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Abstract: Vortioxetine is a multimodal antidepressant drug that affects several brain neurochemi-
cals and has the potential to induce various pharmacological effects on the central nervous system.
Therefore, we investigated the centrally mediated analgesic efficacy of this drug and the mechanisms
underlying this effect. Analgesic activity of vortioxetine (5, 10 and 20 mg/kg, p.o.) was examined
by tail-clip, tail-immersion and hot-plate tests. Motor performance of animals was evaluated us-
ing Rota-rod device. Time course measurements (30–180 min) showed that vortioxetine (10 and
20 mg/kg) administrations significantly increased the response latency, percent maximum possible
effect and area under the curve values in all of the nociceptive tests. These data pointed out the
analgesic effect of vortioxetine on central pathways carrying acute thermal and mechanical nocicep-
tive stimuli. Vortioxetine did not alter the motor coordination of mice indicating that the analgesic
activity of this drug was specific. In mechanistic studies, pre-treatments with p-chlorophenylalanine
(serotonin-synthesis inhibitor), NAN-190 (serotonin 5-HT1A receptor antagonist), α-methyl-para-
tyrosine (catecholamine-synthesis inhibitor), phentolamine (non-selective α-adrenoceptor blocker),
and naloxone (non-selective opioid receptor blocker) antagonised the vortioxetine-induced analgesia.
Obtained findings indicated that vortioxetine-induced analgesia is mediated by 5-HT1A serotonergic,
α-adrenergic and opioidergic receptors, and contributions of central serotonergic and catecholamin-
ergic neurotransmissions are critical for this effect.
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1. Introduction

Vortioxetine, an antidepressant drug, was licensed by the Food and Drug Adminis-
tration (FDA) in September 2013 and the European Medicines Agency (EMA) in October
2013. This drug has been approved for treating major depressive disorder in adults under
the trade names Brintellix® and Trintellix® [1,2]. Vortioxetine is a serotonergic modulator
with antagonistic effects on serotonergic 5-HT3, 5-HT7, and 5-HT1D, agonistic effects on
serotonergic 5-HT1A, and partial agonistic effects on serotonergic 5-HT1B receptor subtypes.
It also has a potent inhibitory effect on serotonin transporters [2].

Vortioxetine alters neurotransmitter levels in several brain regions. In microdialy-
sis experiments, this drug was found to enhance extracellular serotonin, dopamine, and
noradrenaline levels in the medial prefrontal cortex and ventral hippocampus of the rat
brain [3]. Moreover acute vortioxetine administration increases serotonin levels in the
nucleus accumbens [4]. The vortioxetine-induced increase in neurotransmitter levels is
associated with the 5-HT3 receptor antagonistic and 5-HT1A agonistic activities of this drug
because these receptors are involved in regulating neurotransmitter release in multiple
brain regions [5]. In addition to the serotonergic and catecholaminergic systems, vortiox-
etine also affects some other neurotransmitter systems in the brain. This drug has been
suggested to increase extracellular acetylcholine and histamine levels in the rat medial
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prefrontal cortex [6] and modulate GABAergic and glutamatergic neurotransmissions in
the brain [7].

As a drug affecting several brain neurochemicals, vortioxetine is expected to have
a broad pharmacological activity spectrum in the central nervous system (CNS). Recent
studies have shown that this molecule does indeed have anxiolytic [8], anti-panic [9],
cognitive enhancing [8] and anti-epileptic [10] activities in association with the CNS. More-
over, as an antidepressant drug, vortioxetine has also the potential to block nociceptive
signals by enhancing the pain suppression pathways of the CNS [11,12]. This knowledge
suggests that a multimodal antidepressant drug as vortioxetine could has an analgesic
activity mediated by central mechanisms. However, the analgesic efficacy of this drug
on acute mechanical and thermal nociceptive stimuli together with the underlying phar-
macological mechanisms has not been demonstrated, so far. Therefore, in this study, we
investigated whether vortioxetine has central analgesic activity. Moreover, possible involve-
ments of serotonergic, catecholaminergic and opioidergic systems in the analgesic effect of
this drug were elucidated by mechanism studies performed with p-chlorophenylalanine
(PCPA, serotonin-synthesis inhibitor), NAN-190 (serotonin 5-HT1A receptor antagonist),
α-methyl-para-tyrosine (AMPT, catecholamine-synthesis inhibitor), phentolamine (non-
selective α-adrenoceptor blocker), propranolol (non-selective β-adrenoceptor blocker), and
naloxone (non-selective opioid receptor blocker).

2. Results
2.1. Motor Coordination
Rota-Rod Test

The effects of acute administrations of vortioxetine (5, 10 and 20 mg/kg), diazepam,
PCPA, NAN-190, AMPT, phentolamine, propranolol, and naloxone on the falling latencies
of the mice, as assessed using the Rota-rod device, are shown in Figure 1 [F (10, 66) = 14.48,
p < 0.001]. Tukey’s HSD test for multiple comparisons showed that the motor-coordination
parameters of the mice administered vortioxetine, PCPA, NAN-190, AMPT, phentolamine,
propranolol, and naloxone did not significantly differ from those of the control group mice.
Diazepam at 2 mg/kg dose impaired the motor performances of mice, as expected.
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mg/kg, 4 day, i.p.), NAN-190 (0.5 mg/kg, i.p.), AMPT (100 mg/kg, i.p.), phentolamine (4 mg/kg, 
i.p.), propranolol (2 mg/kg, i.p.), and naloxone (5.48 mg/kg, i.p.) administrations on motor coordi-
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Figure 1. The effects of diazepam (2 mg/kg, p.o.), vortioxetine (5, 10 and 20 mg/kg, p.o.), PCPA (100 mg/kg, 4 day, i.p.),
NAN-190 (0.5 mg/kg, i.p.), AMPT (100 mg/kg, i.p.), phentolamine (4 mg/kg, i.p.), propranolol (2 mg/kg, i.p.), and naloxone
(5.48 mg/kg, i.p.) administrations on motor coordination parameters of mice in the Rota-Rod Test. Significant difference
against control group *** p < 0.001, One way ANOVA, post-hoc Tukey test, n = 7.
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2.2. Analgesic Activity
2.2.1. Analgesic Effect of Vortioxetine on Mechanical Noxious Stimuli-Induced Pain Behavior

The effects of acute vortioxetine (5, 10 and 20 mg/kg) administrations on response
latency, MPE% and AUC values obtained from the tail-clip tests are shown in Figure 2.
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Figure 2. The effects of morphine (10 mg/kg, i.p.) and vortioxetine (5, 10 and 20 mg/kg, p.o.)
administrations on latency (A), MPE% (B) and AUC (C) values of mice in the tail-clip test (mechanical
nociception). (A) and (B): Significant difference against control group at 30th min * p < 0.05, ** p < 0.01,
*** p < 0.001; at 60th min & p < 0.05, && p < 0.01, &&& p < 0.001; at 90th min éé p < 0.01, ééé p < 0.001; at
120th min ˆ p < 0.05, ˆˆ p < 0.01, ˆˆˆ p < 0.001; at 180th min + p < 0.05; ++ p < 0.01. Two-way repeated
ANOVA, post-hoc Tukey test, n = 7. (C): Significant difference against control group ** p < 0.01,
*** p < 0.001; One-way ANOVA, post-hoc Tukey test, n = 7.
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Two-way repeated ANOVA analysis indicated that both of the treatment ([F (4, 30) = 16.95,
p < 0.001]) and time ([F (3.084, 92.51) = 83.55, p < 0.001]) factors affected the response latency
values in the tail-clip tests. There was a significant interaction between treatment and time
factors ([F (20, 150) = 11.33, p < 0.001]) (Figure 2A). Treatment ([F (4, 30) = 42.94, p < 0.001])
and time ([F (2.879, 86.37) = 39.47, p < 0.001]) factors also affected the MPE% values in
the same test with a significant interaction between them ([F (16, 120) = 6.85, p < 0.001])
(Figure 2B). Besides, vortioxetine administrated at 10 mg/kg (p < 0.01) and 20 mg/kg
(p < 0.001) doses caused significant increase in the AUC values compared to the control
group ([F (4, 150) = 18.54, p < 0.001]) (Figure 2C).

2.2.2. Spinally Mediated Analgesic Effect of Vortioxetine on Thermal Noxious Stimuli-Induced
Pain Behavior

The effects of acute vortioxetine (5, 10 and 20 mg/kg) administration on response latency,
MPE% and AUC values obtained from the tail-immersion tests are shown in Figure 3.

Two-way repeated ANOVA analysis indicated that both of the treatment ([F (4, 30) = 51.42,
p < 0.001]) and time ([F (3.154, 94.63) = 64.26, p < 0.001]) factors affected the response latency
values in the tail-immersion tests. There was a significant interaction between treatment
and time factors ([F (20, 150) = 8.925, p < 0.001]) (Figure 3A). Treatment ([F (4, 30) = 38.0,
p < 0.001]) and time ([F (2.858, 85.74) = 29.5, p < 0.001]) factors also affected the MPE%
values in the same test with a significant interaction between them ([F (16, 120) = 6.716,
p < 0.001]) (Figure 3B). Besides, vortioxetine administrated at 10 mg/kg (p < 0.01) and
20 mg/kg (p < 0.001) doses caused significant increase in the AUC values compared to the
control group ([F (4, 150) = 13.98, p < 0.001]) (Figure 3C).

2.2.3. Supraspinally Mediated Analgesic Effect of Vortioxetine on Thermal Noxious
Stimuli-Induced Pain Behavior

The effects of acute vortioxetine (5, 10 and 20 mg/kg) administration on response
latency, MPE% and AUC values obtained from the hot-plate tests are shown in Figure 4.

Two-way repeated ANOVA analysis indicated that both of the treatment ([F (4, 30) = 12.53,
p < 0.001]) and time ([F (3.958, 118.8) = 68.46, p < 0.001]) factors affected the response
latency values in the hot-plate tests. There was a significant interaction between treatment
and time factors ([F (20, 150) = 5.304, p < 0.001]) (Figure 4A). Treatment ([F (4, 30) = 23.57,
p < 0.001]) and time ([F (3.366, 101.0) = 28.08, p < 0.001]) factors also affected the MPE%
values in the same test with a significant interaction between them ([F (16, 120) = 2.986,
p < 0.001]) (Figure 4B). Besides, vortioxetine administrated at 10 mg/kg (p < 0.05) and
20 mg/kg (p < 0.001) doses caused significant increase in the AUC values compared to the
control group ([F (4, 150) = 10.71, p < 0.001]) (Figure 4C).

In all of the three nociceptive tests, results of the multiple comparison analysis showed
that vortioxetine at its 20 mg/kg dose, significantly increased the response latencies and
MPE% values with respect to the corresponding control levels, in all of the time points.
Although this drug showed significant efficacy up to 180 min when administered at a dose
of 10 mg/kg, it was effective only in the 60th minute at a dose of 5 mg/kg. Reference drug
morphine (10 mg/kg, i.p.) was exhibited its analgesic effect, as expected (Figures 2–4).

2.3. Mechanistic Studies

After the acute analgesic efficacy profile of vortioxetine was determined, mechanistic
studies were conducted to elucidate the mechanism of this effect. In time course studies
conducted with this drug, it was observed that vortioxetine showed its highest activity in
the 60th minute at every dose administrated; then mechanistic studies were carried out by
comparing MPE% values at 60th minute. This drug was administrated at 10 mg/kg dose
in the mechanistic studies, since there were no statistically significant difference between
the MPE% values of 10 and 20 mg/kg doses 60 min after the administrations.
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2.3.1. Involvement of Serotonergic System in the Analgesic Effect of Vortioxetine

The effects of PCPA pre-treatment on vortioxetine (10 mg/kg)-induced analgesic
responses in the tail-clip, tail-immersion and hot-plate tests are shown in Figures 5A, 5B
and 5C, respectively.
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Figure 3. The effects of morphine (10 mg/kg, i.p.) and vortioxetine (5, 10 and 20 mg/kg, p.o.)
administrations on latency (A), MPE% (B) and AUC (C) values of mice in the tail-immersion test
(thermal nociception). (A) and (B): Significant difference against control group at 30th min * p < 0.05,
** p < 0.01, *** p < 0.001; at 60th min & p < 0.05, && p < 0.01, &&& p < 0.001; at 90th min éé p < 0.01;
ééé p < 0.001 at 120th min ˆˆ p < 0.01, ˆˆˆ p < 0.001; at 180th min + p < 0.05, ++ p < 0.01. Two-way
repeated ANOVA, post-hoc Tukey test, n = 7. (C): Significant difference against control group
** p < 0.01, *** p < 0.001; One-way ANOVA, post-hoc Tukey test, n = 7.
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Two-way ANOVA indicated that the treatment (tail-clip test: [F (1, 24) = 126.0,
p < 0.001]; tail-immersion test: [F (1, 24) = 71.62, p < 0.001]; hot-plate test: [F (1, 24) = 63.30,
p < 0.001]) and antagonist (tail-clip test: [F (1, 24) = 38.51, p < 0.001]; tail-immersion test:
[F (1, 24) = 19.26, p < 0.001]; hot-plate test: [F (1, 24) = 11.77, p < 0.01]) factors affected the
MPE% values. Furthermore, there was a statistically significant interaction (tail-clip test:
[F (1, 24) = 41.50, p < 0.001]; tail-immersion test: [F (1, 24) = 18.09, p < 0.001]; hot-plate test:
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[F (1, 24) = 14.40, p < 0.001]) between these two factors. Bonferroni analysis revealed that
administration of PCPA at 100 mg/kg for 4 consecutive days antagonized the analgesic
activity of vortioxetine in the tail-clip (p < 0.001), tail-immersion (p < 0.001) and hot-plate
(p < 0.001) tests.
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2.3.2. Involvement of Serotonergic 5HT1A Receptors in the Analgesic Effect of Vortioxetine

The effects of NAN-190 pre-treatment on vortioxetine (10 mg/kg)-induced analgesic re-
sponses in the tail-clip, tail-immersion and hot-plate tests are shown in Figures 6A, 6B and 6C
respectively. Two-way ANOVA indicated that the treatment (tail-clip test: [F (1, 24) = 160.9,
p < 0.001]; tail-immersion test: [F (1, 24) = 126.3, p < 0.001]; hot-plate test: [F (1, 24) = 46.00,
p < 0.001]) and antagonist (tail-clip test: [F (1, 24) = 32.21, p < 0.001]; tail-immersion test:
[F (1, 24) = 37.33, p < 0.001]; hot-plate test: F (1, 24) = 9.03, p < 0.01]) factors affected the
MPE% values of mice. Furthermore, there was a statistically significant interaction (tail-clip
test: [F (1, 24) = 38.86, p < 0.001]; tail-immersion test: [F (1, 24) = 37.46, p < 0.001]; hot-plate
test: [F (1, 24) = 11.39, p < 0.01]) between these two factors. Bonferroni analysis revealed
that NAN-190 antagonized the analgesic activity of vortioxetine in tail-clip (p < 0.001),
tail-immersion (p < 0.001) and hot-plate (p < 0.001) tests.

2.3.3. Involvement of Catecholaminergic System in the Analgesic Effect of Vortioxetine

The effects of AMPT pre-treatment on the vortioxetine (10 mg/kg)-induced analgesic re-
sponses in the tail-clip, tail-immersion and hot-plate tests are shown in Figures 7A, 7B and 7C,
respectively. Two-way ANOVA indicated that the treatment (tail-clip test: [F (1, 24) = 62.75,
p < 0.001]; tail-immersion test: [F (1, 24) = 49.62, p < 0.001]; hot-plate test: [F (1, 24) = 48.15,
p < 0.001]) and antagonist (tail-clip test: [F (1, 24) = 44.15, p < 0.001]; tail-immersion test:
[F (1, 24) = 31.41, p < 0.001]; hot-plate test: F (1, 24) = 27.83, p < 0.001]) factors affected the
MPE% values. Furthermore, there was a statistically significant interaction (tail-clip test:
[F (1, 24) = 37.78, p < 0.001]; tail-immersion test: [F (1, 24) = 30.26, p < 0.001]; hot-plate
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test: [F (1, 24) = 31.61, p < 0.001]) between these two factors. Bonferroni analysis revealed
that AMPT antagonized the analgesic activity of vortioxetine in the tail-clip (p < 0.001),
tail-immersion (p < 0.001) and hot-plate (p < 0.001) tests.
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2.3.4. Involvement of α-Adrenergic Receptors in the Analgesic Effect of Vortioxetine

The effects of phentolamine pre-treatment on vortioxetine (10 mg/kg)-induced
analgesic responses in the tail-clip, tail-immersion and hot-plate tests are shown in
Figures 8A, 8B and 8C, respectively. Two-way ANOVA indicated that the treatment (tail-
clip test: [F (1, 24) = 208.6, p < 0.001]; tail-immersion test: [F (1, 24) = 94.27, p < 0.001];
hot-plate test: [F (1, 24) = 53.11, p < 0.001]) and antagonist (tail-clip test: [F (1, 24) = 77.62,
p < 0.001]; tail-immersion test: [F (1, 24) = 32.77, p < 0.001]; hot-plate test: F (1, 24) = 18.71,
p < 0.001]) factors affected the MPE% values. Furthermore, there was a statistically
significant interaction (tail-clip test: [F (1, 24) = 80.75, p < 0.001]; tail-immersion test:
[F (1, 24) = 39.06, p < 0.001]; hot-plate test: [F (1, 24) = 13.75, p < 0.01]) between these two
factors. Bonferroni analysis revealed that administration of phentolamine at 4 mg/kg
(i.p.) led to antagonism of the analgesic activity of vortioxetine in the tail-clip (p < 0.001),
tail-immersion (p < 0.001) and hot-plate (p < 0.001) tests.

2.3.5. Involvement of β-Adrenergic Receptors in the Analgesic Effect of Vortioxetine

The effects of propranolol pre-treatment on the vortioxetine (10 mg/kg)-induced
analgesic responses in tail-clip, tail-immersion and hot-plate tests are shown in Figures 9A,
9B and 9C, respectively.
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clip (A), tail-immersion (B) and hot-plate (C) tests. Significant difference against vehicle treated
control groups *** p < 0.001; Significant difference against vortioxetine administrated control groups
&&& p < 0.001; Significant difference against phentolamine administrated control groups é p < 0.05,
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Two-way ANOVA indicated that the treatment (tail-clip test: [F (1, 24) = 166.4,
p < 0.001]; tail-immersion: [F (1, 24) = 185.3, p < 0.001]; hot-plate: [F (1, 24) = 108.5,
p < 0.001]) factors affected the MPE% values, whereas the antagonist factor did not (tail-
clip test: [F (1, 24) = 0.002, p > 0.05]; tail-immersion: [F (1, 24) = 0.01, p > 0.05]; hot-
plate: F (1, 24) = 0.07, p > 0.05]). In addition, there was no significant interaction (tail-
clip test: [F (1, 24) = 0.03, p > 0.05]; tail-immersion: [F (1, 24) = 0.09, p > 0.05]; hot-plate:
[F (1, 24) = 0.01, p > 0.05]) between these two factors.

Bonferroni analysis revealed that administration of propranolol at 2 mg/kg (i.p.) did
not cause antagonism of the analgesic activity of vortioxetine in the tail-clip (p > 0.05),
tail-immersion (p > 0.05) and hot-plate tests (p > 0.05).

2.3.6. Involvement of Opioid Receptors in the Analgesic Effect of Vortioxetine

The effects of naloxone pre-treatment on vortioxetine (10 mg/kg)-induced analgesic re-
sponses in the tail-clip, tail-immersion and hot-plate tests are shown Figures 10A, 10B and 10C,
respectively. Two-way ANOVA indicated that the treatment (tail-clip test: [F (1, 24) = 68.51,
p < 0.001]; tail-immersion test: [F (1, 24) = 65.43, p < 0.001]; hot-plate test: [F (1, 24) = 26.23,
p < 0.001]) and antagonist (tail-clip test: [F (1, 24) = 31.57, p < 0.001]; tail-immersion test:
[F (1, 24) = 34.47, p < 0.001]; hot-plate test: [F (1, 24) = 10.65, p < 0.01]) factors affected the
MPE% values. Furthermore, there was a statistically significant interaction (tail-clip test:
[F (1, 24) = 29.63, p < 0.001]; tail-immersion test: [F (1, 24) = 30.73, p < 0.001]; hot-plate test:
[F (1, 24) = 10.36, p < 0.01]) between these two factors. Multiple comparison Bonferroni
analysis revealed that pre-treatment with naloxone (5.48 mg/kg; single dose) led to an-
tagonism of the analgesic activity of vortioxetine in the tail-clip (p < 0.001), tail-immersion
(p < 0.001) and hot-plate (p < 0.001) tests.



Molecules 2021, 26, 3242 11 of 19

Molecules 2021, 26, x FOR PEER REVIEW 12 of 21 
 

 

Two-way ANOVA indicated that the treatment (tail-clip test: [F (1, 24) = 166.4, p < 
0.001]; tail-immersion: [F (1, 24) = 185.3, p < 0.001]; hot-plate: [F (1, 24) = 108.5, p < 0.001]) 
factors affected the MPE% values, whereas the antagonist factor did not (tail-clip test: [F 
(1, 24) = 0.002, p > 0.05]; tail-immersion: [F (1, 24) = 0.01, p > 0.05]; hot-plate: F (1, 24) = 0.07, 
p > 0.05]). In addition, there was no significant interaction (tail-clip test: [F (1, 24) = 0.03, p 
> 0.05]; tail-immersion: [F (1, 24) = 0.09, p > 0.05]; hot-plate: [F (1, 24) = 0.01, p > 0.05]) be-
tween these two factors. 

Bonferroni analysis revealed that administration of propranolol at 2 mg/kg (i.p.) did 
not cause antagonism of the analgesic activity of vortioxetine in the tail-clip (p > 0.05), tail-
immersion (p > 0.05) and hot-plate tests (p > 0.05). 

2.3.6. Involvement of Opioid Receptors in the Analgesic Effect of Vortioxetine 
The effects of naloxone pre-treatment on vortioxetine (10 mg/kg)-induced analgesic 

responses in the tail-clip, tail-immersion and hot-plate tests are shown Figure 10A, Figure 
10B and Figure 10C, respectively. Two-way ANOVA indicated that the treatment (tail-
clip test: [F (1, 24) = 68.51, p < 0.001]; tail-immersion test: [F (1, 24) = 65.43, p < 0.001]; hot-
plate test: [F (1, 24) = 26.23, p < 0.001]) and antagonist (tail-clip test: [F (1, 24) = 31.57, p < 
0.001]; tail-immersion test: [F (1, 24) = 34.47, p < 0.001]; hot-plate test: [F (1, 24) = 10.65, p < 
0.01]) factors affected the MPE% values. Furthermore, there was a statistically significant 
interaction (tail-clip test: [F (1, 24) = 29.63, p < 0.001]; tail-immersion test: [F (1, 24) = 30.73, 
p < 0.001]; hot-plate test: [F (1, 24) = 10.36, p < 0.01]) between these two factors. Multiple 
comparison Bonferroni analysis revealed that pre-treatment with naloxone (5.48 mg/kg; 
single dose) led to antagonism of the analgesic activity of vortioxetine in the tail-clip (p < 
0.001), tail-immersion (p < 0.001) and hot-plate (p < 0.001) tests. 

 
Figure 10. The effects of naloxone pretreatments on vortioxetine-induced analgesia in the tail-clip 
(A), tail-immersion (B) and hot-plate (C) tests. Significant difference against vehicle treated control 
groups *** p < 0.001; Significant difference against vortioxetine administrated control groups &&& p 
< 0.001. Two-way ANOVA, post-hoc Bonferroni test, n = 7. 

3. Discussion 
In the current study, we investigated the potential analgesic efficacy of vortioxetine 

based on its multimodal activity profile in the CNS. The use of agents that disrupt motor 
activity in experimental animals can lead to misleading results in pain experiments 

Figure 10. The effects of naloxone pretreatments on vortioxetine-induced analgesia in the tail-clip (A),
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Two-way ANOVA, post-hoc Bonferroni test, n = 7.

3. Discussion

In the current study, we investigated the potential analgesic efficacy of vortioxetine
based on its multimodal activity profile in the CNS. The use of agents that disrupt motor
activity in experimental animals can lead to misleading results in pain experiments [13,14].
Therefore, before investigating the analgesic efficacy of vortioxetine, the possible effect
of this drug on the motor coordination of the mice was investigated using Rota-rod tests.
We found that vortioxetine did not significantly affect motor activities at any of the doses
administered (5, 10 and 20 mg/kg). These findings, in line with previous reports [15,16], is
important because it showed that the data obtained from further analgesic activity tests
were specific.

The analgesic activity of vortioxetine was evaluated by the tail-clip, tail-immersion
and hot-plate tests. In the tail-clip tests, animals administered vortioxetine at 10 and
20 mg/kg had significantly longer reaction time than saline-administered control mice.
Moreover, MPE% and AUC values were also significantly higher with respect to the control
groups. 5 mg/kg dose of this drug was only effective at 60th minute (Figure 2). In the
tail-clip method, the clamp-biting reaction of animals is known to be associated with spinal
transmission of nociception [14,17]. Therefore, our findings suggest that the analgesic
activity of vortioxetine is related to its effect on spinal nociceptive pathways that carry
painful mechanical stimuli.

The tail-immersion method [18] was another procedure used to evaluate spinally
mediated acute analgesic effect, in this study. In these tests, vortioxetine at doses of 10
and 20 mg/kg significantly increased the reaction times of the mice as well as the MPE%
and AUC values compared to the saline-treated control groups. A 5 mg/kg dose was
effective only at the 60th minute (Figure 3). Findings from tail-immersion tests showed
that vortioxetine affects also spinal nociceptive pathways that carry thermal painful stimuli
along with mechanical ones.

Similar to the findings for the tail-clip and tail-immersion tests, in the hot-plate tests,
vortioxetine administrated at 10 and 20 mg/kg prolonged the response latencies of mice
and enhanced the related MPE% and AUC values, significantly (Figure 4). However,
different from the tail-clip and tail-immersion tests, which measure spinal reflexes, the
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nociceptive stimulus-induced paw-licking or jumping behaviors in hot-plate test are known
to be related to the supraspinal pathways [14,17]. Therefore, it can be suggested that
vortioxetine-induced analgesia is mediated by supraspinal mechanisms in addition to
spinal ones.

In parallel to our results, 10 mg/kg/day i.p. injection of vortioxetine for 27 days
has been shown to reduce tactile allodynia in mice with chronic constriction damage [16].
Similarly, in oxaliplatin-induced neuropathic mice, vortioxetine has been shown to reduce
mechanical allodynia in the Von Frey test and cold allodynia in acetone tests at 1–10 mg/kg
p.o. doses [19]. Moreover, studies investigating the efficacy of vortioxetine on chemically-
induced acute pain have revealed that this drug is effective in both phases of formalin
test [20,21]. Our study is different from these previous studies since we used direct
mechanical and thermal nociceptive stimulus (but not chemical) to induce pain instead
of allodynia. Moreover, we administrated vortioxetine at 20 mg/kg p.o. dose, which has
not been tested in nociceptive setups before. On the other hand, the only comparable
study was conducted by Mørk et al., who tested the acute effect of vortioxetine (2.5, 5, and
10 mg/kg, s.c.) in hot-plate method. The results of the mentioned paper, showing that
the 10 mg/kg dose of vortioxetine causes a significant increase in the reaction times of the
animals, support our findings in this study [6].

After presenting the acute analgesic efficacy of vortioxetine against mechanical and
thermal nociceptive stimuli; the possible mechanisms underlying this analgesic activity
were examined, in this study. As serotonergic, catecholaminergic and opioidergic systems
play critical roles in the nociception and analgesia processes of the CNS [22–24], we searched
the possible contribution of these systems to the analgesic effect of vortioxetine.

The participation of the endogenous serotonergic system in the analgesic effect of
vortioxetine was examined using PCPA, a serotonin-depleting agent. PCPA administration
(100 mg/kg; four consecutive days) was previously found to block serotonin synthesis by
inhibiting the tryptophan hydroxylase enzyme; furthermore, this process depleted 60–90%
of the endogenous serotonin stores in the CNS without affecting the central noradrenaline
and dopamine levels [25]. Results of the nociceptive tests indicated that PCPA pre-treatment
antagonized the analgesic activity of vortioxetine (Figure 5). These findings revealed
that the central serotonin level, which is probably modulated by the serotonin reuptake
inhibitory effect of this drug [2], is critical for vortioxetine-induced analgesia.

Serotonin has extremely complex effects on pain transmission and modulation; it can
induce both analgesic and pronociceptive effects in the CNS depending on receptor avail-
ability and affinity, ligand concentration, and the neural network involved [26]. 5-HT1A
subtypes of serotonergic receptors have been shown to densely localized in the dorsal horn
of the spinal cord and in brain regions that related to pain processing or modulation [27–29].
These receptor subtypes have been revealed to play critical roles in analgesia [30–33] and
ligands that activate them have been demonstrated to possess notable analgesic activi-
ties [34–38]. Based on the prominent agonistic effect of vortioxetine on 5-HT1A receptors,
we examined the possible participation of this receptor subtype to the analgesic effect of this
drug. The fact that pre-treatment with NAN-190, a selective 5-HT1A receptor antagonist,
attenuated the analgesic activity of vortioxetine (Figure 6), suggests that 5-HT1A receptors
contribute to the acute analgesic effect of this drug. On the other hand, along with the
5-HT1A, possible modulatory effects of other serotonergic receptors, especially the 5-HT1B,
5-HT1D, 5-HT3, and 5-HT7 subtypes [23,27], on vortioxetine-induced analgesia should be
clarified in further studies.

We investigated the involvement of the catecholaminergic system in the analgesic
activity of vortioxetine by using AMPT, a catecholamine-depleting agent. AMPT pre-
treatment at a dose of 100 mg/kg inhibits tyrosine hydroxylase, a rate-limiting enzyme in
noradrenaline and dopamine syntheses [39]. AMPT pre-treatment lowers central dopamine
and noradrenaline levels by 57% and 53%, respectively, but does not affect central sero-
tonin levels [40]. The AMPT results indicated that catecholamine depletion abolished the
analgesic activity of vortioxetine in all of the nociceptive tests (Figure 7). These findings
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together with the results of PCPA studies revealed that the central analgesic activity of
vortioxetine is related to catecholamine and serotonin levels in the CNS.

The noradrenergic system modulates pain via α- and β-adrenergic receptors [23,41–45].
Therefore, we investigated the participation of adrenoceptors in the analgesic effect of
vortioxetine. Our phentolamine studies showed that pre-treatment with this non-selective
α-adrenoceptor blocker antagonised the analgesic effect of vortioxetine (Figure 8). These
data indicate that α-adrenoceptors contribute to vortioxetine-induced analgesia. On the
other hand, blocking β-adrenergic receptors with propranolol did not alter the analgesic
effect (Figure 9), revealing that β-adrenoceptors do not mediate vortioxetine-induced
analgesia, at least in healthy mice.

The involvement of opioid receptors in the analgesic effect of vortioxetine was ex-
amined using naloxone, a non-selective antagonist of opioid receptors. Naloxone pre-
treatment eliminated the analgesic activity induced by 10 mg/kg vortioxetine in all of the
nociceptive tests (Figure 10), suggesting that the opioidergic system mediates the acute
analgesic effect of this drug at the supraspinal and spinal levels.

Vortioxetine has been reported to increase the levels of noradrenaline in various areas
of brain [3]. Therefore, it is possible that this drug increase noradrenaline levels in pain-
related regions of CNS, such as the descending noradrenergic pathway. The results of our
AMPT studies pointing out the critical role of central noradrenaline level in the analgesic
effect of vortioxetine are supportive for this idea. It has been shown that noradrenaline re-
leasing from descending inhibitory pathway acting predominantly at the α2-adrenoceptors
to induce analgesia [23]. Moreover, there is a well-described interaction between the opioi-
dergic and α2 adrenergic receptors. Namely, co-administration of their agonists are known
to produce synergistic analgesia, besides, α2 adrenoceptor agonists-induced analgesia can
be reversed by naloxone administration [46]. In addition to the noradrenergic system,
serotonergic system is known to interact with the opioid-mediated pain modulatory cir-
cuit [47]. It has been reported that the analgesic effects of µ and δ opioid receptor agonists
at spinal and supraspinal levels were significantly weakened in Lmx1bf/f/p mice, which
are genetically lack of central serotonergic neurons, while supraspinal analgesic efficacy
of k receptor agonists completely disappears. Central serotonergic system has been re-
ported as a key component of supraspinal pain modulatory circuitry mediating opioid
analgesia [48]. Our experimental data demonstrating the involvement of the serotonergic,
noradrenergic, and opioidergic systems in vortioxetine-induced analgesia are consistent
with these previous studies. Taken together, the analgesic effect of vortioxetine seems to
arise because of interaction between the main endogenous pathways of the CNS, similar to
its multimodal antidepressant effect.

One limitation of this study is that the antagonists used in the mechanism studies
were administered in single doses and these agents have potential to act on other receptors
than the targeted ones. For example, phentolamine, which shows its primary pharma-
cological effect by antagonizing α-adrenergic receptors, has also been reported to block
serotonergic receptors and potassium channels and to inhibit histamine release from mast
cells [49–52]. Moreover, NAN-190, a selective 5-HT1A receptor antagonist, has been shown
to block α2-adrenergic receptors in rodents [53]. Finally, the non-selective beta-adrenergic
antagonist propranolol has been demonstrated to bind to serotonergic 5HT1 and 5HT2
receptors in brain membranes. Furthermore there is a pharmacological evidence that
propranolol can behave as a 5-HT1A receptor antagonist and a 5-HT1B agonist in rat brain
cortex [54]. Although the pharmacological significance of these activities is ambiguous,
they may interfere with experimental results. Therefore, special attention was paid to dose
selections and these agents were administrated in previously used doses [14,55–65], at
which disappearance of the pharmacological effect have been associated to the involvement
of targeted receptors in the activity. On the other hand, it is clear that further mechanical
studies with various doses of antagonists would be useful to confirm the receptors that
mediate the central analgesic effect of vortioxetine.
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4. Materials and Methods
4.1. Animals

Adult male BALB/c mice (aged 12–15 weeks, body weight, 30–35 g) were used in
this study. The animals were housed in a well-ventilated room at a controlled temperature
of 24 ± 1 ◦C with a 12-h light/dark cycle (08:00–20:00). Water and food were provided
ad libitum.

The animals were obtained from the Anadolu University Research Unit for Exper-
imental Animals (Eskişehir, Turkey). The experimental protocol of the study approved
by the Local Ethical Committee on Animal Experimentation of Anadolu University, Es-
kişehir, Turkey (Protocol code 2020-30 and date of approval: 14 July 2020). The relevant
law of the Republic of Turkey (Regulation on the welfare and protection of animals used
for experimental and other scientific purposes No. 28141, 15 February 2014) has been
strictly followed.

4.2. Drugs and Administration Protocol

Vortioxetine hydrobromide (Brintellix®) was purchased from Lundbeck (North Ryde,
NSW, Australia), while PCPA, NAN-190 hydrobromide, morphine sulphate (authorization
date and number: 23 May 2018; 26/15), diazepam, AMPT, phentolamine hydrochloride,
propranolol hydrochloride, and naloxone hydrochloride dehydrate were acquired from
Sigma-Aldrich (St. Louis, MO, USA).

Vortioxetine, morphine sulphate and all the other chemicals, except AMPT and di-
azepam, were dissolved in physiological saline (0.9% NaCl) immediately before use. AMPT
and diazepam was dissolved in saline with 10% Tween 80.

Mice were randomly assigned to the experimental groups. Randomisation was per-
formed by an online software QuickCalcs (GraphPad Software, San Diego, CA, USA).
Randomization, drug/agent administrations (Ü.K.), conduction of the experiments (N.T.Y.),
outcome assessment and data analysis (Ö.D.C. and Ü.D.Ö.) were performed by the stated
researchers. Investigators were blinded to group allocation during the conduction of the
experiments, outcome assessment and data analysis.

Vortioxetine was orally administered to the mice at doses of 5, 10 and 20 mg/kg [15].
The reference drugs, morphine and diazepam, were administrated at 10 mg/kg (i.p.)
and 2 mg/kg (p.o.) doses, respectively [14,66]. Experiments were initiated 30 min after
the i.p. morphine injection and 60 min after the p.o. saline, diazepam and vortioxetine
administrations.

For mechanistic studies, the mice were pre-treated with PCPA (serotonin-synthesis in-
hibitor, 100 mg/kg i.p. once a day, four consecutive days) [67], NAN-190 (serotonin 5-HT1A
receptor antagonist, 0.5 mg/kg, i.p.) [57,59], AMPT (catecholamine-synthesis inhibitor,
100 mg/kg, i.p., 4 h prior to saline or vortioxetine administrations) [68], phentolamine
(non-selective α-adrenoceptor blocker, 4 mg/kg, i.p.) [60], propranolol (non-selective β-
adrenergic receptor blocker, 2 mg/kg, i.p.) [64] and naloxone (non-selective opioid receptor
blocker, 5.48 mg/kg, i.p.) [14]. Except for PCPA and AMPT, the antagonists were adminis-
tered 15 min before saline or vortioxetine administration.

The doses and ways of administration were chosen according to the previous experi-
ences of our laboratory and to data previously reported for mice [14,15,57,59,60,64,67,68].
Details of the experimental settings and treatment protocols are presented in Figure 11.

4.3. Motor Coordination Analysis
Rota-Rod Test

Motor coordination of mice was evaluated using a Rota-rod device (Cat. no: 47600;
Ugo Basile, Varese, Italy), as previously described [69]. The Rota-rod test is a two-stage
test with training and experimental phases. In the training phase, the mice practised three
times on the rotating rod, which was set at a constant speed of 16 rpm for three consecutive
days. The mice that could not remain on the rod for more than 180 s were excluded from
the experiments. In the experimental phase, the mice were placed on the rotating rod once
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more, and the falling time, a parameter of motor coordination, was automatically recorded.
Diazepam was used as a reference drug [66].

4.4. Analgesic Activity Analysis

The analgesic activity of vortioxetine was investigated using the following acute
nociception tests: tail-clip, tail-immersion and hot-plate tests.

4.4.1. Tail-Clip Test

The tail-clip test was performed as previously described [14]. A metal artery clamp
was applied to the tail of the mouse, and the latency of the nociceptive response (biting
the clamp) was recorded using a stopwatch. A sensitivity test was performed before the
experiments, and animals responding within 10 s were selected for the tests. Cut-off time
was chosen as 10 s to avoid possible tissue damage.
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4.4.2. Tail-Immersion Test

The tail-immersion test was performed as described previously [18]. 1–2 cm of the tail
of each mouse was immersed into hot water maintained at 52 ± 1 ◦C, and the latency of the
nociceptive response (rapid flick of the tail) was recorded using a stopwatch. A sensitivity
test was performed before the experiments, and animals responding within 4 s were
selected for the tests. Cut-off time was chosen as 20 s to avoid possible tissue damage.

4.4.3. Hot-Plate Test

The hot-plate test was performed as described earlier [14,70]. In this test, mice were
individually placed on the aluminium plate of the hot-plate device (Cat. no: 7280; Ugo
Basile, Varese, Italy), which was set at 55 ± 1.0 ◦C. Paw-licking, shaking or jumping latencies
of each mouse were recorded. A sensitivity test was performed before the experiments and
animals responding within 15 s were selected for the tests. Cut-off time was chosen as 30 s
to avoid probable tissue damage.

In each of the nociceptive tests, response latencies of mice were recorded at 0th (pre-
drug latency), 30th, 60th, 90th, 120th and 180th min. following the vehicle, reference drug
and vortioxetine administrations to obtain time course of drug effects.
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The following formula was used to convert tail-clip, tail-immersion, and hot-plate
latencies to the percent maximum possible effect (MPE%):

MPE% = ((postdrug latency − predrug latency))/((cut off time − predrug latency)) × 100 (1)

The MPE% values were plotted against time (0–180 min). Area under the MPE%
versus time curves (AUC0–180) were calculated by using the GraphPad Prism ver. 8.4.3.
(GraphPad Software, San Diego, CA, USA) based on the trapezoidal rule [18].

4.5. Statistical Analysis

The data used in statistical analyses were acquired from seven animals for each
group. Variables were first investigated for normality and homogeneity of variance using
Shapiro–Wilk and Levene tests, respectively. GraphPad Prism ver. 8.4.3 was used for
statistical evaluations. Experimental data obtained from Rota-rod tests were analysed
using one-way analysis of variance (ANOVA) followed by the Tukey’s honestly significant
difference (HSD) test for multiple comparisons. Data acquired from time course nociceptive
studies were evaluated by two-way repeated ANOVA, followed by the Tukey’s multiple
comparisons tests. AUC0–180 data were analysed with one-way ANOVA followed by the
Tukey’s HSD tests. Antagonist study results were evaluated by two-way ANOVA, followed
by the Bonferroni test for multiple comparisons. Experimental results have been provided
in terms of mean ± standard error of the mean. p < 0.05 was considered significant.

5. Conclusions

Findings of this research exhibited that vortioxetine exerts centrally mediated analgesic
activity against acute mechanical and thermal nociceptive stimuli. Furthermore, this study
demonstrated for the first time that serotonergic and catecholaminergic systems play critical
roles in the vortioxetine-induced analgesia and that opioidergic, 5-HT1A serotonergic and
α-adrenergic receptors mediate this effect.

Since pain processing and modulation are highly complex functions regulated by
various endogenous mechanisms in the nervous system, it may be beneficial to use more
than one drug with different modes of action in pain clinics. This multi-drug analgesic
approach can be advantageous due to the increased analgesic efficacy and reduced side
effects. However, this time, problems related to patient compliance and drug-drug interac-
tion risks may arise. On the other hand, inducing analgesia with a single drug acting on
various pain pathways may make it possible to both strengthen the analgesic effect and
avoid problems caused by polypharmacy [71,72]. Vortioxetine may meet these expectations
as an analgesic drug with multimodal activity in the CNS [73]. However, further clinical
studies are required to confirm this hypothesis.
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