for a person who repeatedly trips with the same leg.
Should trips be detected automatically in the future, the voice
recorder would not be needed for the time stamp function but
may still play a role in providing vital information regarding
tripping context.

As a first step in characterizing real world LOBs, we focused
on trips because they are an identifiable concept in common
language and represent a unique type of LOBs where the
mechanism is clear. In order to increase the face validity, we
restricted ourselves to analyze only events that were reported as
trips by the participant and by an observer blinded to participant’s
self-report. Further study is needed to identify and characterize
other types of LOBs such as “missteps” or “stumbles,” broader
terms that might suggest LOBs caused by different mechanisms,
thereby resulting in different kinematic characteristics.

While in the current study most trips have been recovered
(17/18 trips), one trip resulted in a fall onto a bed. An
important characteristic that distinguished this trip from trips
that were recovered was the fact that during the fall, the
lower back and the foot orientations were in an inclination
angle for a sustained period of time indicating that the
participant was no longer standing. Although it is possible
that the participant might have chosen to get in such body
configuration intentionally (i.e., when going to bed), the
time that it took to get into that condition was very short
and the participant rapidly returned to an upright position
(Figure 4).

Regarding the number of sensors and body locations needed
to identify LOBs, previous studies have demonstrated the
feasibility of LOBs detection using one sensor (6, 12, 13).
However, these LOBs were induced in laboratory settings and
may not provide sufficient data to detect real world LOBs.
Adding more sensors for the detection of real-world LOBs
might improve detection accuracy. Here we used four sensors
attached to the feet, lower back and wrist. We found that
identifying trips was based mainly on data obtained from
feet and lower back, which could lead to future studies
with fewer IMUs worn. This is in line with a previous
study demonstrating that in comparison to other sensor
locations, feet kinematics were essential to identify near-
falls (11).

Several limitations of the study should be acknowledged. First,
our sample size was small, and restricted to independent living,
older adults at higher fall risk. Yet, it demonstrates the feasibility

of our approach. Further study with larger sample sizes and other
at-fall risk populations is needed. Second, most trips did not
result in falls. The extent to which the observed signals would
persist had the LOBs resulted in falls is not clear although we
would expect that the accelerations related to a fall would be
even greater following the initial trip. Previous studies (7–10) link
losses of balance to eventual falls, and the methods provided here
can lead to an estimate of fall risk. Furthermore, while trips do
not account for all falls, they (1) represent an important cause of
falls (36), and (2) are the target for an emerging area of training
(perturbation training) that has been found to reduce falls (37).
Thus, study of the processes underlying real world trip LOBs
and recovery is important. Third, in order to increase certainty
level of analyzing trips (and not other LOB types), we analyzed
only events that were reported as trips by the participant and that
were classified as trips in review of IMU signals. However, there
were four cases that were reported as trips by the participants
that were not evident in the IMU analyses. These cases might
represent trips that were outside the viewing epoch because the
participant delayed recording the event. In one case, there were
no walking segments during the 10min epoch, thus increasing
our suspicion that the participant delayed recording the event.
The IMUs are sensitive to capture even small kinematic changes,
however LOBs that produce little overall motion variation may
still go undetected as they could be considered normal motion
by the observer. Fourth, we acknowledge that our approach
depends on identification of the LOB using foot velocities;
given that the focus of our study was on trips, this signal was
the most likely indicator that a trip may have occurred. We
believe that our approach is still valid with other foot initiated
LOBs such as slips, and even trunk initiated LOBs that require
compensatory foot motion (e.g., fast abnormal steps). However,
we recognize that our method has limitations in other LOB cases
that produce little or no foot motion variation such as losing
balance while trying to stand. The fifth limitation is the reliance
on visual inspection of the IMU data for the trips. This reliance
may be reduced dramatically in the future by algorithms for
automatic trip detection. This would also require testing the
algorithm’s sensitivity and specificity in distinguishing trips from
activities of daily living (ADLs). Nevertheless, there may also
be a need in the future for at least some visual confirmation
of automatically detected trips. Furthermore, it is unlikely that
these algorithms can adequately substitute for the rich context
information provided by the voice recording.

CONCLUSIONS

Our approach demonstrates the feasibility of identifying and
studying the mechanisms and context underlying trip-related
LOBs in at-fall risk older adults during real-world activities. To
our knowledge this is the first study seeking to identify real-
world trips in at-fall risk older adults. Trips were identified from
feet and lower back IMUs, indicating abrupt deviations from
the typical foot velocity signal during swing phase (additional
peaks) and in lower back pitch angles. Our long-term goal is to
increase the sample size and develop an algorithm for automated
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detection of real-world LOBs and trips in particular. Better
understanding of real world trips would be useful in determining
the outcomes of reactive balance training protocols (19, 37).
These data can also provide insight into the frequency, type and
characteristics of real world LOBs and recovery and might then
provide a more precise estimate of fall risk and lead to more
customized treatment for fall prevention.
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Representative examples of animations used to corroborate
the occurrence of trips. The animationwas viewed using amotion
animation visualizer [Mokka, MOtion Kinematic & Kinetic
Analyzer, Biomechanical ToolKit (BTK)].

Video S1 | Demonstrating a trip while walking. Left foot (blue) tripped at 534.89 s

(time is presented at the bottom left) IMU data for this video are presented in

Figure 2A. Participant’s description: “Caught foot under carpet, stumbled”.

Video S2 | Demonstrating a trip while climbing stairs. Right foot (green) tripped at

592.24 s (time is presented at the bottom left) (IMU data for this video are

presented in Figure 3A). Participant’s description: “Stumbled going

upstairs, tripped”.

Figure S1 | Data demonstrating trips occurring at different swing phases. (A1) A

sudden change in right foot’s velocity during mid swing (immediately after peak

velocity) while climbing stairs (stereotypical velocity profile of climbing stairs

contains short periods of nearly constant velocity); (A2) Right foot sensor raw

data; (A3) Left foot sensor raw data; (B1) a sudden change in velocity of the left

foot during mid swing (i.e., the foot almost reached maximal velocity), then the foot

landed on the ground (foot velocity equal to zero) and a fast, compensatory step

with the same foot was performed; (B2) Right foot sensor raw data; (B3) Left foot

sensor raw data; (C1) a sudden change in maximal velocity of the left foot during

terminal swing. An increased velocity of the contralateral (right) foot afterwards;

(C2) Right foot sensor raw data; (C3) Left foot sensor raw data. (A1, B1, C1)

Magnitude of foot velocity corresponding to right and left foot. The dots indicate

instances during the stance phase where the foot was stationary. Arrow indicates

the trip location. Participant’s self-report: (A) “Stumbled going upstairs, tripped”;

(B) “scuffed foot on floor, toe wouldn’t slide”; (C) “stepped in hole, tripped”.
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