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Hepatocellular carcinomas remain as a global health threat given its high mortality rate. We
have previously identified the selectivity of cold atmospheric plasma (CAP) against multiple
types of malignant tumors and proposed it as a promising onco-therapeutic strategy.
Here, we investigated its roles in controlling hepatocellular carcinoma malignancy and one
possible driving molecular mechanism. By focusing on post-translational modifications
including acetylation, phosphorylation, and ubiquitination, we identified the crosstalk
between EGFR acetylation and EGFR(Tyr1068) phosphorylation and their collective
roles in determining LC3B ubiquitination and proposed the EGFR/p-JNK/BIRC6/LC3B
axis in CAP-triggered autophagy. Our study not only demonstrated the selectivity of CAP
against hepatocellular carcinoma malignancy and confirmed its roles as an onco-
therapeutic tool but also opened the horizon of translating CAP into clinics toward a
broader scope that included human longevity and anti-aging.
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INTRODUCTION

According to the latest Global Cancer Statistics, liver cancer contributes to the 3rd leading cause of
cancer death and is ranked as the second mortality among men in 2020 (1). Primary liver cancers
are largely comprised of hepatocellular carcinomas (HCCs) and intrahepatic cholangiocarcinomas
(ICCs), each accounting for approximately 80% and 15% of the incidence (2, 3). A small percentage
of patients [ranging from 0.4% and 14.2% (4, 5)] harbor the hybrid of both subtypes, namely,
cHCC-ICC (6). Being the predominant subtype of primary liver cancers, HCC remains as a major
global health threat and thus become the focus of this study.

The prognosis of liver cancers is, in general, poor, with the median survival time of HCC being
approximately 3 months without treatment (7, 8). Surgery is the first-line therapy for HCC
treatment (9–11). However, due to a hidden onset, only approximately 20%–30% of patients have
the opportunity to receive surgery as most patients have already reached the middle and late stage
on diagnosis (10), leaving chemotherapy and immunotherapy still being the mainstream
therapeutic choices for HCC (12). In addition to the negative impacts of these therapeutic
interventions on the human immune system, HCC relapse after receiving these treatments is
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almost inevitable due to the high intrinsic heterogeneity of such
cancers that can easily lead to the development of differential
therapeutic responses (13).

Sorafenib (a kinase inhibitor) was the first drug approved by
the Food and Drug Administration (FDA) for HCC treatment
that can extend patient survival to no more than 3 months (14,
15). Nivolumab and pembrolizumab, two PD1 immune
checkpoint inhibitors, have achieved an unprecedented
favorable therapeutic outcome for a small fraction of HCC
patients in clinical trials (16, 17), yet no biomarker is currently
available for predicting such a therapeutic response. Therefore,
establishing novel techniques for effective and safe HCC
treatment toward its ultimate eradication represents an urgent
global challenge.

Cold atmospheric plasma (CAP), formed by the ionization of
gas molecules, belongs to the fourth state of matter following
solid, liquid, and gas and is composed of various electronics, ions,
atoms, and free radicals (18). We have previously proven that
CAP can selectively kill triple-negative breast cancer cells (19–
21), bladder cancer cells (22), and prostate cancer cells (23)
without observable side effects and now endeavor to
investigate its efficacy in resolving HCC and the underlying
molecular mechanism.
MATERIALS AND METHODS

Cell Culture
Human hepatocellular carcinoma cell lines Huh7 (Catalog No.
CL-0120) and HepG2 (Catalog No. SCSP-510) were purchased
from the National Collection of Authenticated Cell Cultures
(Shanghai, China). The normal liver cell line LO2 (Catalog No.
CL-0111) was purchased from Procell Life Science & Technology
Co., Ltd (Wuhan, China).

Huh7 and HepG2 were cultivated in dulbecco's modified eagle
medium (DMEM) supplemented with 10% fetal bovine serum
(Catalog No. SH30406.05, Cytiva) and 1% penicillin/
streptomycin solution (Catalog No. BL505A, Biosharp), in a
37°C incubator supplemented with 5% CO2. LO2 was
cultivated in RPMI1640 supplemented with 10% fetal bovine
serum (Catalog No. SH30406.05, CytivaGibco) and 1% penicillin/
streptomycin solution (Catalog No. BL505A, Biosharp).
siRNA Design
The siRNAs of CBP and BIRC6 (Supplementary Table 1) were
synthesized by Sai Suofei Biological Technology Co., Ltd (Wuxi,
China) and Genwiz Biological Technology Co., Ltd (Suzhou,
China), respectively.
Q-PCR
The TRIzol reagent [Catalog No. DP419, TianGen (Beijing,
China)] was used to extract total RNA from a 6-well-plate. 24-
48 h after transfection followed by reverse transcription, RNA
was converted to cDNA using PrimeScriptRT reverse
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transcriptase [Catalog No. RR047A, Takara (Japan)]. The
qPCR was performed using the Roche LightCycler 480 qPCR
system and qPCR kit [Catalog No. CW0957M, Cwbio (Beijing,
China)], following the manufacturer’s protocol. The primers are
listed in Supplementary Table 2. The relative expression level
was calculated using the 2−△△Ct method. Student’s t-test was
used to access the statistical significance, with p < 0.05 being used
as the threshold.

Western Blot
Total protein was extracted after 24-48 h siRNA transfection or
8 h CAP treatment using an Radio-Immunoprecipitation Assay
(RIPA) lysis buffer supplemented with protease and phosphatase
inhibitors (Catalog No. P1010, Catalog No. CW2383, CWbio).
The BCA Protein Assay Kit [Catalog No. P0010, Beyotime
(Shanghai, China)] was used to estimate protein concentration.
Protein samples were separated on sodium dodecyl sulfate (SDS)
polyacrylamide gel and then transferred to polyvinylidene
difluoride (PVDF) membranes that were incubated with
primary antibodies overnight at 4°C.

Secondary antibodies were diluted and incubated with the
membranes for 1 h at room temperature, followed by washing
using Tris-buffered saline with Tween for 3 times with 5 min for
each time. The signal was detected by the Tanon-2500B imaging
apparatus after the disposal of the WB developer [Catalog No.
E412-02-AA/B, Vazyme (Nanjing, China)].

The primary antibodies used in this study include p-EGFR
(1068) [(Catalog No. 3777S, Cell Signaling Technology (Boston,
America)], , LC3B (Catalog No. 83506S, Cell Signaling
Technology), BIRC6 [Catalog No. ab19609, Abcam (Cambridge,
UK)], p-JNK (Catalog No. 4668S, Cell Signaling Technology),
KI67 (Catalog No. ab16667, Abcam), K48 (Catalog No. 8081S, Cell
Signaling Technology), acetyllysine mouse mAb [Catalog No.
PTM-102, PTM Biolab(Hangzhou, China)], crotonyllysine
mouse monoclonal antibody (mAb) (Catalog No. PTM-502,
PTM Biolab), malonyllysine mouse mAb (Catalog No. PTM-
902, PTM Biolab), GAPDH [Catalog No. AC001, Proteintech
(Chicago, America)]. The secondary antibodies used include
Horseradish Peroxidase (HRP)-conjugated anti-rabbit
immunoglobin G (IgG) (Catalog No. A0208, Beyotime) and
anti-mouse IgG (Catalog No. A0216, Beyotime).

Immunofluorescence
Cells were slightly washed by Phosphate Buffered Saline (PBS) for
3 times, where they were supplemented with 4% pre-chilled
paraformaldehyde [Catalog No. P1110, Solarbio (Beijing,
China)] and stewed for 15 min before immobilization. Cells
were permeabilized by PBS supplemented with 0.5% Triton X-
100 [Catalog No. 9002-93-1, MACKLIN (Shanghai, China)].

Cells were blocked using 5% bovine serum albumin (Catalog
No. 0332-100G, Amresco) for 30 min at room temperature
followed by the removal of a non-specific combination. Cells
were incubated with the primary antibody LC3B (Catalog No.
83506S, Cell Signaling Technology) at 4°C overnight. Cells were
washed with PBST (PBS added with 5% Tween) (Catalog No.
T8220, Solarbio) and incubated with the secondary antibody goat
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anti-rabbit IgG Heavy and light chains of immunoglobulins
(H&L) (Alexa Fluor® 488) [Catalog No. abs20025, Absin
(Shanghai, China)].

After incubating cells with the secondary antibodies, the
washing process was repeated for 3 times with PBST. The
nuclei were counterstained by 4',6-diamidino-2-phenylindole
(DAPI) (Catalog No. H1200, VECTASHIELD). The slides were
subjected to fluorescence microscopy using a ZEISS microscope
(Axio Imager Z2).

Transfection
Cells were prepared in a 6-well plate and reached ~ 50%
confluence before use. The siRNAs and reagents (Univ) were
mixed in the buffer [Catalog No. 101000046, Univ (Shanghai,
China)] for 10 min before transfection, with the final siRNA
concentration being 50 nM/well. For assays where negative control
(NC) was used, the control siRNA [Catalog No. AM4641,
Invitrogen (California, America)] was transfected.

Proliferation Assay
Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-
diphenyl-2H-tetrazol-3-ium bromide (MTT) assay (Catalog No.
298-93-1, Solarbio), following the manufacturer’s protocol. Cells
in each well of a 96-well plate were supplemented with 10 ml of
MTT, 90 ml of medium. After 4 h incubation at 37°C, the
supernatant was discarded following the addition of 100 ml of
Dimethyl sulfoxide (DMSO) in each well for 10 min. Absorbance
was detected using a microplate reader (Synergy H4). Student’s t-
test was performed to evaluate the statistical significance with p <
0.05 being used as the cut-off.

Co-Immunoprecipitation
Co-immunoprecipitation (Co-IP) was conducted following the
manufacturer’s protocol (Catalog No. abs955, Absin).

Cells were incubated with a lysis buffer supplemented with
protease and phosphatase inhibitors (Catalog No. P1010, Catalog
No. CW2383, CWbio) for 10 min before they were washed by
pre-cooled PBS. Cell lysates were placed on ice for 20 min,
followed by centrifuge for 20 min. The supernatant was extracted
and used for preparing the “Input” and immunoprecipitation
(IP) samples.

The primary antibody was added to the cell supernatant for
freeze rotation at 4°C overnight and added with agarose beads on
the following day to prepare IP samples. Western blot was used
to separate the samples.
RESULTS

CAP Selectively Induces Autophagy in
HCC Cells
Before conducting in-depth phenotypic and mechanistic
investigations, we first explored the parameter setting feasible
for HCC treatment given the dose-dependent nature of CAP as
an oncotherapeutic approach (24). By varying the CAP dosage,
Huh7 showed higher sensitivity than HepG2 and LO2 cells to
Frontiers in Oncology | www.frontiersin.org 3
CAP treatment and exhibited little effect in LO2 cells under “8V
supply voltage plus 2 min exposure duration,”which was selected
as the parameter setting for CAP ejection in this study
(Figure 1A). We next examined the cancer stemness level of
the examined cell lines to help interpret experimental
observations using ALDH1A1, a canonical marker of cancer
stemness (25–27), as the molecular index. Among the three HCC
lines, Huh7 had a high ALDH1A1 expression whereas the other
two did not (p<0.001, Figure 1B), suggestive of a high cancer
stemness of Huh7 cells. In addition, although slightly,
CAP reduced the stemness of Hub7 cells with statistical
significance (p=0.0267).

As autophagy has been lately shown to be capable of
inhibiting cancer stemness in triple-negative breast cancers
(28), and CAP was recently demonstrated with the attributes
of triggering autophagy in melanoma cells (29); we
examined whether and how CAP possibly could affect HCC
cell autophagy.

IF and Western blot results showed that LC3B, a canonical
marker of cell autophagy (30, 31), was substantially enhanced in
Huh7 and HepG2 cells on CAP exposure, whereas that of LO2
cells was unaffected (Figures 1C, D), suggestive of a selective
induction of autophagy in HCC cells as compared with normal
liver cells. We also noted that CAP slightly halted the
proliferation of Huh7 and HepG2 cells with statistical
significance without altering that of LO2 (KI67, Figure 1D),
suggesting the selective cytotoxicity of CAP against malignant
liver cells.

CAP Selectively Affects Acetylation in HCC
Cells
Post-translational modifications (PTMs) including oxidation
have been proposed with prominent roles in autophagy
regulation (32, 33). With rapid technology advancement, novel
PTM programs keep being discovered, among which acetylation,
crotonylation, and myristoylation were examined here before
and after CAP treatment. Following the order of cell malignancy
from high to low (Huh7, HepG2, LO2), we found one lane
(indicated by an arrow) in the acetylation profile that was
elevated after CAP treatment in cancer cells (Huh7, HepG2)
and the basal level (control) of which decreased with cell
malignancy (Figure 2A), implicative of its tumor-suppressive
role and the efficacy of CAP in restoring it back to the normal
level. Though CAP enhanced the level of one lane in the
crotonylation profiles of Huh7 and HepG2 cells, its basal
expression was similar between Huh7 and LO2 cells, which
was exempted from the analysis here (Figure 2B). Although
one lane in the myristoylation profiles was enhanced in Huh7
and HepG2 cells but not in LO2 cells, its level was positively
associated with cell cancer stemness, yet CAP showed an
inductive role, removing it from our focus here (Figure 2C).
Thus, we considered acetylation as the most relevant PTM in
response to CAP treatment, among the examined PTM events,
and selected it for the following investigations. In particular, we
used Huh7 cells in the following experimental assays given its
highest CAP sensitivity among all tested cell lines.
July 2022 | Volume 12 | Article 895106

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. CAP Triggers Hepatocellular Carcinoma Autophagy
CAP Triggers Autophagy in HCC Cells via
Suppressing EGFR Acetylation and EGFR
(Tyr1068) Phosphorylation
Inspired by the critical roles of EGFR reported in reactive oxygen
species (ROS)-triggered autophagy in non-small cell lung cancer
cells (34), we focused on the possible involvement of EGFR in
CAP-induced autophagy and acetylation alteration.

Indeed, CAP substantially reduced EGFR acetylation
(Figure 3A). Silencing CBP, an EGFR acetyltransferase (35),
using sequences obtained from (36) (p=2E-4, Figure 3B) or
treating cells with CAP both reduced EGFR acetylation
and EGFR(Tyr1068) phosphorylation levels and enhanced
LC3B expression (Figure 3C), suggesting the role of CAP
in suppressing EGFR acetylation and EGFR(Tyr1068)
phosphorylation as well as the involvement of both PTMs in
CAP-triggered autophagy.

Using the CRISPER/Cas9 technology, we constructed the
EGFR(Tyr1068) mutant by mutating the tyrosine 1068 site to
phenylalanine that blocks EGFR phosphorylation at the 1068 site
(Figure 3D). The acetylation of the EGFR(Tyr1068) mutant was
remarkably reduced (Figure 3E), suggestive of a positive
association between EGFR(Tyr1068) phosphorylation and
acetylation as well as their interactions. The LC3B level
Frontiers in Oncology | www.frontiersin.org 4
was elevated in the EGFR(Tyr1068) mutant (Figure 3F),
further supporting the suppressive role of EGFR(Tyr1068)
phosphorylation in HCC autophagy.

EGFR(Tyr1068) Phosphorylation Affects
LC3B Ubiquitination
We next explored the potential molecular mechanism that drives
the mediating role of EGFR(Tyr1068) on cell autophagy in
response to CAP treatment. It was demonstrated that the
observed elevated level of LC3B (Figure 3C) after CAP
treatment was a result of reduced LC3B ubiquitination
(Figure 4A), and blocking EGFR(Tyr1068) phosphorylation
suppressed LC3B K48 ubiquitination (Figure 4B). In addition,
silencing BIRC6, an E3 ubiquitin ligase of LC3B (37), slightly
decreased LC3B K48 ubiquitination (Figure 4C), and mutating
EGFR(Tyr1068) enhanced phosphorylated JNK (p-JNK)
(Figure 4D) that was known to interact with BIRC6 (38),
elevated interactions between BIRC6 and p-JNK, and
decreased interactions between BIRC6 and LC3B (Figure 4E).
CAP treatment showed a similar effect with EGFR(Tyr1068)
mutant in enhancing the interaction between BIRC6 and p-JNK
and decreasing that between BIRC6 and LC3B (Figure 4F).
These collectively suggested a competition between p-JNK and
A

B D

C

FIGURE 1 | CAP selectively induces autophagy in HCC cells. (A) Relative cell viabilities of Huh7, HepG2, and LO2 cells under different CAP treatment doses. (B)
Western blots and quantifications showing the expression of ALDH1A1 in Huh7, HepG2, and LO2 cells. (C) Western blots and quantifications showing the
expression of LC3B in Huh7, HepG2, and LO2 cells with and without CAP treatment. (D) Immunofluorescence imaging and quantifications showing the level and
location of LC3B in Huh7, HepG2, and LO2 cells with and without CAP treatment. 97L and 97H each represents MHCC97L and MHCC97H. Quantifications were
made from triplicates. *, **, ***: statistical significance. ns: there is no statistical significance.
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A B

C

FIGURE 2 | CAP selectively affects acetylation in HCC cells. Western blots and quantifications showing the expression profiles of (A) acetylation, (B) crotonylation,
and (C) myristoylation in Huh7, HepG2, and LO2 cells with and without CAP treatment. Quantifications were made from triplicates for panel (A). *, ***: statistical
significance. ns: there is no statistical significance.
A

B D

E

F

C

FIGURE 3 | CAP triggers autophagy in HCC cells via suppressing EGFR acetylation and EGFR(Tyr1068) phosphorylation. (A) Immunoprecipitation and its
quantification showing EGFR acetylation with and without CAP treatment. (B) Q-PCR results showing the knockdown efficiency of CBP. (C) Western blots and
quantifications showing the level of EGFR acetylation, EGFR(Tyr1068) phosphorylation, and LC3B. (D) Plasmid structure generating EGFR(Tyr1068) mutation. (E)
Immunoprecipitation and its quantification showing EGFR acetylation with and without EGFR(Tyr1068) mutation. (F) Western blots and quantifications showing the
level of EGFR(Tyr1068) and LC3B. Quantifications were made from triplicates. *, **, ***, ****: statistical significance. ns: there is no statistical significance.
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LC3B in binding with BIRC6. That is, CAP reduced EGFR
acetylation and EGFR(Tyr1068) phosphorylation, which led to
elevated p-JNK as well as its interactions with BIRC6; this
resulted in decreased availability of BIRC6 in interacting with
LC3B, reduced LC3B ubiquitination, and consequently, an
enhanced level of autophagy (Figure 5).
DISCUSSION

We reported in this study the selectivity of CAP against HCC
cells by triggering autophagy and identified the EGFR/p-JNK/
BIRC6/LC3B axis in driving this process. Importantly, we
unveiled the critical and orchestrated roles of multiple PTM
events in this molecular axis that involves EGFR acetylation,
EGFR(Tyr1068) phosphorylation, and LC3B ubiquitination.
Frontiers in Oncology | www.frontiersin.org 6
Autophagy is a process that degrades autologous protein and
damaged organelles (39) that may prevent cancer cells from
spontaneous hyper-proliferation via arresting them at the G0

phase or even at the death state if excessive, providing the
reasoning behind the selectivity of CAP against the HCC cells
identified in this study.

LC3B, a protein involved in the formation of autophagosomes,
has been widely used as a marker of autophagy (31, 40).We found
from our assays that LC3B sometimes showed two stripes and
sometimes one stripe. The antibody we used (Catalog No. 83506S,
Cell Signaling Technology) was capable of identifying both LC3B-
II and LC3B-I. During autophagy, LC3B-I is gradually
transformed into lipid LC3B-II, and LC3B-I is less stable and
easily degraded during repeated freezing and thawing (40). Thus,
the inconsistency regarding the number and intensities of the
stripes of LC3B observed was mainly caused by the differential
autophagy stages measured in each assay, as well as the
A

B D

E

F

C

FIGURE 4 | EGFR (Tyr1068) phosphorylation affects LC3B ubiquitination. (A) Immunoprecipitation and its quantification showing LC3B K48 ubiquitination with and
without CAP treatment. (B) Immunoprecipitation and its quantification showing LC3B K48 ubiquitination with and without EGFR(Tyr1068) mutation. (C)
Immunoprecipitation and its quantification showing LC3B K48 ubiquitination with and without silencing BIRC6. ‘NC’ refers to cells transfected with control siRNA. (D)
Western blot and quantification showing the level of phosphorylated JNK (p-JNK). (E) Immunoprecipitation and its quantification showing interactions between p-JNK
and BIRC6, LC3B, and BIRC6 with and without EGFR(Tyr1068) mutation. Quantifications were made from triplicates. (F) Immunoprecipitation and its quantification
showing interactions between p-JNK and BIRC6, LC3B, and BIRC6, receiving or not receiving CAP treatment. *: statistical significance.
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differential sample storage duration and condition. Crosstalk
among the different types of PTMs during disease initiation and
development has been frequently reported and gaining increasing
attention (41–47). Here, we reported the collective roles of EGFR
acetylation and phosphorylation in determining LC3C
ubiquitination. We found a reciprocal relationship between
EGFR acetylation and phosphorylation but did not explore
their causal relationship. That is, whether CAP triggered EGFR
acetylation first that led to EGFR(Tyr1068) phosphorylation, or
the other way around, or CAP induced EGFR acetylation and
EGFR(Tyr1068) phosphorylation simultaneously was unknown
and left for further investigations. In addition, we did not explore
the activity and possible roles of other EGFR phosphorylation
sites such as Tyr992, Tyr1086, Tyr1148, and Tyr1173 in CAP-
triggered HCC autophagy, which warrant additional studies.
Autophagy can help halt cancer cell growth; it may also protect
cells from oxidative damage if occurring under the physiological
Frontiers in Oncology | www.frontiersin.org 7
condition. In other words, autophagy may confer a favorable
value to normal cells under the physiological condition (48–50).
We found from our studies that given a higher dose, CAP could
also trigger autophagy in normal liver cells (Figure 1B),
implicative of its beneficial roles to human health. Liver is the
main organ that functions in detoxification. Triggering its self-
renewal via autophagy is compatible with the eternal pursuit of
human beings for longevity and rejuvenation and is relevant to
protecting liver against alcohol hangover. These make the clinical
translation of CAP more interesting and promising that, once
holds true, renders CAP not only a potential novel onco-
therapeutic strategy but also a health maintenance tool.

Lastly, it is worthy to mention that the nuclei of HepG2 cells
seemed to be larger after CAP treatment (Figure 1C), implicative
of the possible existence of other CAP-triggered cellular
outcomes that are beyond the scope of this study and deserve
additional investigations.
FIGURE 5 | Illustrative diagram on the mechanism of CAP in triggering autophagy in HCC cells. CAP suppresses EGFR acetylation and EGFR(Tyr1068)
phosphorylation that interfere with each other and collectively lead to an elevated level of p-JNK as well as its enhanced interactions with BIRC6. This reduces the
availability of BIRC6 in interacting with LC3B, which results in reduced LC3B ubiquitination and enhanced autophagy.
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5 CONCLUSIONS

We reported the efficacy of CAP in selectively arresting the
growth of HCC cells via triggering autophagy and proposed the
EGFR/p-JNK/BIRC6/LC3B molecule axis that drove this
process. We emphasized the importance of multiple PTM
orchestration in this molecular axis that involved EGFR
acetylation, EGFR(Tyr1068) phosphorylation, and LC3B
ubiquitination. Our study unveiled the selectivity of CAP
against HCC cells and also forecasted its utilities in a broader
scope including, for example, longevity and anti-aging, as a
promising tool for human health maintenance.
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