
Linear Mixed-Effect Models Through
the Lens of Hardy–Weinberg
Disequilibrium
Lin Zhang 1 and Lei Sun 1,2*

1Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada, 2Division of Biostatistics, Dalla Lana School of
Public Health, University of Toronto, Toronto, ON, Canada

For genetic association studies with related individuals, the linear mixed-effect model is the
most commonly used method. In this report, we show that contrary to the popular belief,
this standard method can be sensitive to departure from Hardy–Weinberg equilibrium
(i.e., Hardy–Weinberg disequilibrium) at the causal SNPs in two ways. First, when the trait
heritability is treated as a nuisance parameter, although the association test has correct
type I error control, the resulting heritability estimate can be biased, often upward, in the
presence of Hardy–Weinberg disequilibrium. Second, if the true heritability is used in the
linear mixed-effect model, then the corresponding association test can be biased in the
presence of Hardy–Weinberg disequilibrium. We provide some analytical insights along
with supporting empirical results from simulation and application studies.

Keywords: genome-wide association study, dependent sample, robust association analysis, heritability estimate,
Hardy–Weinberg equilibrium

1 INTRODUCTION

Genetic association tests are often derived from a regression model, regressing the phenotypic data
of a complex trait (Y) on the genotypic data of a single-nucleotide polymorphism (SNP; G), as well
as on the covariate data of important environmental factors (Z). When individuals in a sample are
genetically related with each other, the linear mixed-effect model (LMM) is the most commonly
used method for genome-wide association studies (GWAS) (Eu-Ahsunthornwattana et al., 2014).
The variance–covariance matrix of the regression model is partitioned into a weighted sum of the
genetic correlation matrix and the correlation matrix due to shared environmental effects. The
genetic correlation matrix is typically represented by the kinship coefficient matrix, which is either
inferred from the (correctly) known pedigree structure or estimated based on the available
genome-wide genetic data (Yang et al., 2011; Dimitromanolakis et al., 2019). The weight for the
genetic correlation matrix is referred to as the heritability of the trait (Visscher et al., 2006; Visscher
et al., 2008); Falconer (1985) gave a theoretical modeling of the variance partition, which sets the
foundation for heritability.

It is commonly assumed that these regression-based association tests are robust to departure from
Hardy–Weinberg equilibrium (HWE) (Sasieni, 1997). HWE states that the two alleles in a genotype
are independent draws from the same Bernoulli distribution, or, equivalently, genotype frequencies
depend solely on the allele frequencies (Hardy et al., 1908; Weinberg, 1908). For a biallelic SNP with
two possible alleles A and a, let p and 1 − p be the population allele frequencies, respectively. Under
HWE, paa = (1 − p)2, pAa = 2p(1 − p), and pAA = p2, where paa, pAa, and pAA are the population
genotype frequencies of genotypes aa, Aa, and AA, respectively. To quantify the departure from
HWE or the amount of Hardy–Weinberg disequilibrium (HWD),
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δ � pAA − p2 (1)
is a widely used measure (Weir, 1996), and δ = 0 indicates HWE
holds. We note that a) HWE is also known as Hardy–Weinberg
proportion and b) δ is also known as p(1 − p)F, where F is the
inbreeding coefficient (Powell et al., 2010). Equivalently, instead
of quantifying the genotype frequencies as paa = (1 − p)2 + δ, pAa =
2p(1 − p) − 2δ, and pAA = p2 + δ based on δ (Weir, 1996), we can
define them based on F as paa = (1 − p)2 + p(1 − p)F, pAa = 2p(1 −
p)(1 − F), and pAA = p2 + p(1 − p)F (Powell et al., 2010). As the
classical Pearson χ2 HWE testing is based on comparing the
observed genotype counts with the expected under HWE (Zhang
and Sun, 2021); we thus chose δ for this work to be consistent with
the GWAS literature.

A truly associated or causal SNP can be out of HWE (Wittke-
Thompson et al., 2005; Ryckman and Williams, 2008; Turner
et al., 2011), which is often overlooked but an important
consideration when studying a method’s robustness to HWD.
Note that the HWD attributed to true association is typically not
as extreme as the HWD caused by genotyping errors (Zhang and
Sun, 2020). Thus, true HWD can remain in a “cleaned” dataset
after applying the standard HWD-based quality control screening
using a stringent p-value threshold [e.g., 10–12 for an application
of the UK Biobank data by Bycroft et al. (2018)]. With a sample of
independent individuals, both theoretical and empirical results
support that genotype-based association tests are robust to HWD
(Sasieni, 1997; Schaid and Jacobsen, 1999; Zhang, 2021).
However, in the presence of sample dependency, little has
been discussed.

In this report, we first provide some analytical insights on why
the standard LMM can be sensitive to HWD in pedigree data in
contrast to when analyzing a sample of unrelated individuals. We
then demonstrate with a simple sib-pair design that 1) when the
heritability is estimated from the data as in practice, although the
empirical type I error rate of the LMM is well controlled, the
estimated heritability is biased, often upward biased; 2) when the
true heritability is known and used, the empirical type I error rate
of the LMM is then inflated when δ > 0, and deflated if δ < 0. The
result of 2) is novel, but it is mostly of an academic interest as the
true heritability of a trait is often unknown in practice. On the
other hand, the result of 1) has important practical implications
because if the estimate of a trait heritability is larger than the true
value, then it helps explain some of the “missing heritability”
(Manolio et al., 2009); the insightful work of Chen (2014) “discuss
[es] the circumstances in which the HE [Haseman-Elston]
regression and the mixed linear model are equivalent.”

2 METHODS

2.1 Traditional Y ~ G Model With
Independent Samples, T Indep, Is Robust
to HWD
Let Y be a (continuous) trait of interest, and G = 0, 1, and 2,
respectively, for the genotypes aa, Aa, and AA of a SNP.
Additionally, for notation simplicity but without loss of

generality, we assume that there is only one additional covariate,
denoted by Z. With a sample of n unrelated individuals, the
traditional genotype-based association analysis assumes that

y � αp1 + βpg + γpz + ϵp, ϵp ~ N 0, σp2I( ), (2)
where y = (y1, y2,. . ., yn) is a n × 1 vector for the phenotypic values,
1 is a n × 1 vector of 1’s, g = (g1, g2,. . ., gn) is a n × 1 vector for the
genotypes of the SNP, z = (z1, z2,. . ., zn) is a n × 1 vector for the
covariate values, ϵ* is the error term with variance σ*2, and I is the
identity matrix.

Score-based tests are often used for genetic association
analyses (Derkach et al., 2015). In this case, the score statistic
of testing H0: β* = 0 can be easily derived as

T indep � n

·
g − �g1( )T y − �y1( ) − g−�g1( )T z−�z1( ) y−�y1( )T z−�z1( )

z−�z1( )T z−�z1( ){ }2

g − �g1( )T g − �g1( ) − g−�g1( )T z−�z1( ){ }2
z−�z1( )T z−�z1( )[ ] y − �y1( )T y − �y1( ) − y−�y1( )T z−�z1( ){ }2

z−�z1( )T z−�z1( )[ ]
.

(3)

To observe T indep’s connection with Hardy–Weinberg
disequilibrium, it is instructive to employ some algebraic tricks
and show that

1
n

g − �g1( )T g − �g1( ) � v̂ar G( ) � 2 p̂ 1 − p̂( ) + p̂AA − p̂2( )( )
� 2 p̂ 1 − p̂( ) + δ̂( ).

Because δ̂ � p̂AA − p̂2 measures the amount of HWD present
in the data (Weir, 1996), T indep inherently adjusts for departure
from HWE through v̂ar(G) � 2(p̂(1 − p̂) + δ̂). As a result, the
traditional genotype-based association test is robust to HWD in
independent samples.

When Y is binary, the classic logistic regression is commonly used.
However, Chen (1983) showed that under some regularity conditions,
the score test statistics have an identical form for the exponential family
in independent samples, which was recently validated by Zhang and
Sun (2021) for genetic association studies. Additionally, Derkach et al.
(2015) showed that for Y-dependent sampling, “the score statistics are
identical for conditional and full likelihood approaches, and are of the
same form as those for ordinary random sampling.” Thus, in terms of
association testing (not genetic effect estimation), we can conclude that
genotype-based association studies of binary traits in independent
samples are also robust to HWD.

2.2 Linear Mixed-Effect Model With
Dependent Samples, T LMM, Can Be
Sensitive to HWD
Although a pedigree-based study design is rare for genome-wide
association studies, individuals can be (cryptically) related with
each other even in population-based GWAS (Sun et al., 2017).
Omitting related individuals simplifies the association analysis
but reduces the sample size and thus power. Instead, ΣΦ, the
kinship coefficient matrix, can be estimated using the available
genome-wide data to capture the sample relatedness between the
n individuals (Visscher et al., 2006; Yang et al., 2011). The
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association analysis using the full sample can be conducted using
the linear mixed-effect model.

y � αp1 + βpg + γpz + ϵp,
where ϵp ~ N 0, σ2

yΣy( ) and Σy � h2ΣΦ + 1 − h2( )I. (4)

Compared with the linear model used for independent samples,
var(ϵ*) = σ*2I in Eq. 2 is replaced by σ2yΣy to reflect the sample
dependence. The matrix Σy is a weighted average of two
components, where ΣΦ reflects the sample relatedness; naturally,
the model is reduced to the linear model of Eq. 2 for independent
samples whenΣΦ = I. The weight h2 is interpreted as the heritability
of the trait (Visscher et al., 2008), h2σ2y as the phenotypic variation
due to (additive) genetic variation, and (1 − h2)σ2y � σ2e as the
phenotypic variation due to environmental variation. The matrix
ΣΦ is the kinship matrix, where ΣΦ(i, j) = 2ϕi,j and ϕi,j is the kinship
coefficient between the ith and jth samples.

By convention, h2 is defined as

h2 � ∑β2kvar Gk( )
var Y( ) � ∑β2k2pk 1 − pk( )

∑β2k2pk 1 − pk( ) + σ2e
,

where there could bemultiple causal SNPs, k = 1,. . ., S. In reality, h2 is
estimated by the correlation between phenotypes of related
individuals. Consider the simple case of sibling pairs, and let Y1
andY2 be the phenotypes for sib 1 and sib 2, respectively. Allowing for
HWD and adjusting for the kinship coefficient ϕ, the estimated h2 is

ĥ
2 � ĉorr Y1, Y2( )/2ϕ,

where corr(Y1, Y2) depends on the correlation between G1k and G2k

between the siblings; see Zhang and Sun (2021) for the derivation of
corr(G1k, G2k) accounting for kinship coefficient and HWD. Thus,

E ĥ
2( )

h2
� ∑β2k2 pk 1 − pk( ) + δk( )

∑β2k2pk 1 − pk( ) ,

and the bias of the h2 estimate is

E ĥ
2( ) − h2 � h2 · ∑β2kδk∑β2kpk 1 − pk( ). (5)

Under the simple case of one causal SNP, the bias is simplified to
h2 · δ/(p(1 − p)).

Given the analytical insights provided so far, we then briefly
examine the empirical properties of T LMM through both
application and simulation studies.

3 RESULTS

3.1 Cystic Fibrosis Sib-Pair Data
Application: TLMM Has Correct Type I Error
but h2 Appears to Be Overestimated
We extracted 65 sibling pairs from a cystic fibrosis (CF) gene
modifier study (Wright et al., 2011; Sun et al., 2012). The
phenotype Y of interest is the lung function measurements of

the 130 related individuals with CF. In total, there were 570,539
SNPs genotyped using the Illumina 610-Quad Beadchip after
applying the standard quality control, including minor allele
frequency (MAF) greater than 2%. To stabilize the variance
estimation, we additionally required SNPs to have MAF greater
than 5%. We then applied T LMM to the remaining 505,172 SNPs.
In the application, we treated h2 as unknown and estimated it based
on the linear mixed-effect model of Eq. 4 as in convention.

When h2 was estimated from the data, our association testing
based on T LMM had good type I error control (results not shown),
consistent with the empirical observations in the GWAS literature.
However, the estimated h2, obtained using the 65-pair sibling data,
is ĥ

2 � 0.82. This value is substantially greater than 0.5, the
commonly believed “true” heritability of lung function in CF
obtained from the classic monozygous (MZ) vs. dizygous (DZ)
twin-based estimation method (Vanscoy et al., 2007).

To verify if the large heritability estimate from the LMM
method in our application was due to chance, we conducted a
proof-of-principle simulation study. We assumed that only one
causal SNP, Gcausal with MAF of 0.2, affects Y with h2 = 0.5.
Genotype and phenotype values for 65 sibling pairs were then
simulated under the assumption of HWE (i.e., without HWD).
Among the 100,000 independently simulated replicates, only
4.24% of the heritability estimates were greater than ĥ

2 � 0.82.
This suggests that ĥ

2 � 0.82, the value that was observed in the CF
data application, was unlikely if the true heritability was 0.5 and
without HWD at the causal SNP.

To verify if HWD at the causal SNP can lead to a biased
heritability estimate, we then conducted additional simulation
studies, following the same sib-pair design as mentioned
previously. Our goal is to demonstrate that 1) when h2 is
treated as a nuisance parameter, its estimate based on model
(Eq. 4) cross-reference can be biased in the presence of HWD;
and 2) assuming the true h2 is known, the empirical type I error
rate of LMM (Eq. 4) cross-reference inflates when δ > 0 and
deflates when δ < 0.

3.2 Simulated Sib-Pair Data in the Presence
of HWD: h2 Estimate Is Biased
Consider a continuous trait Y with h2 = 0.5 and influenced by one
causal SNP, Gcausal, with minor allele frequency of 0.2 and with
HWD factor, δcausal, ranging from −0.04 to 0.16. A non-associated
SNP, Gtested, also has anMAF of 0.2 but with its own δtested, which
may not be the same as δ causal in a specific simulation study. The
sample size was 65 sibling pairs, chosen to match with the sample
size of the cystic fibrosis application study in Section 3.1.

Most practical implementations of the linear mixed-effect
model (Eq. 4) cross-reference treat h2 as a nuisance
parameter, and no type I error issue has been reported.
Indeed, when h2 was estimated in our simulation study
conducted in Section 3.3, the test size of T LMM was correct at
the nominal level (black squares in Figure 3 shown in Section
3.3) even if δtested ≠ 0 (i.e., out of HWE) and across the range of
δcausal values (from −0.04 to 0.16).

However, in this situation, when h2 is treated as unknown, the
impact of HWD is on the estimation of h2. Specifically, Figure 1
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shows that ĥ
2
is downward biasedwhen δcausal< 0, and upward biased

if δcausal > 0. The bias can be substantial. For example, when δ causal =
0.10, the estimated heritability ĥ

2
is centered at 0.80 as compared to

the true value of 0.5, with a bias of 0.30. Indeed, based on our
theoretical insight in Section 2.2, the expected bias is h2 · δ/(p(1− p)) =
0.5 · 0.1/(0.2(1–0.2)) = 0.31.

In Figure 1, it is notable that ĥ
2
can be greater than one. Since h2 is

the proportion of variance in Y explained by additive genetic variation,
0 ≤ h2 ≤ 1 by definition. However, if δcausal ≠ 0, ĥ

2
based on the LMM,

without additional truncation, is a biased estimate ofh2with a bias ofh2

· δ/(p(1− p)) for this sib-pair design as shown in Section 2.2; the bias is
0 (i.e., no bias) under HWE when δ = 0.

Additionally, although a larger sample that consists of 5,000
sibling pairs shrinks the variance of the h2 estimate as expected, it
does not shrink the bias, as shown in Figure 2. However, we also
note that, in practice, it is unlikely to have so many sibling pairs.

3.3 Simulated Sib-Pair Data in the Presence
of HWD:WhenUsing the True h2 Value T LMM

Has Incorrect Test Size
Here, we conducted the association analysis between Y and the
non-associated SNP, Gtested, using the LMM model of Eq. 4 but
assuming h2 = 0.5 is known.

Figure 3A plots the empirical type I error rates (blue circles) of
T LMM using the true h2 = 0.5, for a nominal level of 0.05,
estimated from independently simulated 10,000 replicates
for each δcausal value. (An empirical type I error greater than
0.05 + 3 · 0.002 = 0.056 can be considered inflated as the standard
error of the empirical type I error rate can be estimated as��������������
0.05 · 0.95/10000√ � 0.002.) In Figure 3A, the trend of type I

error inflation is clear as δcausal increases.
In Figure 3A, we set δtested = 0.06, but we note that the main

cause of the type I error issue is δcausal ≠ 0 when using the LMM of
Eq. 4 with h2 = 0.5 plugged in. Indeed, Figure 3B shows that even
if Gtested is in HWE (i.e., δtested = 0), the problem remains, albeit
less severe, as long as δcausal ≠ 0.

4 DISCUSSION

We used a sib-pair design to demonstrate that the linear mixed-
effect model can be problematic in the presence of
Hardy–Weinberg disequilibrium at the causal SNP(s). To
demonstrate that the LMM-based heritability estimate can be
biased, as a proof-of-principle, our simulation study assumed that
the phenotype Y has only one causal SNP, which is unrealistic for
complex traits. However, the analytical insight shown in Eq. 5

FIGURE 1 | Box plots of ĥ
2
, estimated from the linear mixed-effect model (Eq. 4) against δcausal. The true heritability of the phenotype is h2 = 0.5. The minor allele

frequencies pcausal = ptested = 0.2 and 10,000 independent replicates of phenotypes and genotypes for 65 sibling pairs were simulated for each δcausal value. The empirical
type 1 error rates are shown in Figure 3 as black squares.
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(i.e., bias expected to be h2 ·∑ β2kδk/∑ β2kpk(1 − pk)) suggests
that the issue discussed here remains relevant in the case of
multiple causal SNPs as ∑ β2kδk is unlikely to be zero, even while
allowing the signs of δk to differ.

Assuming the true heritability h2 is known, we also
demonstrated the potential type I error issue of the LMM in
the presence of HWD using data that consist of related
individuals only. In practice, this issue diminishes if the
sample includes a large number of independent individuals
or the magnitude of HWD at the causal SNP is small.
Additionally, in practice, h2 is treated as unknown, in which
case, the type I error rate of the LMM is well controlled; indeed,
no increased false positives of the LMM due to HWD have been
reported in the literature to the best of our knowledge. However,
the estimate of h2 can be upward biased and upwardly so if
δcausal > 0, as demonstrated in the simulation study in Section
3.2 and seen in the cystic fibrosis application study in Section
3.1. This new observation offers a possible complementary
explanation of the “missing heritability” discussed extensively
in Maher (2008).

In practice, SNPs out of HWE are typically not analyzed due to
concerns for low genotyping quality (Wellcome Trust Case
Control Consortium, 2007; Bycroft et al., 2018; Marees et al.,
2018). However, the observation made here remains relevant as
the heritability estimates in LMM-based models are biased when
the causal SNPs are in HWD (which is unknown in practice) but
not the tested SNPs. This is also supported by Figure 3B. When
there was HWD at the causal SNP (e.g., δcausal = 0.10 on the
X-axis), there was a type I error issue even if there was noHWD at
the tested SNP (i.e., δtested = 0). Conversely, Figure 3A shows that
if there was no HWD at the causal SNP (i.e., δcausal = 0 on the
X-axis), then the test is accurate even if there was HWD at the
tested SNP (δtested = 0.06).

Additionally, the HWE-based screening practice itself can be
called into question because a truly associated SNP is often in
HWD (Wittke-Thompson et al., 2005; Ryckman and Williams,
2008; Turner et al., 2011). The potential of leveraging the HWD
expected at a causal SNP to increase the power of association
testing has been explored by several groups (Song and Elston,
2006; Wang and Shete, 2008; Zhang and Sun, 2020).

FIGURE 2 | Box plots of ĥ
2
, estimated from the linear mixed-effect model (Eq. 4) against δcausal using 5,000 sibling pairs. The other parameter values are the same

as in Figure 1, where the true heritability of the phenotype is h2 = 0.5, the minor allele frequencies pcausal = ptested = 0.2, and 10,000 independent replicates were
simulated for each δcausal value.
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We have not examined the implication of HWD combined
with linkage disequilibrium (LD) (Weir, 2008) on the LMM,
which is an important future research question. Additionally,
recent work has shown that dominant genetic effect could
complicate the LD measure and interpretation (Palmer et al.,
2021), which in turn could affect our examination of the effect of
HWD on the LMM.

Although the linear mixed-effect model is a popular and
powerful method for GWAS, conceptually, the use of kinship
coefficient matrix (i.e., ΣΦ), derived from G, as part of the
variance–covariance matrix (i.e., Σy) of the LMM can be
problematic because the response variable Y is the
phenotype of interest. An alternative approach is to
reverse the roles of Y and G in the regression model.
Indeed, O’Reilly et al. (2012) proposed MultiPhen, a
method that treats the genotype G of an SNP as the
response variable and phenotype values Y of multiple
traits as predictors, and uses an ordinal logistic regression
applicable to independent samples. More recently, Zhang
(2021) (Chapter 2) proposed a generalized reverse (or
retrospective) regression model that can be applied to
dependent samples, which takes the form of

g � α1 + βy + γz + ϵ, ϵ ~ N 0, σ2Σg( ), σ2Σg � σ2ΣΦ + Σδ ,

(6)
where ΣΦ is the kinship coefficient matrix as defined earlier and
Σδ is a function of δ that explicitly models the amount of HWD;
the use of a linear model for the discrete genotype data G is
motivated by the work of Chen (1983).

Interestingly, if the variance and covariance matrices in
Eqs 4, 6 of the LMM were the same, the resulting score test
statistics are also the same. However, conceptually, the model
Eq. 6 correctly uses the kinship coefficient matrix to model
the response variable G, in contrast to the LMM model of
Eq. 4. Specifically, at a tested SNP, as the reverse regression is
conditional on Y, the variance–covariance matrix only
concerns Gtested, that is, Σg. The modeling and estimation
of Σg can account for potential HWD through Σδ, in addition
to the genetic correlation captured by the kinship coefficient
matrix of ΣΦ, resulting in a more robust association test for
related individuals. Indeed, when the method was applied to
the same simulated sib-pair data in Section 3.3, it had correct
type I error control [results shown in Figure 2.2 of Chapter 2
of Zhang (2021)]. However, how to model gene–environment
interaction through the reverse regression framework
remains an open question.

DATA AVAILABILITY STATEMENT

The data analyzed in this study are subject to the following
licenses/restrictions: The CF application data are available by
application to the Cystic Fibrosis Canada National data
registry for researchers who meet the criteria for access to
confidential clinical data for the purpose of CF research.
Requests to access these datasets should be directed to
cfregistry@cysticfibrosis.ca.
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