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Abstract 

Background:  The role(s) of epigenetic reprogramming in gastric cancer (GC) remain obscure. This study was 
designed to identify methylated gene markers with prognostic potential for GC.

Methods:  Five datasets containing gene expression and methylation profiles from GC samples were collected from 
the GEO database, and subjected to meta-analysis. All five datasets were subjected to quality control and then differ-
entially expressed genes (DEGs) and differentially expressed methylation genes (DEMGs) were selected using MetaDE. 
Correlations between gene expression and methylation status were analysed using Pearson coefficient correlation. 
Then, enrichment analyses were conducted to identify signature genes that were significantly different at both the 
gene expression and methylation levels. Cox regression analyses were performed to identify clinical factors and these 
were combined with the signature genes to create a prognosis-related predictive model. This model was then evalu-
ated for predictive accuracy and then validated using a validation dataset.

Results:  This study identified 1565 DEGs and 3754 DEMGs in total. Of these, 369 were differentially expressed at both 
the gene and methylation levels. We identified 12 signature genes including VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5 
which were combined with the clinical data to produce a novel prognostic model for GC. This model could effec-
tively split GC patients into two groups, high- and low-risk with these observations being confirmed in the validation 
dataset.

Conclusion:  The differential methylation of the 12 signature genes, including VEGFC, FBP1, NR3C1, NFE2L2, and 
DFNA5, identified in this study may help to produce a functional predictive model for evaluating GC prognosis in clini-
cal samples.
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Background
Gastric cancer (GC) is the fifth-most common cancer 
in the world and is associated with high mortality and 
dismal prognosis as a result of its delayed diagnosis [1, 
2]. There are approximately 1 million new cases of GC 

diagnosed every year and the mortality is about 720,000 
deaths per year worldwide [3]. In western countries, the 
mortality for GC is extremely high because diagnostic 
screening approaches are insufficient and most patients 
(≥ 50%) are only diagnosed at later stages [2]. Under-
standing the underlying pathogenesis of GC has facili-
tated the identification of novel molecular biomarkers, 
which researchers hope will help to advance the diagno-
sis of this disease at earlier stages.
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Many genetic and epigenetic events have been linked 
to carcinogenesis. The major hallmarks of any epigenetic 
events include alterations at the promoter CpG sites 
within the gene or changes to the histone at the chroma-
tin level, and the most widely studied and best character-
ised epigenetic events include differential methylation of 
tumour suppressors and oncogenes [4].

In GC, multiple epigenetic modifications have been 
linked to disease progression, and these alterations may 
contribute to the identification of biomarkers for early 
diagnosis [4]. Using epigenome wide and gene-specific 
DNA methylation analyses, a DNA methylation bio-
marker panel, which includes IRF4, ELMO1, CLIP4, and 
MSC, has been found to link GC and gastritis, and this 
panel has been shown to be useful in endoscopic biop-
sies allowing for the earlier detection of GC in these 
samples [5]. In a study of the Chinese population COX-
2 methylation levels were shown to be reduced in the 
anti-Helicobacter pylori intervention group, compared 
with the placebo group, indicating that this differential 
methylation might be a useful indicator of chemopreven-
tion efficacy for GC [6]. The aberrant methylation of the 
tumour suppressor gene, FAT4, in peripheral blood leu-
kocytes has been linked to increased GC risk [7]. While 
decreased expression of HOXB13, caused by methylation 
of its promoter, is a reliable marker for poor prognosis 
in GC [8]. Increased methylation of the LINE1 and IGF2 
differentially methylated regions (DMRs) correlates with 
more aggressive GC phenotypes and thus are considered 
potential biomarkers for GC progression [9].

Despite these encouraging findings, the underly-
ing gene methylation mechanisms used in GC remain 
obscure. In addition, evaluation of methylation in sam-
ples collected in previous studies remains relatively rare. 
Therefore, we searched GC-related gene and methyla-
tion expression profiles found in public databases, and 
combined these data using meta-analysis, to enlarge 
the sample size and enhance statistical power. Using a 
series of bioinformatics tools and survival analysis, we 
could reveal the association between gene methylation 
and GC prognosis identifying several novel prognostic 
biomarkers.

Methods
Data resource and sample classification
Dataset for meta‑analysis
The gene expression and methylation profile datasets 
were selected from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/), using the keywords “gastric can-
cer” and “Homo sapiens”. The inclusion criteria for the 
datasets were as follows: (1) the dataset must include 
both gastric cancer tumour samples and normal tissue 
samples; and (2) have at least 50 samples in the dataset. 

Five eligible gene expression and two methylation pro-
file datasets were identified and downloaded. GSE26942 
was from the GPL6947 platform and consisted of 205 
gastric tumour tissue samples (GC samples) and 12 gas-
tric normal tissue samples (normal samples) (https​://
www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE26​
942). GSE29727, which included 134 GC samples and 
134 normal samples, (https​://www.ncbi.nlm.nih.gov/geo/
query​/acc.cgi?acc=GSE29​727) was isolated from GPL96. 
GSE54129, which included 111 GC samples and 21 nor-
mal samples, (https​://www.ncbi.nlm.nih.gov/geo/query​/
acc.cgi?acc=GSE54​129) and GSE64951, which had 63 GC 
samples and 31 normal samples, (https​://www.ncbi.nlm.
nih.gov/geo/query​/acc.cgi?acc=GSE64​951) were both 
from GPL570. GSE65801 was from the GPL14550 and 
consisted of 64 samples made up of 32 GC and 32 normal 
tissues (https​://www.ncbi.nlm.nih.gov/geo/query​/acc.
cgi?acc=GSE65​801). Both of the methylation datasets 
were identified from the GPL8490 platform, GSE25869 
comprised 74 samples (GC sample, n = 42; normal sam-
ple, n = 32, https​://www.ncbi.nlm.nih.gov/geo/query​/
acc.cgi?acc=GSE25​869), and GSE30601 had 297 sam-
ples (GC sample, n = 203; normal sample, n = 94, https​
://www.ncbi.nlm.nih.gov/geo/query​/acc.cgi?acc=GSE30​
601). The attributes for each of these datasets are sum-
marised in Table 1. Detailed clinical information for each 
of the samples in these datasets was collected from the 
data derived in the GEO database.

Predictive modelling dataset
Relative gastric cancer gene expression and methylation 
profiles were downloaded from The Cancer Genome 
Atlas (TCGA, https​://gdc-porta​l.nci.nih.gov/) database. 
Then, the gene expression and gene methylation profiles 
were matched. This created a single dataset containing a 
total of 398 matched tumour samples. Of these, 360 sam-
ples had complete prognostic information. These data 
were then used as the training dataset for the predictive 
model for prognosis developed in our study. Another 
set of gastric cancer-related gene expression profiles, 
GSE62254, was then downloaded from the GEO data-
base (https​://www.ncbi.nlm.nih.gov/geo/query​/acc.
cgi?acc=GSE62​254). This dataset was from the GPL570 
[HG-U133_Plus_2] Affymetrix Human Genome U133 
Plus 2.0 Array platform and included the data from.300 
gastric cancer tumour tissue samples, and was used as an 
independent validation dataset. Patients’ clinical charac-
teristics are listed in Table 2. The mean age of the patients 
was 64.9 years in the TCGA dataset and 61.9 years in the 
validation dataset. The majority of patients in the TGCA 
dataset had stage II and III disease while in the validation 
dataset had stage II to IV disease.
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http://www.ncbi.nlm.nih.gov/geo/
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26942
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26942
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29727
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29727
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54129
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54129
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64951
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64951
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Data normalisation and consistency selection
Data used for meta‑analysis
Three of the five datasets used for meta-analysis, 
GSE29727, GSE54129, and GSE64951 were from the 
Affymetrix platform. The raw data from these three data-
sets was downloaded in the CEL format and were then 
transformed into gene symbols, their missing values were 
filled in using the median method, and then subjected to 
background correction using the minimal sets algorithm 
method and normalised using the quantiles method [10]. 
All of these methods were included in the oligo pack-
age from R (version 3.4.1, http://www.bioco​nduct​or.org/
packa​ges/relea​se/bioc/html/oligo​.html). The other two 
datasets, GSE26942 and GSE65801, were from the Illu-
mina and Agilent platforms, respectively. These datasets 
were downloaded in TXT format and gene annotation 
was performed using the probe information provided by 
the platform. This data was then subjected to a logarith-
mic transformation and normalised using the quantiles 
method. These steps were performed using the limma 
package from R (version 3.4.1, https​://bioco​nduct​or.org/
packa​ges/relea​se/bioc/html/limma​.html).

In the case of the gene methylation datasets, GSE25869 
and GSE30601, the corresponding chromosome locations 
and methylated beta values were evaluated and assigned 
using the Methylation Module in GenomeStudio [PMID: 
22498030] [11].

Quality control and consistency selection
Given the fact that these datasets were all derived from dif-
ferent platforms, meta-analysis was used to combine con-
sistent data from across these datasets into a single larger 
dataset generating better statistical power and improving 
the reliability of the results. To eliminate potential bias, 
produced by differences in the platforms used to generate 
this data, all of the datasets were subjected to quality con-
trol using the criteria established in the MetaQC package 
from R (version 3.4.1, https​://cran.r-proje​ct.org/web/packa​
ges/MetaQ​C/index​.html). A total of five parameters, inter-
nal quality control (IQC), external quality control (EQC), 
accuracy quality control (AQC), consistency quality con-
trol (CQC), and standardised mean rank score (SMR), were 
calculated and evaluated. Then the reliable datasets were 
further analysed using the MetaDE.ES package (https​://

Table 1  Information of gene expression and methylation profiles in the datasets included in the meta-analysis

GEO accession Platform Total sample number Normal Cancer

Gene expression

 GSE26942 GPL6947 217 12 205

 GSE29727 GPL96 268 134 134

 GSE54129 GPL570 132 21 111

 GSE64951 GPL570 94 31 63

 GSE65801 GPL14550 64 32 32

Gene methylation

 GSE25869 GPL8490 74 32 42

 GSE30601 GPL8490 297 94 203

Table 2  Clinical information of patients in the TCGA training dataset and GSE62254 validation dataset

“–” indicates the missing information

Clinical characteristics TCGA (N = 360) GSE62254 (N = 300)

Age (years, mean ± sd) 64.9 ± 10.39 61.94 ± 11.36

Gender (male/female) 234/126 199/101

Pathologic_M (M0/M1/–) 328/18/14 273/27

Pathologic_N (N0/N1/N2/N3) 113/94/72/75/6 38/131/80/51

Pathologic_T (T1/T2/T3/T4/–) 17/70/167/105/1 2/186/91/21

Pathologic_stage (I/II/III/IV/–) 47/113/170/29/1 30/96/95/77/2

Targeted molecular therapy (yes/no/–) 144/193/23 –

Recurrence (yes/no) 77/253/30 125/157/18

Dead (death/alive/–) 122/238 135/148//17

Disease free survival (months, mean ± sd) 18.57 ± 17.19 33.72 ± 29.82

Overall survival time (months, mean ± sd) 16.17 ± 16.95 50.59 ± 31.42

http://www.bioconductor.org/packages/release/bioc/html/oligo.html
http://www.bioconductor.org/packages/release/bioc/html/oligo.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/MetaQC/index.html
https://cran.r-project.org/web/packages/MetaQC/index.html
https://cran.r-project.org/web/packages/MetaDE
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cran.r-proje​ct.org/web/packa​ges/MetaD​E) which selected 
the differentially expressed genes (DEGs) and differentially 
expressed methylation genes (DEMGs) when comparing 
GC and normal tissue samples. In brief, we performed a 
heterogeneity test for the expression of each gene on dif-
ferent platforms using tau2, Q value and Q pval as the 
measures. Then, we performed a heterogeneity test on 
the differential expression patterns for a gene in the inte-
grated dataset across the different sample groups. Using 
this analysis we were able to determine the false discovery 
rate (FDR) which was validated via multiple-testing correc-
tion and we identified a value of < 0.05 as the significance 
threshold value for DEGs and DEMGs between different 
sample groups [12]. To ensure each signature gene exhib-
ited consistent expression across different datasets, the 
thresholds for the homogeneity test were set as tau2 = 0 and 
Q pval > 0.05.

Correlation analysis between gene expression 
and methylation
The datasets containing DEGs and DEMGs were selected 
and compared. Overlapping genes, those that were both 
differentially expressed and exhibited altered methylation 
levels, were identified using the cor function in R (ver-
sion 3.4.1, http://127.0.0.1:19124​/libra​ry/stats​/html/cor.
html). The Pearson coefficient (CC) for gene expression 
and methylation levels was calculated, and the genes with 
significant associations with the methylation data were 
selected as candidate signature genes. These signature 
genes were then subjected to gene oncology (GO) bio-
logical functional enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG, https​://www.kegg.jp/) path-
way enrichment analyses, using the Database for Anno-
tation, Visualization and Integrated Discovery (DAVID, 
version 6.8, https​://david​.ncifc​rf.gov/) by a hypergeometric 
distribution [13].

Screening genetic prognostic biomarkers and clinical 
factors
Combining the identified tumour signature genes with 
the corresponding clinical factor information, we evalu-
ated their correlation using univariate and multivariate cox 
regression analyses in the R survival package (version 3.4.1, 
http://bioco​nduct​or.org/packa​ges/survi​valr/). The thresh-
old for significance was P < 0.05 when subjected to a log-
rank test.

Construction and validation of a predictive model 
of prognostic risk
Construction and validation of a tumour signature 
gene‑based predictive model
Based on the prognostic information identified in 
the previous step, we produced a tumour signature 

gene-based predictive model which was then used to 
calculate the prognosis index (PI) value for each sample. 
The median PI score was set as the cut-off for classifying 
samples as high- or low-risk in the training dataset. Then, 
Kaplan–Meier (KM) survival curves were constructed 
using the survival package from R (version 3.4.1, http://
bioco​nduct​or.org/packa​ges/survi​val/) and used to evalu-
ate the correlations between the predictive model and 
clinical outcome [14]. Meanwhile, these correlations were 
validated using the validation dataset. The area under the 
receiver operating characteristic (ROC) curve (AUROC) 
was used to determine the predictive accuracy of this 
model for both the training and validation datasets. The 
closer the AUROC value to 1.0 the higher the accuracy of 
the predictive model.

Construction of a prognostic clinical factor‑based predictive 
model
We used a cox regression analysis to use the prognostic 
clinical factor information from each dataset to generate 
a clinical factor-based predictive model. In this model, 
the PI for each sample was calculated and the median 
value was set as the cut-off for the high- and low-risk 
groups from the training dataset. Likewise, the KM sur-
vival curve was used to assess the relationships between 
the predictive model and clinical prognosis. These results 
were also assessed using the validation dataset.

Construction of the predictive model integrating signature 
genes and clinical factors
We created a novel integrated prognostic model for GC 
by combining the prognostic results from the signature 
gene-based model with those from the clinical factor-
based model. A new PI value was then calculated for each 
and the samples in the training dataset were divided into 
high- and low-risk groups using these new median val-
ues. KM survival curves were then used to evaluate the 
predictive value of these PI values and the results were 
evaluated in the validation dataset.

Results
Selection of DEGs and DEMGs
After data normalisation, quality control of the datasets 
was conducted, and values for IQC, EQC, AQC, CQC, 
and SMR were calculated. The quality results indicated 
these datasets were all eligible for meta-analysis. Finally, 
we identified 1565 DEGs and 3754 DEMGs with a high 
degree of consistency between GC and normal samples, 
using MetaDE. The evaluation and identification process 
is described in Fig. 1.

https://cran.r-project.org/web/packages/MetaDE
http://127.0.0.1:19124/library/stats/html/cor.html
http://127.0.0.1:19124/library/stats/html/cor.html
https://www.kegg.jp/
https://david.ncifcrf.gov/
http://bioconductor.org/packages/survivalr/
http://bioconductor.org/packages/survival/
http://bioconductor.org/packages/survival/
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Correlation between gene expression and methylation
The DEGs and DEMGs were compared and matched, 
identifying 396 overlapping sequences that were dif-
ferentially expressed at both the gene expression and 
methylation levels. We analysed the correlations between 
these values for each of the 396 genes identified from 
TCGA and GSE30601-GSE15460 (methylation profile 
with the matched gene profile) datasets. These evalua-
tions indicated that overall gene expression was nega-
tively associated with overall methylation in both TCGA 
(CC =  − 0.5145, P = 0.004) and GSE30601-GSE15460 
(CC =  − 0.72704, P < 0.001) datasets. Given this, we then 
calculated the correlation values for gene expression and 
methylation for each gene, and genes with negative rela-
tionships, that is those genes with high degrees of meth-
ylation and low expression or vice versa, were retained. 
This evaluation narrowed our gene cohort to roughly 274 
genes which were then evaluated as tumour signature 
genes.

Using GO functional and KEGG pathway enrichment 
analyses these 274 genes were found to be significantly 
enriched in 14 biological process categories including 
steroid metabolic process (NR3C1), fructose metabolic 
process (FBP1), regulation of cell migration (VEGFC), 
vitamin metabolic process (ACADM); and five pathway 

terms such as glycolysis/Gluconeogenesis (FBP1) 
(Table 3).

Prognostic gene biomarkers and clinical factors
These 274 genes were then subjected to univariate 
and multivariate cox regression analyses to identify 
the prognostic genes and clinical factors. We finally 
selected 12 genes (SLC5A5, SLC7A6, NFE2L2, DFNA5, 
VEGFC, MUM1, TRIB2, MCOLN1, FBP1, ACADM, 
WDR37, and NR3C1) that demonstrated a signifi-
cant correlation with clinical prognosis (Table  4), and 
five independent clinical factors (age, pathologic_N, 
pathologic_T, targeted molecular therapy, and new 
tumour) for our predictive models (Table  5). The KM 
survival curves for each are shown in Fig. 2.

We developed a clustering heatmap showing the 
expression and methylation status of all 12 of our 
tumour signature genes and then combined these with 
their corresponding prognostic clinical factors (Fig. 3). 
This analysis revealed that four clinical factors, age, 
pathologic_N, targeted molecular therapy, and new 
tumour, were significantly associated with the progno-
sis of patients in the two clusters (P < 0.01).

Fig. 1  Flow chart describing the analytical process in this study. DEG differentially expressed gene, DEMG differentially expressed methylation 
genes, PCC Pearson coefficient correlation
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Construction and validation of an integrated prognostic 
risk prediction model
The signature gene‑based risk predictive model
After obtaining the prognostic gene information using 
the cox regression algorithm, we constructed a prognostic 
risk prediction model using our 12 signature genes. The 
samples in the training dataset were classified as high- or 
low-risk with their cut-off set to the median PI values.

In the training dataset, the survival analysis indicated 
that patients in the low-risk group had a significantly 
longer median overall survival (OS) (22.1  m vs. 15.1  m, 
P < 0.001, Fig. 4a) and median disease free survival (DFS) 
(22.1 m vs. 14.5 m, P < 0.001, Fig. 4b), than those patients 
in the high-risk group. The AUROC for the OS and DFS 
curves were 0.997 and 0.906, respectively (Fig.  4e), sug-
gesting that both had a high predictive accuracy.

Similarly, in the validation dataset GSE62254, patients 
in the low-risk group had better survival rates compared 
with those in the high-risk group as evidenced by a pro-
longed median OS (55.8 m vs. 44.2 m, P = 0.009, Fig. 4c) 
and DFS (41.6 m vs. 30.6 m, P = 0.036, Fig. 4d) value. The 

Table 3  Enrichment results of the candidate gene markers

GO gene oncology, KEGG: Kyoto Encyclopedia of Genes and Genomes

Term Count P value Genes

Biology process

 GO:0006929 ~ substrate-bound cell migration 4 6.96E−04 VEGFC, TNFRSF12A, ATP5B, MYH10

 GO:0032101 ~ regulation of response to external stimulus 10 0.001453 EDNRA, GPX1, ADRB2, CYP27B1, ADORA2B, OSMR, FCER1G, 
GREM1, ADA, PLAU

 GO:0051186 ~ cofactor metabolic process 11 0.001691 MTHFS, GPX1, ALAS1, HMBS, SUCLG1, MCCC1, ALDOB, GIF, UROD, 
PDHB, MDH1

 GO:0050727 ~ regulation of inflammatory response 7 0.001717 EDNRA, GPX1, ADRB2, ADORA2B, OSMR, FCER1G, ADA

 GO:0008202 ~ steroid metabolic process 11 0.002193 TM7SF2, OSBPL2, CYP27B1, SULT1B1, INSIG1, SCARB1, NR3C1, 
CAT, NR0B2, HSD17B8, FDFT1

 GO:0016052 ~ carbohydrate catabolic process 8 0.002391 HYAL2, ALDOB, CHI3L1, FUT1, CTBS, PDHB, MDH1, ENO1

 GO:0006091 ~ generation of precursor metabolites and 
energy

14 0.002446 NDUFB5, NDUFA9, KL, ATP5B, SUCLG1, FADS1, ALDOB, CRAT, 
PDHB, GFPT2, CAT, ENO1, ATP5J, MDH1

 GO:0006000 ~ fructose metabolic process 4 0.002665 ALDOB, GFPT2, FBP1, FBP2

 GO:0015980 ~ energy derivation by oxidation of organic 
compounds

9 0.002965 NDUFB5, KL, NDUFA9, SUCLG1, GFPT2, CRAT, CAT, PDHB, MDH1

 GO:0006090 ~ pyruvate metabolic process 5 0.005245 ALDOB, FBP1, FBP2, PDHX, PDHB

 GO:0030334 ~ regulation of cell migration 9 0.007713 PTPRK, VEGFC, MMP9, PTP4A1, RRAS2, SCARB1, GREM1, SST, ADA

 GO:0006766 ~ vitamin metabolic process 6 0.008483 DHRS3, CYP27B1, ACADM, MCCC1, TMLHE, GIF

 GO:0044271 ~ nitrogen compound biosynthetic process 13 0.008797 ATP5B, HMBS, ATP11B, PFAS, ADA, ADI1, ALAS1, TMLHE, NQO1, 
UROD, IMPDH1, ATP5J, ATP8A1

 GO:0009310 ~ amine catabolic process 6 0.009967 MAOA, AMT, MCCC1, DDAH1, AUH, ENOSF1

KEGG pathway

 hsa00280:Valine, leucine and isoleucine degradation 6 0.003379 ACADM, IVD, OXCT1, MCCC1, PCCB, AUH

 hsa05219:Bladder cancer 5 0.016087 RPS6KA5, VEGFC, CDKN1A, MMP9, CDK4

 hsa03410:Base excision repair 4 0.047523 POLL, POLD1, NEIL1, PARP1

 hsa00010:Glycolysis/Gluconeogenesis 5 0.045098 ALDOB, FBP1, FBP2, PDHB, ENO1

 hsa00100:Steroid biosynthesis 3 0.045875 TM7SF2, CYP27B1, FDFT1

Table 4  Gene markers significantly related to the prognosis

Gene Coefficient 
correlation

Hazard ratio P value

SLC5A5 0.441439 1.5549 1.35E−06

SLC7A6 0.693078 1.9999 0.001005

NFE2L2 – 0.656704 0.5186 0.010575

DFNA5 0.371722 1.4502 0.010885

VEGFC 0.647272 1.9103 0.015025

MUM1 – 0.664478 0.5145 0.015945

TRIB2 0.321468 1.3792 0.02099

MCOLN1 – 0.593416 0.5524 0.02702

FBP1 – 0.218411 0.8038 0.033745

ACADM – 0.374113 0.6879 0.037275

WDR37 – 0.627658 0.5338 0.038765

NR3C1 – 0.40384 0.6678 0.0455
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AUROCs for these two outcomes were 0.995 and 0.912, 
respectively (Fig.  4e), indicating that this model created 
values with high predictive accuracy.

The clinical factor‑based prognostic risk model
Five clinical factors were identified using a cox regres-
sion algorithm, and based on the weight of their coeffi-
cients, samples containing all five factors were selected 

(n = 283) to establish the clinical factor-based predic-
tive model for prognostic risk. The PI of each sample 
was calculated and then used to classify the samples.

Survival analysis showed that the OS (19.5  m vs. 
16.6 m, P = 0.005, Fig. 5a) and DFS (18.5 m vs. 17.8 m, 
P = 0.048, Fig.  5b) of patients were significantly pro-
longed in the low-risk group when compared with 

Table 5  Clinical factors identified using cox regression analysis

Clinical characteristics Univariate cox regression Multivariate cox regression

P value HR (95%CI) P value HR (95%CI)

Gender (male/female) 0.05828 1.468 (0.984–2.19) 0.10378 1.4823 (0.9226–2.3818)

Pathologic_M (M0/M1/–) 0.004448 2.495 (1.3–4.788) 0.06341 2.3737 (0.9529–5.9131)

Pathologic_stage (I/II/III/IV/–) 9.24E−05 1.567 (1.249–1.967) 0.92892 0.9803 (0.6325–1.5193)

Radiation therapy (Yes/No/–) 3.35E−03 0.4701 (0.281–0.7865) 0.62836 0.8449 (0.4271–1.6717)

Age (above/below median (65)) 0.01833 1.556 (1.074–2.252) 0.04577 1.5779 (1.0086–2.4685)

Pathologic_N (N0/N1/N2/N3/–) 0.002214 1.284 (1.092–1.509) 0.0364 1.3105 (1.0173–1.6883)

Pathologic_T (T1/T2/T3/T4/–) 0.01075 1.345 (1.07–1.691) 0.01735 1.4999 (1.0741–2.0946)

Targeted molecular therapy (yes/no/–) 0.01009 0.609 (0.4158–0.8919) 0.00279 0.4432 (0.2600–0.7555)

New tumor (yes/no/–) 2.57E−09 2.976 (2.042–4.338) 9.21E−08 3.1742 (2.0777–4.8494)

Fig. 2  The Kaplan–Meier (KM) survival curves for five clinical factors. a age; b pathologic_N; c pathologic_T; d new tumour; e targeted molecular 
therapy
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those of the high-risk group. The AUROC was deter-
mined to be 0.923 and 0.921, respectively (Fig. 5e).

In the GSE62254 validation dataset, only three clini-
cal factors, age, pathologic_N, and pathologic_T, were 
available. Thus, we adapted the three clinical factor-
based predictive model to build a clinical factor-based 
model, to validate the results derived in TCGA train-
ing dataset. We again showed that patients in the low-
risk group had significantly prolonged OS (58.9  m 
vs. 37.2  m, P < 0.0001, Fig.  5c) and DFS (44.4  m vs. 
24.3 m, P < 0.0001, Fig. 5d) compared to patients in the 

high-risk group. The AUROC values for OS and DFS 
were 0.897 and 0.882, respectively (Fig. 5e).

Building an integrated predictive model incorporating 
both clinical factors and signature gene expression
The integrated predictive model was constructed by 
combining the weight coefficient from the 12 signature 
genes and five clinical factors. Then, the PI of each sam-
ple was re-calculated, and then reassigned as low- or 
high-risk.

Fig. 3  Clustered heatmap describing the gene expression and methylation patterns of the 12 signature genes and their correlation with specific 
prognostic clinical factors
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Fig. 4  Survival curves generated using the gene-based predictive model. a Overall survival (OS) of patients from TCGA dataset; b disease free 
survival (PFS) of patients from TCGA; c OS of patients from the validation dataset; d DFS of patients from the validation dataset; e the area under the 
ROC (AUROC) for the survival curves from both TCGA and validation datasets
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Fig. 5  Survival curves generated using the prognostic clinical factor-based predictive model. a OS of patients from TCGA dataset; b DFS of patients 
from TCGA; c OS of patients from the validation dataset; d DFS of patients from the validation dataset; e AUROC for each of the survival curves from 
both the TCGA and validation datasets
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Fig. 6  Survival curves generated using the integrated predictive. a OS of patients from the TCGA dataset; b DFS of patients from TCGA; c OS of 
patients from the validation dataset; d DFS of patients from the validation dataset; e AUROC values for the survival curves generated from both the 
TCGA and validation datasets
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The patients in TGCA dataset low-risk group had a 
significantly prolonged OS (20.3 m vs. 15.8 m, P < 0.001, 
Fig.  6a) and DFS (19.7  m vs. 14.6  m, P = 0.003, Fig.  6b) 
compared with those in the high-risk group. The 
AUROCs of the two outcomes were 0.985 and 0.939, 
respectively (Fig. 6e).

To evaluate the GSE62254 validation dataset, the 
clinical factors were reduced from five to three based 
on data availability and new PI values were calculated. 
Patients were then categorised as high or low risk and 
then their survival was evaluated. Patients in the low-risk 
group were shown to have significantly longer survival 
rates than patients in the high-risk group (OS: 62.3  m 
vs. 38.0  m, P < 0.0001, Fig.  6c; DFS: 47.9  m vs. 24.6  m, 
P < 0.0001, Fig. 6d). The AUROC values for OS and DFS 
were 0.942 and 0.921, respectively (Fig. 6e).

Discussion
Here, we used a series of bioinformatics analyses to con-
struct a predictive model for evaluating the prognosis of 
GC samples using 12 signature genes and five clinical fac-
tors. All 12 signature genes were also differentially meth-
ylated and could be used to split patients into high and 
low risk groups. These models were all validated using a 
validation set.

When we evaluated our 12 signature genes, four were 
identified as particularly interesting, vascular endothe-
lial growth factor c (VEGFC), nuclear receptor subfamily 
3 group c member 1 (NR3C1), nuclear factor, erythroid 
2 like 2 (NFE2L2), and fructose-1,6-bisphosphatase-1 
(FBP1). VEGFC has been reported to be a key regula-
tor in GC progression and its encoded protein facilitates 
angiogenesis and endothelial cell growth. In addition, 
oxidised low-density lipoprotein (oxLDL) is a risk factor 
in the pathogenesis of cancers linked to its roles in abnor-
mal lipid metabolism, and has been shown to promote 
lymphatic metastasis of GC via the up-regulated expres-
sion and secretion of VEGFC [15]. microRNA (miR)-27b 
acts as a potential tumour suppressor in GC and targets 
VEGFC expression [16], while miR-101 promotes cis-
platin (DPP)-induced apoptosis partly via its targeting 
of VEGFC in DDP-resistant GC cells [17]. In addition, 
VEGFC expression is associated with the GC progno-
sis, as survival is significantly poorer in VEGFC-posi-
tive GC patients, when compared to VEGFC-negative 
patients [18]. Moreover, decreased VEGFC was shown 
to correlate with an increased risk of tumour progres-
sion [19]. Here, we identified VEGFC as one of the 12 sig-
nature genes for evaluating GC prognosis and this gene 
was enriched in the ‘regulation of cell migration’ func-
tional category which suggests that VEGFC methylation 
may be related to GC prognosis via its regulation of cell 

migration. However, this regulatory relationship needs to 
be further validated in vitro and across large populations.

FBP1 protein is a gluconeogenesis regulatory enzyme 
associated with metabolic acidosis. Snail is an important 
mediator in cancer and has been shown to be increased 
in GC inducing the glucose metabolism via the down-
regulated expression of FBP1 [20] indirectly regulating 
the epithelial-mesenchymal transition (EMT). Decreased 
FBP1 serves as a positive factor in the metastasis of GC 
and is an indicator of poor prognosis in patients [21]. In 
GC cell lines, FBP1 is downregulated and its promoter 
is hypermethylated, resulting in increased carcinogen-
esis. Moreover, the methylation of FBP1 at its promoter 
has been independently associated with GC prognosis 
[22]. This was consistent with our findings that FBP1 was 
identified as one of the 12 signature genes having some 
predictive value for GC prognosis. Additionally, this 
gene was enriched in glycometabolism-related functions 
and pathways. When taken collectively these data indi-
cated that DNA methylation of FBP1 may be associated 
with GC prognosis via the differential regulation of the 
glycometabolism.

The NR3C1 gene encodes a glucocorticoid receptor. 
NR3C1 is important in the carcinogenesis of GC and has 
been used as a marker to identify primary GC [23, 24]. 
The high degree of methylation within the NR3C1 pro-
moter was also implicated in the initiation of GC pro-
gression, and four SNPs at this locus have been shown 
to be strongly associated with increased risk for GC in 
a Chinese population [20]. Here, we confirmed the link 
between NR3C1 methylation and GC prognosis, and sug-
gest that NR3C1 methylation may be a reliable prognostic 
indicator for GC.

NFE2L2, also known as NRF2, encodes a transcription 
factor (TF) known to participate in GC development, and 
its overexpression is a predictive marker for the progno-
sis and 5-FU resistance in GC [25]. GC patients positive 
for NRF2 expression are known to exhibit significantly 
poorer OS rates when compared to NRF2-negative 
patients [26]. Deafness associated tumour suppressor 
(DFNA5) is inactivated in GC via methylation, and this 
methylation is found in half of all patients with primary 
GC [27]. Here, we propose that there is a relationship 
between the methylation status of NFE2L2 and NRF2 and 
the prognosis of GC.

Finally, our analysis suggests that the predictive mod-
els produced in this study were relatively precise prob-
ably as a result of the increased sample size resulting 
from our meta-analysis. In addition, to relatively high 
AUROC values, our predictive models provided reli-
able results in our validation datasets. These encouraging 
results shed lights on potential regulatory mechanisms 
on methylation genes in GC prognosis. In addition, this 
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pilot bioinformatics analysis will lay the foundation of 
exploratory biomarker analysis, which could facilitate to 
the prediction or indication of patients with a low risk of 
death and a good survival outcome. Importantly, by the 
identification of these sensitive methylation gene mark-
ers and the methylation patterns, we might have a deeper 
understanding on this malignancy progression and might 
develop novel targeted therapies, which could improve 
the survival outcomes of the patients with GC. However, 
several limitations remain. The expression and methyla-
tion of these signature genes should be validated in vitro 
and in vivo with substantial cell lines and animal samples. 
Moreover, perspective studies are warranted using larger 
clinical cohorts to validate the prognostic values of these 
genes before being adopted in diagnostic and prognostic 
settings, and we will perform these studies in future.

Conclusion
In conclusion, methylation of 12 signature genes, includ-
ing VEGFC, FBP1, NR3C1, NFE2L2, and DFNA5, may be 
associated with the prognosis of GC, and these genes-
based risk models may be a useful tool in predicting 
prognostic outcomes for patients at earlier stages of dis-
ease. However, these results require validation in larger 
patient cohorts before they can be confidently applied in 
a clinical setting.
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