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Abstract: The main purpose of this investigation was to systematically review the literature

regarding case studies on patient-specific implants and devices, with the goal of analyzing

the process of developing custom-made medical devices. A content analysis was performed

to identify design processes and methodologies implemented to develop devices such as

implants adapted to bone geometries. Reverse engineering, computer-aided design, simula-

tion of assets, and rapid prototyping technologies were selected according to their interoper-

ability in a process framework for developing new products. Finally, results from the case

studies and process stages identified in the consulted research were analyzed. These results

showed a relationship between the scope and complexity of the process and the stage of

technology integration of the patient-specific device development. The analyzed case studies

were characterized by technical, scientific, and multidisciplinary components to achieve

research goals. Likewise, integration of technologies using patient-specific technologies is

needed for product development that converges into designing devices, such as implants,

biomodels, and cutting drilling guides.

Keywords: customized implants, virtual planning, integration of CAx technologies,

technologies for patient-specific medical devices

Introduction
Currently, orthopedic research and development studies highlight investigations

into the design and manufacturing of patient-specific implants (PSI), also called

patient-specific devices (PSD). Such implants or devices provide an effective and

precise method for the treatment of a bone fracture or several defects like oncolo-

gical or congenital malformation.1–4 PSDs are designed to be adapted to bone

geometry, according to the fracture type to be stabilized.5 This concept arose

from advances in technology and systems integration, allowing the generation of

new design methods. The inclusion of the imaging techniques used in reverse

engineering (RE) for the 3D virtual reconstruction of reference models or biomo-

dels of living tissues has been proposed.6 Those tools are sometimes called

BIOCAD5 or, more traditionally, Computer-Aided Design (CAD).7

Results from this technology have been integrated into other software tools

used in the design and development of PSDs.8 The PSD model is often adapted to

3D bone geometry. The mechanical behavior of the resulting devices can be

evaluated by the finite element method (FEM) using Computer-Aided

Engineering (CAE).9
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Some design methods include a visualization phase

where a physical model is manufactured by rapid proto-

typing (RP) for additive manufacturing (AM) or machin-

ing by computer numerical control by computer-aided

manufacturing (CAM) using subtractive manufacturing

(SM).10 These tools can be configured in an architecture

that supports PSD design and production processes.

Specific conditions are needed to design a precise implant

in anatomical areas of complex geometry such as the skull,

hip, or femur.11–13

The current literature does not identify a marker to

validate which technologies should be integrated, or

which technologies are the most appropriate for the design

and development of PSDs to provide optimal treatment for

specific patients.

Based on this, it is proposed to define phases of devel-

opment for technology integration. This work was con-

ducted by consulting research involving successfully

implemented PSDs with known software architectures,

convergences, and divergences. A systematic review of

selected case studies may help identify trends and oppor-

tunities to improve the technologies used in developing

these devices.

The present article details the materials and methods

used in these studies, followed by a content analysis sys-

tematic literature review identifying common features

related to the design and manufacturing processes, tech-

nologies involved in each stage of development, and asso-

ciated reference practices. Later in the discussion, the

results of the literature review are contrasted and analyzed.

Finally, the conclusion gives an account of the literature

review as support for understanding the integration of

technologies in the development of PSDs.

Materials and methods
In the first stage of the study, an exploratory literature

review was carried out on the development of custom

medical devices. Different keywords were identified such

as BIOCAD, CAD/CAE, RP, CAM, diagnosis, virtual pre-

planning, implant manufacturing, and PSD design and

development. Research questions were defined relating to

the process, technological resources, and results in PSD

development, as illustrated in Figure 1.

The second stage of this study was to carry out a

systematic review of bibliometric to survey relevant tech-

nologies. The ISI Web of Science database was searched

from 2006–2018, applying the same criteria of quality,

inclusion, and exclusion to the selected articles. Although

WOS could be set since 2001, according to Meline103 a

systematic review for contemporary studies could covered

prior 10 years. The bibliometric review was run in 2018.

The equation used is shown in Figure 2.

This search identified 394 articles. Duplicate articles

were eliminated, as were articles with fewer than 10 cita-

tions. Abstracts were then read to identify papers with case

studies involving the design of customized implants,

highly complex surgical intervention, technologies for

patient-specific devices applied to orthopedic surgery,

Research
questions

Answers to identify
To identify methodologies,
methods, and stages of the

design process

CAx computer-assisted
technologies

Medical devices
development for
specific patients

What is the design and
development process for

customized implants?

What kind of technol-
ogies are used in
implant develop-

ment?

What case studies have
been investigated?

Research Process Results
Technological

resources

Figure 1 Research questions for exploratory literature review.

Abbreviation: CAx, Computer-aided Tools.
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maxillofacial surgery, orthognathic surgery, and other

technologies related to the development of PSDs. From

this, 70 articles were selected. Despite time-period

selected, seminal papers from 1998–2005 were 10%,

from 2006–2010 were 20%, from 2011–2015 were 36%,

and from 2016–2018 were 34%.

In a third stage, a content analysis of the selected

scientific articles was carried out to understand the pro-

cesses used, the tools used, the anatomical regions treated,

and the obtained results from the identified case studies of

PSDs using computer-aided tools (CAx) technologies.

Finally, the bibliometric results were analyzed using the

Tree of Science (ToS) web tool to understand trends.

Results
The selected papers were categorized according to main

topics: technology integration models, and trend analysis.

The main findings for each topic are given below.

Technology integration models
The integration of technologies was not explicitly

expressed when searching for PSD design case studies.

Nonetheless, the 70 documents were analyzed for this

content. These studies addressed complex fractures caused

by trauma, oncological, or congenital pathologies. The

stage in the process of PSD design and manufacture was

identified for each study. Also, each stage was associated

with the application of a CAx software tool: RE or

BIOCAD in virtual reconstruction, CAD in virtual pre-

planning and modeling, CAE in simulation, and RP in

3D printing, or machining by CAM.

Each technology integration model could also be

described by combinations of stages, ie,

RE + CAD + CAE + RP and/or CAM, defining the scope

of the technology development of each patient-specific

device.14 Models with higher numbers of stages involve

more technologies, with models possibly having up to 5
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Figure 2 Research equation for literature review.
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technology types, BIOCAD + CAD + CAE + RP + CAM. In

the equation below, it is observed that the combinatorial of

these 5 elements “n,” without selecting repeated elements

and with a restricted order, form groups “k” from a minimum

of 2 to a maximum of 5 components, with up to 26 possible

combinations.

� n!= n� kð Þ!k!ð Þ½ � ¼ 26

A total of 8 applied integration models were identified.

The model with the highest number of cases was the integra-

tion of BIOCAD + CAD + RP with a frequency of 38.6%,

followed by the BIOCAD + CAD + CAE + RP model with

21.4% of cases. The BIOCAD + CAD + RP + CAM

model accounted for 14.3% of cases, and the BIOCAD +

CAD + CAE model accounted for 11.4% of cases.

The BIOCAD + RP model accounted for 7.1%, the

CAD + CAE and BIOCAD + RP models accounted for

2.9% each, and the BIOCAD + CAD + CAM model

represented only 1.4% of cases. Figure 3 shows the fre-

quencies observed for each technology integration model.

The type of medical device or process was classified,

according to the technology integration model implemen-

ted in each study. PSIs were the most explored products

obtained by RP and CAM in the case studies, representing

62.9%. The biomodel was the next most studied, repre-

senting 41.4%. Surgical drilling or cutting guides were

developed in 21.4% of the studies. The virtual and physi-

cal pre-planning carried out in CAD represented 25.7%

and 24.3% of the studies, respectively. The least explored

product was the FEM mechanical simulation associated

with CAE, which represented 18.6% of the cases. These

results are shown in Figure 4.

Some implementation patterns were identified. As evi-

dent in the matrix of correlations in Table 1, there is a

strong incidence between the biomodel and physical simu-

lation, implant, and surgical guide, physical simulation and

implant, and virtual preplanning with a surgical guide,

among high values of 0.75–0.99 . A moderate correlation

was observed for values of 0.40–0.74 , between biomodel

and surgical preplanning, physical simulation and FEM

analysis, virtual preplanning and implant, FEM analysis

and implant, and implant with cutting guide. A low correla-

tion was observed with values close to 0, , between biomo-

del and FEM analysis, physical simulation and virtual

preplanning, and physical simulation with cutting guide.

Negative values have revealed an inverse relationship

between virtual pre-planning with FEM analysis, and

FEM analysis with the use of cutting guides.

The analysis by anatomical regions studied for the

development of custom medical devices yielded 93 case

studies reported from the 70 articles analyzed. Of the

cases, 57% were related to reconstructive surgeries of the

skull and face, while 43% were orthopedic surgery cases.

Papers were categorized according to the technology

integration models, PSDs, and the anatomical regions stu-

died, as shown in Table S1.

The regions with the highest number of case studies

were the maxillofacial area, representing 32.3% of cases,

and the skull vault, representing 17.2%. Pelvic fractures

represented 12.9% and the femur represented 11.8% of the

case studies. Case studies of the hands, feet, knee, and

humerus were observed with less frequency. The data

detailing the anatomical areas in the case studies are

shown in Figure 5.

Figure 3 Frequencies of technology integration models observed.

Abbreviations: BIOCAD, Biological Computer-aided Design; CAD, Computer-aided Design; CAE, Computer-aided Engineering; CAM, Computer-aided Manufacturing; RP,

Rapid Prototyping.
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Integration of BIOCAD + CAD + CAE technologies

was reported in 8 cases.2,12,13,15–19 In these cases, PSIs

were designed and simulations were made for the treat-

ment of maxillofacial, hip, skull, and femur fractures.

The integration of BIOCAD + CAD + CAE + RP was

used in 15 cases. The authors11,20–33 focused on PSI design,

simulating evaluation, and 3D printing. These cases included

fractures in the skull, femur, maxillofacial area, and pelvis, as

well as the knee, spine, hip, and the orbital area.

The integration of BIOCAD+CAD+RP was used in

27 cases.10,34–54 The authors described PSI and RP

applications. In most cases, this integration was for

fractures of the skull, maxillofacial region, and pelvis.

The BIOCAD + CAD integration was used in 5

cases,55–59 while 2 cases were reported using BIOCAD

+ RP integration.5,60 CAD + CAE integration was used in

2 more cases.7,61 These binomial models were applied in

cases that required the design of custom-made implants,

evaluation of standard implants, surgical guides, surgical

pre-planning, and simulation with prototype biomodels.

These applications were observed in the spine, pelvis,

femur and orbital area.

Figure 4 List of medical devices and technology integration models.

Abbreviations: BIOCAD, Biological Computer-aided Design; CAD, Computer-aided Design; CAE, Computer-aided Engineering; CAM, Computer-aided Manufacturing; RP,

Rapid Prototyping.

Table 1 Correlation among specificmedical devices. Stronger correlationswere among 0.75–0.99;moderate correlations for 0.4–0.74; low

correlations for values close to 0; and inverse correlations for negative values

Biomodel Simulation

using a

biomodel

Virtual surgi-

cal

preplanning

Simulation

by finite

element method

Implant Surgical or

drilling guide

Biomodel 1.00

Simulation using a biomodel 0.84 1.00

Virtual surgical preplaning 0.66 0.20 1.00

Simulation by finite element method 0.21 0.57 −0.27 1.00

Implant 0.85 0.86 0.46 0.52 1.00

Surgical or drilling guide 0.78 0.34 0.91 −0.31 0.57 1.00
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The integration of BIOCAD + CAD + RP + CAM

was observed in 10 cases.3,39,62–69 These works

focused on 3D printing of biomodels to perform diag-

nostics, visualize bone defects, and define the surgical

approach for cases on the skull and orbital area. In the

maxillofacial cases, PSD design was required. Finally,

a single implant case for the humerus was identified

that used the integration model BIOCAD + CAD +

CAM.70

Trend analysis
The ToS web tool allowed citations from the scientific

articles to be analyzed, classifying them as classic docu-

ments (root), structural documents (trunk), and trend

documents (leaves). The trend articles obtained by ToS

were analyzed using Nvivo V12 software. As shown in

Figure 6, these papers predominantly use CAx software

tools for product development.

The trend topics are associated with CAx technologies:

data management and quality, product life-cycle manage-

ment, project data management, human-machine interface,

applications of technologies in industries, virtual-physical

prototyping, manufacturing simulation, design education,

and health applications. As shown in Figure 7, key issues

were categorized and organized as a network of nodes.

This analysis provides evidence for strong interest in

data integration for the development of digital products

through editable files and collaborative work platforms

Figure 5 Anatomical regions treated with specific-patient devices.
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connected to interfaces, and interpretation of data among

geographically separated researchers. Also of interest was

the realization of complex data simulations, monitoring, and

control of the design and production phases in real time.71,72

These technologies are anticipated to be used in the

virtual prototyping of industrial factories, for virtual

simulation of manufacturing, for training purposes,

teleoperation,73,74 virtual immersion from open

platforms,75 relocation of the productive chain, and

industrial machinery.76

In addition, research is being conducted into efforts to

reduce computational requirements, to improve

interoperability during FEM validations by multiple work

teams,77 and the use of haptic interfaces during CAD/CAE

activities.78

AM is challenged to manufacture a final product, as

well as to establish virtual and physical evaluation meth-

ods that enable the determination of the performance of

manufactured parts.79

Algorithms are being developed to optimize product

design by reducing time and costs,80 to build decision

models for knowledge management, decision making,

and virtual verification in the development of complex

pieces,81,82 to propose creative solutions between
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Figure 6 Relationships between the most frequent words in Tree of Science files.

Abbreviations: CAD, Computer-aided Design; CAE, Computer-aided Engineering; CAM, Computer-aided Manufacturing.
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interdisciplinary teams,83 and to work collaboratively with

external groups that use different software during product

development.72

In the health sector, the documents indicated trends

towards the use of CAx technologies for external cosmetic

and functional implants of compromised body areas such

as the nose84 and the ears.85

Currently, methods for the direct manufacture of parts for

orthopedic rehabilitation are being defined,86 optimizing

workflows, timelines, and costs for implant development,39

craniosynostosis correction,87 and mandible reconstruction.88

Anthropometric predictive models are being developed

for the estimation of cortical zones for FEM analysis,89

and for dental implants with precise drill guides.90

Strategies have been proposed to control the sources of

error in RE such as imaging91 or by point cloud.92

Collaborative work will be promoted through the

development of open virtual design platforms, as stated

by Castellano-Smith et al93 using the specific patient mod-

eling method.

Discussion
Advantages and disadvantages of

technological integration
From the RE + CAD + CAE + RP technologies, other

types of personalized products have been generated,

such as pre-operative devices adjusted to bone

geometry.34,36,37,40–42,45,50,59,61,66,67,94–96 These research-

ers used common practices for product development

such as bone reconstruction software and performing

alignment and healthy bone symmetry operations on

the affected area.

Design requirements were defined based on pre-planning

and manufacturing devices with medical grade resin accep-

table for final use. PSI models can be created to adjust the

shape, geometry, and topology of the device based on the

patient’s needs, following surgical requirements.39,49,55,64,70

Another advantage was the application of CAx tools in

surgical pre-planning, predicting bone fixation and reducing

surgical risk, manufacturing time for PSD, and time for

surgery.32,44,49,54,57,66,68,71,72,77,102,107
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Figure 7 Coding of trends by networking.

Abbreviations: CAD, Computer-aided Design; CAE, Computer-aided Engineering; CAM, Computer-aided Manufacturing; CAx, Computer-Aided Technologies; HMI,

Human Machine interface; PDM, Product Data Management; PLM, Product Life-cycle Management; RE, Reverse Engineering; RP, Rapid Prototyping.
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Implementing virtual technologies has advanced strate-

gies such as participatory development, according to Peel et

al,39 allowing multidisciplinary collaboration between clin-

ical teams (dentists, surgeons, and orthopedists) and devel-

opment teams (technical engineers and designers).18,65 This

type of collaborative work98 has reduced the gap between

user expectations and results and has allowed the manufac-

turing of complex devices.22,32

On the other hand, some disadvantages of technology

integration were also identified. Some authors claim that

the integration of tools for rapid design and manufacture

are economically sustainable,60,61 specifically identifying

3D printing as an accessible, accurate, and profitable

resource.22,41,60 Other authors claim that barriers such as

the high cost of 3D printing61 and increased manufacturing

time will keep the implementation of these technologies

low.3,10,19,35,60,62,95

Problems were also identified related to preoperative

explorations, data transfer, and segmentation, decision

making for PSD fabrication,39 and mistakes in pre-plan-

ning that cause irreversible effects on the patient.60 3D

printed models are not yet suitable for some surgical

procedures involving soft tissue anchors.22

Implementation of intraoperative navigation systems

remains low due to their costs and the level of radiation

exposure for both the patient and the medical team.18 Also,

technical limitations for using specialized software cause

surgeons to be dependent on external technicians.95

Impact on the quality of patient care
PSD as a tool after virtual diagnosis provides greater

treatment precision,60 while 3D printing helps both physi-

cian and patient plan and understand treatment through

simulation.99 Biomodels and PSD are clinically justified27

as they reduce the complexity and improve the precision

of diagnosis.

Alloplastic implants are a powerful tool for developing

PSDs, especially when working with extensive or complex

bone defects. The intraoperative adjustment of plates or

meshes for fixation is minimized due to planning, facilitat-

ing fast and effective treatment of unilateral or bilateral

defects62 and functional and aesthetic restoration.49

Surgeons and designers can also restore mechanical prop-

erties of bone and promote osseointegration,39 providing

greater stability and minimizing patient risk16 due to the

accelerated time for effective treatment.97

Few complications have been reported during the post-

operative period45 following neurosurgery, craniomaxillofacial

surgery, orthopedic surgery, cardiothoracic surgery, and vascu-

lar surgery.22

However, patients are exposed to high doses of ioniz-

ing radiation during imaging acquisition19 because of the

use of computed tomography (CT) and cone-beam CT.

These images are used to inform treatment, but the radia-

tion may put a patient’s health at risk.

The benefits of pre-planning must be weighed against

this risk, and children are particularly susceptible to the

effects of radiation.61 Errors in setting cutting or drilling

guides could also have negative functional and aesthetic

effects on patients.40

Benefits of technology for specialists
Patient-specific technologies (PSTs) facilitate the inter-

pretation of CT images and reduce uncertainty in diag-

nosis and treatment.99 PSTs also improve fracture

characterization and inform the surgical approach, from

defining a preoperative plan to producing a final

PSD.21,35,37,40,41,43,45,46,48,56,57,65,66,70,95,99

Surgical time is reduced because the time spent on

repetitive plate fixation adjustments is eliminated or

decreased.2,22,38,39,43–45,49,54,57,60,68 The use of PSTs

allows less experienced surgeons to acquire practical skills

safely with less training time.56

PSDs are useful in complex and difficult cases,36 or in

cases with a high risk of complications and unfavorable

sequelae for the patient.38,44,45,64 Digital and physical

resources can improve data visualization during surgery,58

and surgical pre-planning expands the utility of intraopera-

tive navigation devices.37,48

Although some experienced surgeons prefer manual

techniques for conventional surgical pre-planning, this

can result in clinical failures60 or poor margin resection.40

In these cases, surgeons may rely more on their own

technical skills than on technologies because the technol-

ogies are outside their field of expertise.56 Increasing the

adoption of PSDs depends on specialist criteria39,48 and

the availability of technology.10

Regarding the quality of the product, important factors

included the simplicity of piece positioning, the ease of

alignment, surgical guide safety to improve cutting accu-

racy, and continuous and symmetrical bone restoration

results.34

The accuracy of position, inclination, and depth of

fixation holes and osteotomies compare favorably with

those achieved using conventional techniques, reducing

collateral damage to nerves and adjacent organs.
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The impact on cost-effectiveness for the

health system
Various authors stated that certainty in the surgical proce-

dure would reduce the cost and time of treatment, decreas-

ing the risks of infections or adverse outcomes.2,34,45

Decreased surgery time would improve the quality of

the intervention and make the procedure more

profitable.37,39,41,48

The need for specialized software and hardware to support

PSD development requires additional personnel with technical

skills in design and product development.37 Because these

tools require high financial investment for a health care institu-

tion, their availability in hospital units is limited and they are

more commonly found in laboratories and universities.39

The consulted papers rarely analyzed the cost-benefit

of these technologies. While the decreased time and cost

was mentioned in most of the documents, few compared

these technologies with conventional techniques. This type

of information is essential to determine whether the use of

these techniques can become the standard of care during

treatment requiring complex surgery.37

Reconstruction planning software and RP technologies

are crucial for the design and development of PSDs such

as PSIs, guides, and biomodels. Still, this software and

technology is relatively expensive, laborious, and

multidisciplinary, requiring investment in infrastructure,

regulatory compliance, training, and planning time.39

Marketing challenges
CAx in the surgical field can help specialists plan and per-

form safe, reliable, and precise surgical procedures,10,41,56

but the medical sector must diversify its value proposition

through the development of new products, services, and

processes.57 Enabling development units based on PSTs in

remote health facilities could create new business models,

decrease technological dependence,35,41 and decrease

response and delivery times.37

Adapting 3D printing for rapid response times and

integrating it into standard care protocols could create a

new paradigm in surgical planning,10,22,38,41 guaranteeing

multidisciplinary collaboration between engineering and

clinical specialties.37,39

Universal implementation of 3D printing depends on

the advancement of the technology, availability of free-

ware resources, and familiarity of surgeons, designers, and

engineers with the technique.56 However, anticipating the

demand or number of cases that could use this technique

over a certain time period is a complex task.3 Despite the

recognized time savings and accuracy, there is still a lack

of pedagogy to enable PST as a standardized approach.39

Requirements

Tasks

Technologies Reverse engineering
(RE) - (BIOCAD)

Computer aided
design (CAD)

Computer aided
Engineering (CAE)

Computer aided
manufacturing (CAM)

or rapid prototyping (RP)

Processes

Start

To get and to deliver
the patient’s CT

To undestand surgeon
requirements for cost,

time and quality

To validate static
behavior for virtual

device To select available
resources

To build and to
post-process the

products

To deliver and to 
validate the device

To sterilizate and
to use on surgery

End

Fabrication processDesign process Validation process

To select a material
and a manufacturing

process

To validate the
detailed design

To work among 
shakeholders for surgical 

pre-planning.

To design concepts for
a surgical guide or an
implant according to

requirements

Geometric assest for
shape alternatives Material selection

Predictable behavior
between bone structure

and device

To reconstruct the
virtual bone tissue

To fix and to align
the virtual surface

To segment the
region of interest into

a virtual biomodel

Figure 8 Requirements for design and development of specific medical devices.

Abbreviations: BIOCAD, Biological Computer Aided Design; CT, Computed tomography.
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A consensus in the field of PSTs
Of the analyzed studies, 80% used imaging or RE

techniques.2,3,5,10–13,18,20,21,23,24,30,33–35,39,41,44,45,48,49,51–53,

55,56,58,62–64,66–70,94,95,99,100 Fewer articles were identified

that used methods to obtain virtual models, measurement

references, or definition of contours by 3D sketching.12,49

CAD tools were used in 50% of the consulted studies,

while only 38% of these studies carried out validations

through CAE simulations. The physical prototypes used

for diagnosis allow proposed solutions to be visualized and

were analyzed in each case study.

In the design phase, iterative verification58 was per-

formed to understand deviations between surgical pre-

planning and the final results.52,96,101

The cases analyzed included implant prototypes devel-

oped with final materials such as titanium casting,101 poly-

methylmethacrylate casting,46 computer numerical

controlled machining of titanium alloy Ti6Al4V,13 Ti pow-

der sintering using AM,1 and RP of polyether-ether-

ketone.39

This analysis identified three basic requirements for the

design, evaluation, and prototyping of customized medical

devices. A conceptual map of the integration of technolo-

gies was outlined from the requirements and the possible

design process and is shown in Figure 8.

Conclusion
The systematic literature review allowed us to under-

stand the different technological integrations that

researchers have adopted in the design and development

of PSDs such as biomodels, surgical guides, and

implants.

In 70 documents, 93 clinical case studies were identi-

fied that used interoperable technologies, including RE,

CAD, evaluation by FEM simulation, CAE, and RP by

AM, SM, or CAM. The analysis showed a relationship

between the scope and complexity of the process, the

number of stages in the process, and the integration of

technologies defined during the process of new product

development. The analyzed case studies used technical,

scientific, and multidisciplinary strategies to achieve their

proposed objectives.

Although there were 26 possible combinations of inte-

gration models, only 8 were identified in the literature. The

most frequent was the BIOCAD + CAD + RP model

which was used in 38.6% of cases, followed by the

BIOCAD + CAD + CAE + RP model which was used in

21.4% of cases. This is evidence for the disuse of CAM

tools for the manufacture of final devices, replaced in part

by AM.

Although the trends indicated increased attention being

paid to technologies for process management for data

generated during collaborative work, different barriers

remain for the incorporation of these technologies in pro-

duct development related to the cost of resources. It is

expected that the benefits of integrated technologies in the

health sector will exceed their limitations and that these

technologies will become common practice in the treat-

ment of complex pathologies.

Abbreviations list
AM, Additive Manufacturing; BIOCAD, Biological

Computer Aided Design; CAx, Computer-Aided

Technologies; CAD, Computer-Aided Design; CAE,

Computer-Aided Engineering; CAM, Computer-Aided

Manufacturing; CT, Computed tomography; FEM, Finite

Element Method; HMI, Human Machine interface; PDM,

Product Data Management; PLM, Product Life-cycle

Management; PSI, Patient-Specific Implant; PSD, Patient-

Specific Devices; PST, Patient-Specific Technologies; RE,

Reverse Engineering; RP, Rapid Prototyping; SM,

Subtractive Manufacturing; ToS, Tree of Science.
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